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Febrile infants risk score at triage 
(FIRST) for the early identification 
of serious bacterial infections
Shu‑Ling Chong 1,2,3*, Chenglin Niu 4, Gene Yong‑Kwang Ong 1,2,3, 
Rupini Piragasam 5, Zi Xean Khoo 2,6, Zhi Xiong Koh 7, Dagang Guo 4,7, Jan Hau Lee 2,8, 
Marcus Eng Hock Ong 3,7,9,10 & Nan Liu 4,7,9,10

We aimed to derive the Febrile Infants Risk Score at Triage (FIRST) to quantify risk for serious 
bacterial infections (SBIs), defined as bacteremia, meningitis and urinary tract infections. We 
performed a prospective observational study on febrile infants < 3 months old at a tertiary hospital 
in Singapore between 2018 and 2021. We utilized machine learning and logistic regression to derive 
2 models: FIRST, based on patient demographics, vital signs and history, and FIRST + , adding 
laboratory results to the same variables. SBIs were diagnosed in 224/1002 (22.4%) infants. Among 
994 children with complete data, age (adjusted odds ratio [aOR] 1.01 95%CI 1.01–1.02, p < 0.001), 
high temperature (aOR 2.22 95%CI 1.69–2.91, p < 0.001), male sex (aOR 2.62 95%CI 1.86–3.70, 
p < 0.001) and fever of ≥ 2 days (aOR 1.79 95%CI 1.18–2.74, p = 0.007) were independently associated 
with SBIs. For FIRST + , abnormal urine leukocyte esterase (aOR 16.46 95%CI 10.00–27.11, p < 0.001) 
and procalcitonin (aOR 1.05 95%CI 1.01–1.09, p = 0.009) were further identified. A FIRST + threshold 
of ≥ 15% predicted risk had a sensitivity of 81.8% (95%CI 70.5–91.0%) and specificity of 65.6% (95%CI 
57.8–72.7%). In the testing dataset, FIRST + had an area under receiver operating characteristic 
curve of 0.87 (95%CI 0.81–0.94). These scores can potentially guide triage and prioritization of febrile 
infants.
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SBIs  Serious bacterial infection
UTI  Urinary tract infection

Young infants with fever are at risk of bacteremia, meningitis and urinary tract infections (UTIs), collectively 
named serious bacterial infections (SBIs)1. The fear of missing SBIs has led to low physician thresholds to per-
form invasive investigations (including blood, urine and cerebrospinal fluid [CSF] cultures), resulting in a large 
number of unnecessary hospitalizations and rising healthcare  costs2. Widespread empirical antibiotic use has 
also contributed to global antibiotic  resistance3. Clinical prediction rules have thus far focused on identifying 
infants at low risk of SBIs who do not require extensive  tests1,4,5. These clinical prediction rules have potential 
to reduce the number of invasive  procedures6,7, but do not provide comprehensive guidance on which young 
febrile infant should be prioritized to receive urgent antibiotics. Such guidance is needed to reduce recognition 
delays and shorten time-to-antibiotics for infants who require urgent  interventions8. Moreover, generalizability 
of these prediction rules has been questioned, with variable diagnostic performance in different  populations9,10.

More recently, data-driven techniques including machine learning methods have been employed to derive 
and validate models to predict which young febrile infants are at risk of SBIs and invasive bacterial infections 
(IBIs)—namely meningitis and  bacteremia11,12. These machine learning algorithms use commonly available triage 
information including age and temperature, and laboratory tests such as abnormal urinalysis, white blood cell, 
absolute neutrophil count (ANC), and procalcitonin to build scores that predict for the presence of SBI or IBI. 
Implementation of these algorithms could potentially reduce unnecessary lumbar punctures by approximately 
70%11. However, these models are computationally complex and are not easily interpreted by  clinicians11.

