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Resolving experimental biases 
in the interpretation of diffusion 
experiments with a user‑friendly 
numerical reactive transport 
approach
Christophe Tournassat 1,2*, Carl I. Steefel 1, Patricia M. Fox 1 & Ruth M. Tinnacher 3

The reactive transport code CrunchClay was used to derive effective diffusion coefficients (De), 
clay porosities (ε), and adsorption distribution coefficients (KD) from through‑diffusion data while 
considering accurately the influence of unavoidable experimental biases on the estimation of these 
diffusion parameters. These effects include the presence of filters holding the solid sample in place, 
the variations in concentration gradients across the diffusion cell due to sampling events, the impact 
of tubing/dead volumes on the estimation of diffusive fluxes and sample porosity, and the effects of 
O‑ring‑filter setups on the delivery of solutions to the clay packing. Doing so, the direct modeling 
of the measurements of (radio)tracer concentrations in reservoirs is more accurate than that of 
data converted directly into diffusive fluxes. While the above‑mentioned effects have already been 
described individually in the literature, a consistent modeling approach addressing all these issues 
at the same time has never been described nor made easily available to the community. A graphical 
user interface, CrunchEase, was created, which supports the user by automating the creation of 
input files, the running of simulations, and the extraction and comparison of data and simulation 
results. While a classical model considering an effective diffusion coefficient, a porosity and a solid/
solution distribution coefficient (De–ε–KD) may be implemented in any reactive transport code, the 
development of CrunchEase makes it easy to apply by experimentalists without a background in 
reactive transport modeling. CrunchEase makes it also possible to transition more easily from a De–
ε–KD modeling approach to a state‑of‑the‑art process‑based understanding modeling approach using 
the full capabilities of CrunchClay, which include surface complexation modeling and a multi‑porosity 
description of the clay packing with charged diffuse layers.

A characterization of radionuclide diffusion parameters in clayey materials is essential for the performance 
assessment of natural and engineered barrier systems in radioactive waste storage  concepts1,2. These parameters 
include the effective diffusion coefficient (De), effective porosity (ε), and adsorption distribution coefficient (KD), 
which are characteristic of both clayey materials and the radionuclides under investigation. Values of De, ε, and 
KD are empirically determined in the framework of the Fickian diffusion theory. However, these parameters 
typically become lumped together when a range of physical and chemical processes are present that can be 
unraveled only by applying multi-scale characterization and modeling  techniques3. The simplicity of the De–ε–KD 
modeling approach, as well as its robustness for cases specific to radioactive waste storage concepts (constant 
far-field conditions in space and time, trace concentration levels for radionuclides), is in stark contrast to the 
complexities of the underlying physical and chemical processes. However, the  De–ε–KD modeling approach is 
the current norm in barrier performance evaluation methodology due to its simplicity.

Because the De–ε–KD modeling approach is empirical in nature, parameter estimation is most often carried out 
based on the fitting of experimental data. For this purpose, extensive diffusion datasets have been acquired over 
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the past decades. The interpretation of such data relies on solving Fick’s first and second laws of diffusion. Fick’s 
first law states that the diffusive flux of an aqueous solute (J in mol  m−2  s−1) is proportional to its concentration 
gradient (with c in mol  m−3

water), and its effective diffusion coefficient De (in  m2  s−1)4:

The effective diffusion coefficient can be further expressed as a function of the effective porosity ε (in 
 m3

water  m−3
medium), a geometrical factor τ (dimensionless), hereafter referred to as tortuosity, and the self-diffusion 

coefficient of the aqueous solute D0 (in  m2  s−1):

Fick’s second law is derived from the mass conservation law:

where Ctot is the total concentration of the element of interest in the porous medium (in mol  m−3
medium), 

including aqueous species, surface species, and species in solid phases. The rock capacity factor α (in units 
of  m3

water  m−3
medium) relates the total concentration of the (radio)tracer in the porous medium to its aqueous 

concentration only:

Rearranging Eq. (4) to αc = Ctot , and combining this expression with Eqs. (1) and (3) yields:

We will now make two assumptions to relate the rock capacity factor α (in  m3
water  m−3

medium) to the effective 
porosity in water-saturated condition ε (in  m3

water  m−3
medium), the bulk dry density ρd (in  kgsolid  m−3

medium) and 
the adsorption distribution coefficient KD (in  m3

water  kg−1
solid). First, we assume that the tracer is present only in 

solution and on surfaces (with Csurf in mol  kg−1
solid) so that Ctot (in mol  m−3

medium) can be expressed as:

Secondly, we assume that the tracer surface concentration Csurf is linearly related to the aqueous concentration 
through Csurf = cKD (with KD in  m3

water  kg−1
solid). Based on this assumption,

and based on Eq. (4), α can be expressed as:

When interpreting diffusion data, the adsorption distribution coefficient is commonly assumed to be rep-
resentative of an instantaneous and reversible adsorption process. If it is further assumed that the medium is 
homogeneous, and hence De , ε , ρd and KD are independent of x , then Eq. (5) reduces to:

In practice, predictions based on Eq. (9) for a specific set of geometry, initial and boundary conditions are 
compared to experimental data obtained from a setup representative of the same conditions. Through-diffusion 
experiments with constant boundary conditions (Fig. 1A), i.e., a constant concentration gradient across the dif-
fusion cell over the course of the experiment, allow for an independent characterization of De and α in a single 
experiment. This is accomplished by using the stationary (De) and transient (α) regime of measured diffusive 
flux  data5.

Under ideal conditions, the boundary and initial conditions for c(x, t) in the through-diffusion problem are 
given by:

where Ls is the clay sample thickness in the diffusion cell (m), c0 (in mol  m−3) is the aqueous concentration of the 
element of interest (the tracer, whether radioactive or not) in the high and constant concentration reservoir, and 
t is time (in s). The instantaneous flux Ft (in mol  m−2  s−1) of a diffusive species entering the low-concentration 
reservoir can then be calculated with an infinite series as a function of time according  to4:

(1)J = −De
∂c

∂x

(2)De = ετD0

(3)
∂Ctot

∂t
= −

∂J

∂x

(4)α =
Ctot

c

(5)
∂αc

∂t
=

∂

∂x

(

De
∂c

∂x

)

(6)Ctot = cε + Csurf ρd

(7)Ctot = cε + cKDρd ,

(8)α = ε + ρdKD

(9)
∂c

∂t
=

De

(ε + ρdKD)

∂2c

∂x2

(10)
c(x, 0) = 0 for 0 < x < Ls

c(0, t) = c0 (high-concentration reservoir)

c(Ls , t) = 0 (low-concentration reservoir)
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The numerical implementation of Eq. (11) is a truncated version of the infinite series, in which the maximum 
j value can be set high enough to limit the truncation error value to machine precision.

In real experiments (Fig. 1B), the concentration in the high-concentration reservoir is kept as constant as 
possible by using a large fluid volume. In contrast, the concentration in the low-concentration reservoir is kept 
as close to zero as analytically/practically possible by replacing the low-concentration reservoir periodically. The 
experimental tracer diffusive flux (Fexp) is then evaluated from the tracer accumulation in the low-concentration 
reservoir. The cumulated total amount of tracer in the low-concentration reservoir at time tn, Q(tn) (in mol), is 
obtained with:

where cL(tn) and VL(tn) are respectively the tracer concentration (in mol  m−3), and the volume (in  m3) of the low-
concentration reservoir at sampling time tn (in s). The experimental tracer diffusive flux ( Fexp ) is then evaluated 
by using one of the following backward or central numerical derivative expressions:

or

where A is the cross-sectional area of the sample packed into the diffusion cell (in  m2). If tubing is used to con-
nect the reservoirs and filters holding the solid sample in place, then VL also includes the corresponding tubing 
volumes.

(11)Ft =
c0 · De

Ls
+

2 · α · c0 · Ls

π2

∞
∑

j=1

(−1)j

j2
De · j

2 · π2

L2s · α
exp

(

−
De · j

2 · π2 · t

L2s · α

)

(12)Q(tn) =
∑

n

cL(tn)VL(tn)

(13)Fexp(tn) =
Q(tn)− Q(tn−1)

(tn − tn−1)A

(14)Fexp(tn) =
Q(tn+1)− Q(tn−1)