The AutoScore machine learning-based method, previously described as a combination of machine learning 
and logistic regression, automates the development of parsimonious and transparent risk  models13. As compared 
to other machine learning methods, Autoscore has the potential to develop point-based scores that are interpret-
able by clinicians and can be translated into clinical practice. One example was the development and assessment 
of a Score for Emergency Risk Prediction (SERP) to estimate mortality after emergency  admissions14.

We aimed to derive interpretable risk scores based on routinely available patient information and clinical 
data, to quantify risk of SBIs among infants < 3 months presenting with fever.

Methods
Study design and setting
We performed a prospective observational study for febrile infants < 3 months old presenting to a tertiary pedi-
atric hospital in Singapore between December 2018 and December 2021. Our hospital is one of two pediatric 
hospitals in the country, with an annual ED attendance of about 150,000 children. Infants < 3 months old are 
routinely hospitalized in our institution. Neonates (defined as < 28 days old) receive the entire septic workup 
(blood, urine and CSF cultures) and proceed on to receive empirical antibiotics, while infants between 28 and 
90 days’ old have variable investigations depending on the temperature trend and clinical assessment of the 
child. Regardless of the extent of investigations, infants < 3 months are monitored in the hospital until they are 
fever-free for 24 h, before discharge. We defined fever as an axilla or rectal temperature of 38 °C and above. 
Between December 2018 to December 2020, infants were recruited as part of a heart rate variability (HRV) 
study (NCT04103151). We subsequently obtained ethics approval to collect data from all febrile infants who 
presented between January 2021 and December 2021. We obtained approval from the SingHealth Institutional 
Review Board E in Singapore (2017/2680) with waiver of informed consent. The procedures used in this study 
adhere to the tenets of the Declaration of Helsinki.

Data variables
We recorded patient demographics including age, birth gestation, and sex. We collected routine triage informa-
tion including vital signs (i.e., temperature, heart rate, respiratory rate, and oxygen saturations). Our department 
uses the severity index score (SIS), a composite measure of respiratory effort, activity, color, play and temperature, 
to assess the acuity of a child at  triage15. We obtained data on presence of comorbidities, duration of fever, and 
maternal Group B streptococcus (GBS) status. Laboratory investigations included hemoglobin, total white blood 
cell count, ANC, platelets, C-Reactive Protein (CRP), and procalcitonin. Fluid from urine and cerebrospinal fluid 
(CSF) were sent for analysis. Urine was tested for leukocyte esterase (graded as negative, 1 + , 2 + or 3 +) and nitrite 
(positive or negative). CSF was analyzed for cells and clarity. We obtained culture results from blood, urine and 
CSF. We recorded if the infant received fluid bolus resuscitation or inotropic support, intravenous antibiotics, or 
ventilator (both invasive and non-invasive) support. We also documented the need for high acuity care, defined 
as High Dependency (HD) and Intensive Care Unit (ICU) care.

Outcome variables
SBI was defined as bacteremia, meningitis or  UTI1. Bacteremia and meningitis were defined as pure growth of 
a pathogen in blood and CSF, respectively. When the bacteria grown was considered likely to be a contaminant 
(e.g., coagulase-negative staphylococcus), the case was not considered as SBI. UTIs were defined as growth of a 
single pathogen (a) > 100,000 colony-forming units (CFU/ml) in a clean catch specimen, or (b) ≥ 50,000 CFU/
ml in a catheterized specimen, or (c) 10,000–50,000 CFU/ml in a catheterized specimen with an abnormal uri-
nalysis (positive for leucocyte esterase or nitrite)8. We also recorded the duration of hospital stay. The study team 
members who recorded the outcome of SBI were not blinded to the clinical variables listed above.
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Statistical analysis
Data management
We described categorical variables using frequencies and percentages. Continuous variables were described 
using mean (and standard deviation, SD) or median (and interquartile range, IQR), depending on normality. 
Data were analyzed using R software, v 4.2.1 (R Foundation for Statistical Computing).

Because we wanted a practical tool to drive decision-making, we derived our score in 2 stages based on 
information that would be available to the ED physician. FIRST represents the initial triage phase and included 
patient demographics, vital signs and history-taking. FIRST + represents a more advanced phase after consul-
tation and included laboratory investigations, such as urine and blood test results. Laboratory results would 
routinely require a turnaround time of up to 2 h, before becoming available to the ED physician. In our hospital, 
procalcitonin is part of the routine laboratory workup for hospitalized young infants with fever. For the group 
that physicians chose not to perform this blood test, we assigned them as ‘clinically not indicated’, rather than 
exclude them, because this reflected a group that yielded diagnostic information.

AutoScore machine learning‑based method
To derive FIRST, we utilized the AutoScore technique. The AutoScore machine learning-based method has 
been described as a combination of machine learning and logistic regression, and automates the development 
of parsimonious risk  models13. AutoScore consists of the following modules: variable transformation, variable 
ranking, score derivation and model selection, score fine-tuning, and model evaluation. The variable transfor-
mation module converts all continuous variables into categorical ones based on prespecified cutoffs. We trans-
formed continuous variables to categorical variables with five categories based on 4 prespecified cutoffs, which 
included the 5% quantile, the 20% quantile, the 80% quantile, and the 95% quantile. The variable ranking module 
uses random forest to rank the variables based on their contribution to the outcome prediction. We used the 
‘Parsimony Plot’ to show the predictive contribution of each variable. The score derivation module constructed 
a logistic regression model using the transformed variables, starting with the highest ranked variable and then 
adding on one variable at a time, following the order of their ranking. The study team selected the variables to 
be included in the final clinical score based on their domain knowledge and each variables’ contribution to the 
outcome prediction. We defined a significant correlation between two variables as having an absolute Pearson’s 
correlation coefficient of ≥ 0.2. Since such correlations would hinder accurate model fitting and prediction from 
subsequent logistic regression, only one variable from each significantly correlated variable group was selected 
into the subsequent analysis. The selected variables were used to build a multivariable logistic regression model, 
which was then converted to a clinical score. Study team members fine-tuned the resulting clinical score based 
on their domain knowledge for more practical and interpretable cutoff values. The final variables selected into 
the scoring models were fine-tuned according to clinical discretion and ease of use. Specifically, age was divided 
into only three groups: < 21 days, 21 to less than 28 days, and ≥ 28 days. Temperature was divided into four 
groups: < 38.5 °C, 38.5 °C to less than 39 °C, 39 °C to less than 40 °C, and ≥ 40 °C. Finally, the model evaluation 
module examined the out-of-sample prediction performance of the finalized clinical score. We presented the 
models’ performance on both the training and testing data, using area under receiver operating characteristic 
(ROC) curve, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), as well 
as the model calibration results.

For sample size estimation, at a target sensitivity of 85%, marginal error of 0.05, and an event rate of 0.2 (based 
on published pilot  data8), we aimed for a total of 980 febrile  infants16. We did not perform multiple imputation 
for missing values. We only encountered missing values for laboratory values and detailed the number with 
complete data in the Results section.

Training and testing data
We divided our dataset into the training set and testing set. The training set was used for variable selection and 
score derivation, while the testing set was only used for model evaluation to examine the clinical score’s real-world 
performance on previously unseen data. The two sets were divided using the randomized stratified sampling, 
where the proportion of patients with SBI was the same in both sets. In this study, we used 80% and 20% of the 
available data for the training and testing set, respectively.

We followed the TRIPOD checklist for prediction model  development17.