(tn+1 − tn−1)A
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Figure 1.  Schematic of an ideal (A) and actual (B) through-diffusion experimental setup with the goal of 
achieving constant boundary conditions, i.e., with a constant concentration gradient across the diffusion cell at 
steady state. (C) 1D diffusion geometry. (D,E) 2D- axisymmetric cylindrical geometries. Tracer cannot diffuse 
through the plain O-ring of the filter support (D), making the diffusional path 2D. The cross-sectional area 
available for diffusion in the filters is equal to 
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 of the cross-sectional area of the sample.
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In principle, the least square fitting of De and α by matching the prediction of Ft based on Eq. (11) with 
experimental results for Fexp(tn) calculated from Eq. (13) or (14) is a very convenient way to derive diffusion 
parameters. The simultaneous fitting of diffusion parameters of non-sorbing tracers for which KD = 0 and α = ε 
(e.g. tritiated water HTO, or 36Cl−), and sorbing tracers, for which α = ε + ρd KD, makes it possible to obtain a 
comprehensive and operational set of De–ε–KD values.

In practice, however, experimental conditions do not often meet the idealized conditions. First, filters at 
both ends of the sample and tubing connections between the filters and the reservoirs are usually required 
(Fig. 1B). This complicates the calculations since filters have diffusion properties that differ from those of the 
solid samples under investigation. Yet, analytical solutions to the diffusion equation can still be obtained under 
these  conditions6:

where ωj is the jth root of the equation (with ωj  = 0):

with:

where εf  is the porosity of the filters, Df  is the effective diffusion coefficient through the filter, and Lf  is the 
thickness of the filter. Second, the concentration in the high-concentration reservoir can decrease significantly 
over time in the case of a sorbing tracer. Maintaining a constant concentration level is technically difficult to 
implement since it requires a very large reservoir volume, potentially a problem since many radiotracers are 
expensive. Hence, this ideal condition is seldom achieved in experimental  practice7, and analytical expressions 
of the diffusive flux must be adapated in conditions where concentrations change significantly in the  reservoirs8. 
Third, diffusion equations should, in principle, be solved in 2D- axisymmetric cylindrical coordinates if filters 
with solid O-rings are used (Fig. 1D,E). Fourth and last, the periodic replacement of low-concentration reservoir 
solutions generates changes in the concentration gradient across the diffusion cell over the course of the experi-
ment. This further influences the overall diffusive flux as a function of sampling  events9. No analytical solution 
has been proposed yet to handle these last two experimental features.

An accurate evaluation of diffusion parameters requires that these experimental biases are specifically taken 
into account in the fitting procedure, or are mitigated with special experimental  procedures10. Experimental 
mitigation strategies include the development of flushed filters in which the reservoir solution is circulated 
inside of the filters (as opposed to filters at which the solution is circulated at the surface opposite to the sample), 
thus enabling a more homogeneous solute concentration in the filter and the connected tubing and  reservoir9. 
However, all biases and their combinations cannot always be addressed using experimental mitigation strate-
gies or analytical solution development. Thus, ultimately, the estimation of diffusion parameters often relies on 
approximate analytical  solutions11 or fully numerical solution  strategies9. A literature survey reveals that many 
numerical tools have been developed to interpret diffusion  experiments9,12–14. However, these tools lack either 
generality concerning the series of identified biases, easy accessibility by the scientific community, or both.

Reactive transport codes have now been developed for over four decades to model complex interactions 
in natural systems, while coupling advection, dispersion, diffusion, and sorption  reactions15. These codes can 
numerically and iteratively consider an arbitrary number of kinetic or equilibrium reactions together with flow 
and diffusion equations. Their robustness and accuracy have been tested repeatedly and successfully in bench-
mark exercises covering a range of applications including diffusion  problems16,17. Most of these codes are freely 
available to the scientific community, and in many cases open-source as  well15. It is thus very surprising that 
reactive transport models have not been used more extensively to interpret experimental diffusion data. From 
our own experience, we can identify at least five assumptions that may explain this observation: (1) reactive 
transport codes are perceived as too difficult to handle by experimentalists; (2) experimentalists and reactive 
transport modelers are two separate scientific communities with limited communication; (3) reactive transport 
calculations are too slow to efficiently handle the fitting of diffusion parameters; (4) numerical algorithms in 

(15)Ft =
c0 · De

Ls(1+ βk)
+ 2 · α · c0 · Ls

∞
∑

j=1

De · ω
2
j

L2s · α
exp

(

−
De · ω

2
j · t

L2s · α

)

(16)asin
(

ωj(1+ k)
)

+ bsin
(

ωj(1− k)
)

− csin
(

ωj

)

= 0

(17)

β =

√

εDe

εf Df

k = 2r
Lf

Ls

r =

√

εf De

εDf

a =
1

4
(β + 1)2
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1

4
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reactive transport codes are not sufficiently accurate compared to analytical solutions; (5) reactive transport codes 
are not adapted to handle a De–ε–KD modeling approach because they are focused on process understanding.