Ethics approval
We obtained approval from the SingHealth Institutional Review Board E in Singapore (2017/2680) with waiver 
of informed consent. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Results
We analyzed 1002 children in total, with an SBI rate of 22.4% (224/1002) (Fig. 1). The median age was 30 days 
(IQR 10–60) and there were 574 (57.3%) males. 741/1002 (73.9%) infants underwent urine cultures, 678/1002 
(67.7%) blood cultures, and 477/1002 (47.6%) CSF cultures. Among infants with SBIs, the most common infec-
tion was UTIs (199/224, 88.8%), followed by bacteremia (22/224, 9.8%) and meningitis (3/224, 1.3%). Among 
the 22 infants with bacteremia, 11 (50.0%) had more than one source of SBI. The most common pathogens for 
UTIs (including co-infections) were Escherichia coli (153/199, 76.9%), Klebsiella pneumoniae (30/199, 15.1%) 
and Enterococcus faecalis (12/199, 6.0%). Among the 22 infants with bacteremia, 7 (31.8%) had GBS, 7 (31.8%) 
had Escherichia coli, 2 (9.0%) had Klebsiella pneumoniae. There were 2 patients (9.0%) who grew Staphylococcus 
aureus in both blood and urine cultures.
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Infants with SBIs were older than those without SBIs (median age 46 days, IQR 21–69 vs. 28 days IQR 8–55, 
p < 0.001), and were more likely to be male (166/224, 74.1% vs. 408/778, 52.4%, p < 0.001) (Table 1). At triage, 
the presenting temperature and heart rate were significantly higher among infants with SBIs (38.7 °C SD 0.7 vs. 
38.4 °C SD 0.5, p < 0.001 and 169 bpm SD 22 vs. 160 bpm SD 20, p < 0.001). Laboratory markers of inflamma-
tion (total white blood cell count, ANC, CRP, procalcitonin) were significantly higher among those with SBIs 

Figure 1.  Flow diagram of patients included in the analysis.

Table 1.  Patient characteristics and laboratory results and clinical management, stratified by presence of 
serious bacterial infections. a IQR = Interquartile range, bGBS = Group B streptococcus. Continuous variables 
are expressed in mean (standard deviation, SD) unless stated otherwise. Significant values are in [bold].

Variable Serious bacterial infections (N = 224) No Serious bacterial infections (N = 778) p value

Age in days, median  (IQRa) 46 (21–69) 28 (8–55)  < 0.001

Neonates (age < 28 days) (%) 60 (26.8%) 386 (49.6%)  < 0.001

Male sex (%) 166 (74.1) 408 (52.4)  < 0.001

Maternal  GBSb present/Known  GBSb status (%) 59/190 (31.1) 183/430 (29.9) 0.753

Temperature in °C 38.7 (0.7) 38.4 (0.5)  < 0.001

Heart rate, beats per minute 169 (22) 160 (20)  < 0.001

Respiratory rate, per min 42 (6) 42 (6) 0.311

Severity Index Score, median  (IQRa) 9 (8–10) 9 (9–10)  < 0.001

Total white blood cells (×  109/L)
N = 224 N = 703

 < 0.001
15.3 (6.0) 12.0 (4.8)

Absolute neutrophil count (×  109/L)
N = 224 N = 703

 < 0.001
7.9 (4.2) 4.9 (3.3)

Hemoglobin (g/dL)
N = 224 N = 703

 < 0.001
12.3 (2.8) 14.0 (3.6)

Platelet count (×  109/L)
N = 224 N = 703

 < 0.001
458 (135) 417 (124)

C-Reactive Protein, median  (IQRa) (mg/L)
N = 199 N = 408

 < 0.001
33.5 (11.7–62.9) 5.9 (2.3–15.0)

Procalcitonin, median  (IQRa) (ng/mL)
N = 151 N = 429

0.005
0.25 (0.10–2.25) 0.07 (0.05–0.15)

Fluid bolus required 17 (7.6) 34 (4.4) 0.053

Length of hospital stay 4.0 (3.0–5.0) 3.0 (2.0–4.0)  < 0.001
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compared to those without (Table 1). There was no significant difference in the proportion of infants who received 
a fluid bolus between groups. However, infants with SBIs did experience a longer hospital stay compared to those 
without (median 4.0 days, IQR 3.0–5.0 vs. median 3.0 days IQR 2.0–4.0, p < 0.001). 6/224 (2.7%) of infants with 
SBIs and 14 /778 (1.8%) without SBIs required high acuity (HD and ICU) care (p = 0.407). One child required 
10 days of non-invasive ventilation and inotropic support. This 31-day old infant had GBS bacteremia and men-
ingitis, and had a prolonged hospital stay of 58 days. Data divided into training and testing sets are presented in 
Supplementary Tables 1 and 2.

Based on 994 children with complete data, we built FIRST and FIRST + scores using the AutoScore pipeline. 
After variable transformation and correlation elimination (as per Methods), the selected candidate variables 
as well as the importance ranking for each variable are described in Supplementary Figs. 1 and 2. Candidate 
variables were then used for score derivation, which provided cross-validated parsimony plots shown in Supple-
mentary Figs. 3 and 4. The correlation analyses for FIRST and FIRST + are found in Supplementary Figs. 5 and 6.

Based on the performance of each variable in the parsimony plots and clinical discretion of variable usability, 
we built the multivariable logistic regression model for SBIs in our cohort (Supplementary Table 3). In FIRST, 
age (aOR 1.01 95%CI 1.01–1.02, p < 0.001), high temperature (aOR 2.22 95%CI 1.69–2.91, p < 0.001), male sex 
(aOR 2.62 95%CI 1.86–3.70, p < 0.001) and fever of 2 or more days (aOR 1.79 95%CI 1.18–2.74, p = 0.007) were 
independently associated with SBIs. In FIRST + , all triage variables remained significant except for fever of 2 
or more days. In addition, abnormal urine leukocyte esterase (aOR 16.46 95%CI 10.00–27.11, p < 0.001) and 
procalcitonin (aOR 1.05 95%CI 1.01–1.09, p = 0.009) were independently associated with SBIs (Supplementary 
Table 3). The calibration results and conversion plots for FIRST and FIRST + are detailed in Supplementary 
Figs. 7–10, while the decision curve analysis can be found in Supplementary Fig. 11.

The final risk scores selected for FIRST and FIRST + are presented in Table 2. Age, temperature, sex and day of 
fever were selected for FIRST. We found a U-shaped risk relationship for age. There was increased risk < 21 days 

Table 2.  Risk score components in Febrile Infants Risk Score at Triage (FIRST and FIRST +). *This was 
determined by the attending Emergency Physician, based on a source of fever and clinical status.

Variable Variable category Points assigned

Febrile infants risk score at triage (FIRST) at triage

Age

 < 21 days 17

21 to less than 28 days 0

 ≥ 28 days 30

Temperature (°C)

 < 38.5 0

38.5 to less than 39.0 4

39.0 to less than 40.0 13

 ≥ 40.0 43

Sex
Female 0

Male 17

Day of fever
 < 2 0

2 days or more 9

Febrile infants risk score at triage + (FIRST +) at triage and consultation

Age

 < 21 days 12

21 to less than 28 days 0

 ≥ 28 days 16

Temperature (°C)

 < 38.5 0

38.5 to less than 39.0 1

39.0 to less than 40.0 6

 ≥ 40.0 18

Sex
Female 0

Male 9

Days of fever
 < 2 -

2 days or more -

Urine leukocyte esterase

1 + 13

2 + 17

3 + 36

Negative 9

Clinically not indicated* 0

Procalcitonin (ng/mL)

 < 0.05 0

0.05 to less than 0.36 2

0.36 to less than 4.38 8

4.38 and above 21

Clinically not indicated* 2
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old and ≥ 28 days, when compared to infants 21 to < 28 days old. Temperature had a linear relationship with 
likelihood of SBI, with increased risk scores assigned as the temperature increased. Children with 2 days or 
more of fever were more likely to have SBI. Urine leukocyte esterase and procalcitonin were further selected for 
FIRST + . The greater the abnormality in urine leukocyte esterase and procalcitonin, the higher the likelihood 
of SBI (Table 2).