With the present contribution, we would like to refute assumptions (3) to (5) that we consider are incorrect 
and overcome assumptions (1) and (2) by providing the community with a user-friendly, fast, generic, reliable, 
and free tool, namely the CrunchEase user interface to be used with the CrunchClay code for use interpret-
ing diffusion data with De–ε–KD conceptual models. We will also show that CrunchEase in conjunction with 
CrunchClay can be used as a first modeling step that can help to set up a more complex modeling approach that 
takes into account state-of-the-art theoretical concepts for diffusion and surface processes of contaminants in 
clayey materials.

Reactive transport model and investigated systems
Reactive transport simulator and user interface. Reactive transport calculations of this study were 
carried out with the code CrunchClay. CrunchClay code capabilities, equations, and the solver scheme have 
been described in detail in previous  publications15,17–20.

A graphical user interface, CrunchEase, has been designed to help users build CrunchClay input files and to 
extract radionuclide (or another tracer) diffusion results. This further allows the readers to re-run the simulations 
shown in the present study, and to easily use the code to fit their experimental diffusion data. The CrunchEase 
package is freely available. Installation instructions and snapshots describing the interface are available in the 
supplementary information. Data and modeling results are plotted in the interface as normalized tracer flux, 
Fnorm (in m  s−1) as a function of time:

where cH ,init is the initial concentration of tracer in the high-concentration reservoir. In addition, a tabulated text 
file is produced as an output file that contains modeling results together with corresponding experimental results.

Model systems. A series of through-diffusion experimental setups with increasing complexity were used 
to demonstrate the advantages and reliability of reactive transport simulations in a step-wise manner (Table 1). 
First, experimental setups without filters were modeled with varied KD values and sample lengths. Second, the 
same systems were modeled in the presence of filters. Third, sampling events were additionally included. Last, 
stagnant tubing volumes were added to the simulation as well. For each of these conditions, we characterized 
how the calculated diffusive fluxes would change by including a particular feature or not. This approach enabled 
us to quantify the specific influence of each feature on the estimation of diffusion parameters, and thus to quan-
tify the errors induced in the estimation of diffusion parameters by overlooking these features. Where possible, 
CrunchEase results were compared to analytical solutions to demonstrate the numerical accuracy of our reactive 
transport modeling approach.

The parameter values chosen were representative of values reported for actual diffusion experiments in the 
 literature10,21–24. The self-diffusion coefficient of the tracer was set at D0 = 2.1 ×  10−9  m2  s−1, which corresponds 
to an effective diffusion coefficient of De,sample = 5.25 ×  10−11  m2  s−1 [see Eq. (2) and parameters in Table 1]. The 
sample grain density was ρgrain = 2840 kg  m325, which corresponds to a bulk dry density of ρd = ρgrain × (1 − εsample
) = 1420 kg  m−3.

Application to real experimental data. As a proof-of-concept, we also used CrunchEase to simulate 
published through-diffusion data for HTO,  Br− and  Ca2+ in montmorillonite. Raw data (collected volumes and 
concentrations as a function of time) are available in the published Supplementary Information from Tinnacher 
et al.23, as well as input parameters summarized in Table S1.

Results and discussion
Verification of CrunchEase/CrunchClay calculation accuracy. For simulations 1–6 (Table 1, no fil-
ter), diffusion results calculated with CrunchEase/CrunchClay are in almost perfect agreement with the results 
obtained with analytical solutions, independent of KD and Ls values (Fig. 2; the graphical user interface Crun-
chEase makes it possible to visualize this comparison directly).