Taking various thresholds, we present the proportion of patients who would test positive, and the corre-
sponding performance of FIRST and FIRST + (Table 3). For example, at a FIRST threshold of ≥ 15% predicted 
risk (FIRST cut-off score ≥ 30), the model had a sensitivity of 93.2% (95%CI 84.1–100%), NPV of 94.0% (95%CI 
86.3–100%), corresponding specificity of 29.9% (95%CI 22.7–37%) and would classify 75% of patients as high risk 
for SBI. When laboratory investigations are available, a FIRST + threshold of ≥ 15% predicted risk (FIRST + cut-off 
score ≥ 36) had a sensitivity of 81.8% (95%CI 70.5–91.0%), NPV of 92.7% (95%CI 88.2–96.5%), corresponding 
specificity of 65.6% (95%CI 57.8–72.7%) and classify 45% as high risk for SBI. The FIRST and FIRST + scor-
ing models performed with a ROC of 0.71 (95%CI 0.62–0.79) and 0.87 (95%CI 0.81–0.94) on the testing set, 
respectively (Fig. 2).

Discussion
We studied 1002 febrile infants and reported an SBI rate of 22.4%, largely attributed to UTIs. Based on the 
Autoscore methodology, we derived FIRST, a triage predictive model that included age, temperature, sex and 
day of fever. We went on to derive and test FIRST + , based on availability of investigation results, and found 
that urine leukocyte esterase and procalcitonin were independently associated with SBIs. Adding on laboratory 
results improved the performance from a ROC of 0.71 (95%CI 0.62 – 0.79) (FIRST) to 0.87 (95%CI 0.81 – 0.94) 
(FIRST +) on the testing set.

The strength of our study is in the derivation and testing of an interpretable risk score. A previous supervised 
learning model for risk stratification of febrile infants acknowledged that it lacked parameter cutoffs and was 
computationally  complex11. While machine learning models have promising performance compared to tradi-
tional scoring  systems12,18, these have been difficult to translate to clinical practice because of the lack of recom-
mended thresholds for action. In contrast, we assigned risk scores that quantified risk for SBI at each predictive 
risk threshold. Although our risk score requires refining and external validation, it can potentially guide clinical 
practice. Existing published clinical prediction rules have variable performance in different populations. A prior 
external validation of the PECARN rule in our population reported a sensitivity of 88.9%, specificity of 28.9%, 
and a ROC of 0.59 (0.42–0.76)19. These studies focus on identifying a group at low risk of  SBI1, while our aim 
is to derive a tool that predicts for SBI, thereby serving as an adjunct to help clinicians prioritize which febrile 
infant requires urgent further investigations and management.

Table 3.  Sensitivity and specificity for various predicted risk thresholds. a PPV = Positive predictive value; 
bNPV = Negative predictive value.

Predicted Risk [> =] Score cut-off [> =] % of patients Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPVa (95% CI)
NPVb (95% 
CI)

Febrile infants risk score at triage (FIRST)

1% 0 100 22.2% (22.2–22.2%) 100% (100–100%) 0% (0–0%) 22.2% (22.2–22.2%) NA% (NA-
NA%)

5% 13 97 23.7% (21.7–26.3%) 97.7% (93.2–100%) 2.6% (0.6–5.2%) 22.3% (21.2–23%) 80% (33.3–
100%)

10% 21 81 39.4% (34.3–44.9%) 95.5% (88.6–100%) 23.4% (16.9–29.9%) 26.2% (24.2–28.4%) 95.1% 
(86.8–100%)

15% 30 75 43.9% (37.9–50%) 93.2% (84.1–100%) 29.9% (22.7–37%) 27.5% (24.8–30.4%) 94% (86.3–
100%)

20% 38 44 65.2% (58.6–71.7%) 70.5% (56.8–84.1%) 63.6% (56.5–71.4%) 35.6% (29.3–42.4%) 88.4% 
(83.3–93.2%)

25% 43 40 66.2% (59.6–72.7%) 63.6% (47.7–77.3%) 66.9% (59.7–74.7%) 35.4% (28.4–43.4%) 86.6% 
(81.7–91.2%)

Febrile infants risk score at triage + (FIRST +) (triage and consultation)

1% 16 96 26.3% (23.7–29.3%) 100% (100–100%) 5.2% (1.9–9.1%) 23.2% (22.6–23.9%) 100% 
(100–100%)

5% 27 75 46.5% (40.9–52%) 97.7% (93.2–100%) 31.8% (24.7–39%) 29.1% (26.9–31.4%) 98.1% 
(93.5–100%)

10% 33 52 65.7% (59.1–71.7%) 88.6% (79.5–97.7%) 59.1% (51.3–66.9%) 38.2% (33.6–43.8%) 94.9% 
(90.5–98.8%)

15% 36 45 69.2% (62.6–75.3%) 81.8% (70.5–91%) 65.6% (57.8–72.7%) 40.4% (34.4–47%) 92.7% 
(88.2–96.5%)

20% 39 24 84.8% (79.8–89.4%) 70.5% (56.8–84.1%) 89% (83.8–93.5%) 64.6% (53.7–76.7%) 91.3% 
(87.6–95.2%)

25% 41 24 85.4% (80.3–89.9%) 70.5% (56.8–84.1%) 89.6% (84.4–94.2%) 66% (54.5–77.5%) 91.4% 
(87.7–95.0%)

30% 43 20 88.4% (83.8–92.4%) 68.2% (54.5–81.8%) 94.2% (90.3–97.4%) 76.9% (65.1–89.5%) 91.2% 
(87.8–94.7%)
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Figure 2.  Area under receiver operating characteristic (ROC) curves of febrile infants risk score at triage 
(FIRST and FIRST +). *FIRST = Febrile Infants Risk Score at Triage. FIRST consists of Age, Temperature, Male 
Sex, Fever for 2 or more days FIRST + consists of Age, Temperature, Male Sex, Abnormal urine leukocyte 
esterase and procalcitonin.

We reported the sensitivity and specificity at various thresholds (Table 3) to demonstrate how FIRST and 
FIRST + can aid clinicians to make informed decisions on disposition (hospitalization versus discharge), invasive 
investigations (including blood and CSF cultures), intervention (early antibiotics versus watchful waiting). These 
thresholds may vary based on physician practices and resource availability in different health services settings. For 
example, at the ED triage, most clinicians would favor a low threshold (one with a high sensitivity and NPV) to 
expedite care for the infant. A FIRST predictive threshold of 10% (score ≥ 21) with a sensitivity of 95.5% (95%CI 
88.6–100%) and an NPV of 95.1% (86.8–100%) can prompt early consultation and close monitoring in the ED. 
Once these infants are examined and have initial laboratory investigations, clinicians may be willing to consider 
a higher threshold for action (FIRST +), one that has a higher specificity and will result in fewer infants subjected 
to more invasive tests. A major motivation would be to reduce unnecessary invasive blood and CSF tests. In 
this case, a FIRST + threshold of 15% (score ≥ 36) would have a higher specificity of 65.6% (95%CI 57.8–72.7%). 
In this case, 45% of infants would then be subject to further invasive investigations and empirical antibiotics.

We reported a higher prevalence of SBIs (22.4%) than another large multicenter cohort by the Pediatric 
Emergency Care Applied Research Network (PECARN) (9.3%)1. In the PECARN study, infants with clinical 
sepsis were excluded. However, clinician suspicion in this young infant population is notoriously inaccurate, 
hence we did not exclude these  infants20. Also, our center is a pediatric tertiary institution (only one of two 
in the country) that receives walk-ins, as well as referrals from primary care and other hospitals. If the febrile 
infant was otherwise well with a known source of fever (e.g., respiratory symptoms likely secondary to an upper 
respiratory tract infection), the infant may have been managed in the primary care setting and not referred to 
our institution. Our findings must be interpreted in the context of this higher-than-expected SBI prevalence.