The influence of filters. The presence of filters has a marked influence on the outcomes for simulations 
7–12 (with filters) compared to simulations 1–6 (no filters) (Fig. 2 and S10), as reported in the literature. The 
error (ΔDe, Δα) associated with neglecting filter effects can be illustrated by comparing the actual sample dif-
fusion parameters (De,ref and αref), which can be calculated from parameters in Table 1, with the values that can 
be fitted (De,fit and αfit) with Eq. (11) to match the results obtained in the presence of filters (dashed lines on 
Fig. S10):

If the presence of filters is neglected in the fitting procedure, effective diffusion coefficients are underestimated 
and rock capacity factors are overestimated. Furthermore, the influence of filter effects on the absolute De value 

(18)Fnorm(tn) =
Fexp(tn)

cH ,init

(19)
�De =

De,ref − De,fit

De,ref

�α =
αref − αfit

αref
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increases with increasing KD values and Lfilter/Lsample ratios (Fig. S10 and Table S2), as previously  reported10. Since 
it is so easy to include filters in the proposed new modeling package, one should do so as a good standard prac-
tice, even when the filters are not expected to affect the results substantially compared to other sources of  bias10.

1D versus 2D axisymmetric cylindrical geometry. 2D- axisymmetric cylindrical simulations 13–16 
were carried out with a filter inner diameter (Fig. 1D) of 7 mm, which corresponds to a filter diffusive central 
sectional area equal to 49% of the total sample cross-sectional area (Table 1; simulations 13–16; Fig. 3). The result 
of a 1D simulation with a filter porosity scaled down to 49% of its initial value (0.147 instead of 0.3) and a tor-
tuosity value decreased from 0.3 to 0.11 after trial and error iterations proved to be in good agreement with the 
result of the 2D axisymmetric cylindrical geometry simulation for simulations 13 and 14 (Fig. 3A,B). However, 
the filter tortuosity value had to be adjusted to other values for simulation 15 and 16 (Fig. 3C,D). If the sample 
diffusivity is very low compared to that of the filter (Sim. 15, Fig. 3 C), the corrected filter tortuosity should be 
set at a value far lower than the actual value (0.032 instead of 0.3 in Sim. 15). In contrast, if the sample diffusivity 
is high compared to that of the filter (Sim. 16, Fig. 3 D), the corrected filter tortuosity should be set to a value 
similar to that of the actual value (0.27 instead of 0.3 in Sim. 16). In this last case, the lateral diffusion in the 
sample from the filter diffusive central sectional area is rapid compared to the longitudinal diffusion through the 
filter and the sample. Thus, the effect of considering a 1D versus 2D axisymmetric cylindrical geometry is almost 
entirely accounted in the reduction of the porosity that corresponds to a re-scaling of the diffusion sectional area.

The consideration of a 2D axisymmetric cylindrical geometry instead of a 1D geometry (Fig. 1D,E) increases 
the calculation time significantly. For example, the 1D calculation for simulation 12 (see Table 1) took 23 s, while 
the equivalent simulation for the 2D axisymmetric cylindrical geometry (Fig. 1D) took 13 min (Intel Core i7, 
10th Gen; CrunchClay calculations ran on 4 cores). It may be possible to improve the speed of the 2D axisym-
metric cylindrical geometry simulation e.g., by using a coarser grid resolution, or larger time steps. However, 
hardwired parameters in CrunchEase were chosen to maximize the accuracy of simulations while minimizing 
users’ concerns in terms of their need to intervene in the parameter optimization process. Instead, the fitting 

Table 1.  Summary of input parameters of reactive transport simulations 1–24. *2D-axisymmetric simulations.

Sim

Sample 
diameter 
(mm)

Sample 
length 
(mm)

Sample 
porosity 
(–)

Sample 
tortuosity 
(–)

Filters 
diameter 
(mm)

Filters 
length 
(mm)

Filters 
porosity 
(–)

Filters 
tortuosity 
(–)

KD 
(L  kg−1)

High 
reservoir 
volume 
(mL)

Low 
reservoir 
volume 
(mL)

High 
and low 
reservoir 
conc

Sampling 
events

Volume 
of tubing 
(mL) Figure(s)

1 10 10 0.5 0.05 – – – – 0 1000 20 Constant None – 3

2 10 5 0.5 0.05 – – – – 0 1000 20 Constant None – 3

3 10 10 0.5 0.05 – – – – 1 1000 20 Constant None – 3

4 10 5 0.5 0.05 – – – – 1 1000 20 Constant None – 3

5 10 10 0.5 0.05 – – – – 2 1000 20 Constant None – 3

6 10 5 0.5 0.05 – – – – 2 1000 20 Constant None – 3

7 10 10 0.5 0.05 10 1 0.3 0.3 0 1000 20 Constant None – 3, 4

8 10 5 0.5 0.05 10 1 0.3 0.3 0 1000 20 Constant None – 3, 4, 6

9 10 10 0.5 0.05 10 1 0.3 0.3 1 1000 20 Constant None – 3, 4

10 10 5 0.5 0.05 10 1 0.3 0.3 1 1000 20 Constant None – 3, 4

11 10 10 0.5 0.05 10 1 0.3 0.3 2 1000 20 Constant None – 3, 4

12 10 5 0.5 0.05 10 1 0.3 0.3 2 1000 20 Constant None – 3, 4

13 10 10 0.5 0.05 7* 1 0.3 0.3 0 1000 20 Constant None – 3, 4, 5

14 10 10 0.5 0.05 7* 1 0.3 0.3 2 1000 20 Constant None – 3, 4, 5

15 10 10 0.2 0.025 7* 1 0.3 0.3 0 1000 20 Constant None – 3, 4, 5

16 10 10 0.5 0.8 7* 1 0.3 0.3 0 1000 20 Constant None – 3, 4, 5

17 10 5 0.5 0.05 10 1 0.3 0.3 0 1000 20 Variable Every 
0.25 day – 6

18 10 5 0.5 0.05 10 1 0.3 0.3 0 1000 20 Variable Every 
0.5 day – 6

19 10 5 0.5 0.05 10 1 0.3 0.3 0 1000 20 Variable Every 
1 day – 6, 7

20 10 5 0.5 0.05 10 1 0.3 0.3 2 1000 20 Variable Every 
0.25 day – 6

21 10 5 0.5 0.05 10 1 0.3 0.3 2 1000 20 Variable Every 
0.5 day – 6

22 10 5 0.5 0.05 10 1 0.3 0.3 2 1000 20 Variable Every 
1 day – 6

23 10 5 0.5 0.05 10 1 0.3 0.3 0 1000 20 Variable
Every 0 
to 1 day 
(random)

– 8

24 10 5 0.5 0.05 10 1 0.3 0.3 0 1000 20 Variable
Every 0 
to 1 day 
(random)

1.5 8
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procedure workflow may be greatly accelerated by simulating a representative 1D geometry, before explicitly 
taking into account the 2D axisymmetric cylindrical geometry, for further model verification and parameter 
fine-tuning. CrunchEase makes it easy to implement this approach.

Influence of sampling events. Regular sampling time intervals. The periodical replacement of low-
concentration reservoir solutions with fresh, tracer-free solutions makes it possible to calculate a diffusive flux 
based on Eq. (13) or (14). However, this flux calculated at time tn corresponds to an average (or time integrated) 
flux from time tn−1 to tn or tn−1 to tn+1 respectively. If Eq.  (13) is used, then time-integrated fluxes are lower 
than instantaneous fluxes in the early, transient regime of the flux data before diffusion steady-state is achieved 
(simulations 13–18, Fig. 4A,B). This shifts the breakthrough curves to later times. This bias could be incorrectly 
interpreted as a retardation factor, and thus to an overestimation of the rock capacity factor. A simple approach 
for a correction consists in plotting the flux value with tplot = (tn + tn−1)/2 , which cancels most but not all of the 
bias (Fig. 4C). As a matter of example, the residual bias in Fig. 4C would correspond to an incorrect estimation 
of the KD value at 0.04 L  kg−1 instead of the actual value at 0 L  kg−1.

The central difference scheme of Eq. (14) does not produce the same bias as the backward difference scheme 
of Eq. (13), especially if the sampling time intervals are constant. If they are not constant, then Eq. (14) leads to 
either a backward or a forward shift in time depending on the position of tn with respect to tn−1 and tn+1 . The 
resulting uncertainty of the flux values may be higher for the central difference than the backward difference 
because uncertainties on measured concentrations are propagated over two intervals of time with Eq. (14) instead 
of one with Eq. (13).