We found that the higher the temperature at triage, the more likely the febrile infant had an SBI, correspond-
ing to higher risk scores. This is consistent with a retrospective cohort reported in our local  population21. A 
multi-center study of 540 febrile infants similarly concluded that infants with IBIs had a higher median tem-
perature compared to those without IBIs (38.8 °C vs. 38.4 °C)22. In our study, we only included infants who were 
febrile at triage. We did not account for infants who had fever at home but were afebrile at ED triage. It has been 
reported that infants who were afebrile at presentation to the ED but had fever at home had a significant risk 
of meningitis and other  SBIs23. The presence and height of fever prior to ED attendance deserves further study.

The most common type of SBI in our study cohort was UTI, which is consistent with that of other study 
 populations1. The diagnosis of UTI in a young febrile child can be challenging due to non-specific clinical 
presentation and the challenges associated with collecting a clean urine  specimen24. In our study, we found that 
the presence of leukocyte esterase was independently associated with the presence of UTI. Besides leukocyte 
esterase, clinicians should also take into consideration the presence of nitrite in the urine dipstick, and urine 
white cell count when urinalysis results are  available25. The large majority of febrile infants with UTIs were males 
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(151/199, 81.2%), accounting for the male predominance in the SBI cohort (166/224,74.1%), overall. We did not 
have data on circumcision rates in this study cohort, and recognize that if circumcision rates were low, that may 
have contributed to the high UTI prevalence among male infants.

Procalcitonin has been widely reported to be useful in this population and has been included in risk stratifica-
tion  algorithms1,4. Procalcitonin has been reported as an early marker of infection, and elevated levels between 
12 and 36 h of fever suggest the presence of an IBI in hospitalized febrile neonates 26. Our data-driven risk 
scores provided threshold cutoffs at 0.05, 0.36 and 4.38 (Table 2). Adding procalcitonin to a febrile infant clini-
cal pathway resulted in decreased lumbar puncture for infants with at low risk of  SBI26. However, more infants 
were assigned high risk and underwent laboratory investigations, resulting in no net change in overall resource 
utilization. This study highlights the need to study the implications of routine procalcitonin  testing7,27.

We recognize the limitations to this study. Being a single-center study, the patient population is likely to dif-
fer from those of other centers, necessitating external validation and refinement of our risk score. We did not 
have culture results for all febrile infants (specifically infants 28–90 days old) because the decision on the extent 
of investigations was determined by the attending pediatrician. However, all febrile infants were hospitalized 
and monitored until 24 h afebrile before discharge, making a missed SBI less likely. Axillary temperature is the 
standard practice in our center, which is potentially confounded by over-wrapping and less accurate than rectal 
temperature. However, axillary temperature measurement is less invasive than rectal measurement, and the triage 
nurses are taught to take the axillary temperature with a single layer of clothing only. Our study dates included 
that of the COVID-19 pandemic when the presence of SARS-CoV-2 as well as the institution of national lock-
downs could potentially have affected the prevalence of SBIs. The sensitivity of our model appears lower than 
some previously reported machine learning  models11,12. However, in the FIRST methodology, all continuous 
variables are converted to categorical variables based on pre-specified cutoffs. This process of conversion likely 
reduced the prediction power of the continuous variables, accounting for a less ideal performance as compared 
to random forest models that applied continuous variables directly. Subsequent validation of this risk score 
must keep close surveillance on missed cases of SBI, quality of care and impact on health  services28. Febrile 
infant populations vary depending on SBI prevalence, accessibility to care and healthcare-seeking behaviors. 
Some febrile infants may present within hours of the onset of fever, while others may present after the first day 
of fever. Therefore, risk scores need to be fine-tuned based on the unique characteristics of the local population.

Conclusion
We derived and internally validated clinical risk scores (FIRST and FIRST +) for febrile infants that quantify the 
risk of SBIs using routinely available clinical predictors. If externally validated, this risk score has potential to 
guide triage and prioritization of febrile infants.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available but are avail-
able from the corresponding author on reasonable request.
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