Irregular sampling time intervals and influence of tubing volumes. In practice, sampling time intervals vary over 
the course of a diffusion experiment. These variations have a very significant influence on the time-integrated 

Figure 2.  Verification of the accuracy of reactive transport modeling calculation by comparison with analytical 
equations results for simple model systems, without (left) or with (right) the presence of filters. Simulations 1–12 
(Table 1): Comparison of CrunchEase/CrunchClay results (open circles) with analytical (solid lines) Eq. (11) 
(no filters) or Eq. (15) (with filters) results as a function of sample length (Lsample = 5 mm or 10 mm) and KD value 
(from 0 to 2 L  kg−1).
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flux values if tubing volumes are present, which is often the case in through-diffusion experiments (Fig. 4D). 
First, computed time-integrated fluxes with tubing are always higher than without tubing. This can be explained 
by the “memory” effect as  follows9. The solution contained in the tubing volume is not replaced with a fresh, 
tracer-free solution at the sampling event. This means that this solution provides a significant amount of tracer 
to the next zero-concentration solution as soon as the new reservoir is connected and circulated. Because the 
time-integrated flux is calculated based on the accumulation of the tracer in this reservoir and tubing, this initial 
“flash” increases the tracer concentration results, leading to an overestimation of the flux compared to the real 
instantaneous flux. Second, variations in sampling time intervals can lead to time-integrated flux variations 
greater than 100% (Fig. 4D). Again, tubing volume plays a major role here. If a long sampling time interval is 
followed by a short one, then the tracer concentration increases in the tubing volume proportionally with the 
length of the time interval. Then, the high-concentration volume contributes significantly more to the total con-
centration measured in the low-concentration reservoir in the next short sampling time interval. Thus, this leads 
to an apparent increase in the diffusive flux. This sampling artefact can be corrected by substracting the contri-
bution of the solution in the tubing to the total activity measured in the low-concentration reservoir. However, 
this correction is not always carried out in published studies. In most cases, no indications about the corrections 
applied to the activity accumulation and flux calculation are provided.

Modeling actual experimental diffusion data with CrunchEase. Diffusion data published in the 
literature sometimes exhibit large variations in diffusive flux calculated at steady-state26–28. These variations are 
most often interpreted in terms of uncertainties, e.g., related to analytical tracer concentration measurements or 
experimental temperature fluctuations. The present analysis supports previous  findings9 that a significant frac-
tion of these apparent variations might instead be due to inherent biases resulting from the experimental setups. 
These biases can be fully taken into account with our reactive transport modeling approach in CrunchEase/
CrunchClay, which makes it possible to further decrease the uncertainties related to diffusion parameter estima-
tion. This statement is exemplified with a simulation case based on real experimental data in the next section.

Figure 3.  Comparison of 2D axisymmetric cylindrical geometry simulations (plain lines) with 1D geometry 
simulations (symbols) in which filters porosity was scaled down to 49% of its true value (0.147 instead of 0.3) 
and its tortuosity was decreased from 0.3 to 0.11 for all 1D simulations. Depending on the contrast of diffusional 
properties between the sample and the filters, 1D geometry simulations with adapted porosity and tortuosity 
values for the sample can be in good agreement with the results obtained with 2D axisymmetric cylindrical 
geometry simulations (A sim.13 and 14; B sim. 15), or not (B sim. 16).
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Through-diffusion data are most often published (plotted) in the form of flux and/or total diffused concentra-
tions as a function of time. Unfortunately, none of these representations convey the original raw data in terms 
of tracer concentrations and exact volumes of reservoir solutions and tubings.

However, Tinnacher et al.23 have provided original raw and tabulated data, which can be used as described 
in the following. Experimental data and modeling results are plotted as normalized flux as a function of time, 
as well as low-concentration reservoir concentrations as a function of time (Fig. 5). We believe that the latter 
representation is preferred for evaluation of the agreement between experimental and modeling results because 
it does not include any propagated error from the data interpretation and the consideration of two measure-
ments at time tn−1 and tn or tn+1. The former representation was included nonetheless to allow for comparisons 
with previously published data.

The experiment was modeled with a 1D geometry using the same dimensions as those provided by Tin-
nacher et al.23. HTO data were modeled by adjusting only the tortuosity of the clay materials (τclay,HTO = 0.049, 
corresponding to De,HTO = 7.51 ×  10−11  m2  s−1), other parameters (sample porosity εclay,HTO = 0.72, filter porosity 
εfilter,HTO = 0.25, and filter tortuosity τfilter,HTO = 0.43) having been determined independently from the diffusion 
 experiments23.

Modeling results, which almost perfectly match the measured concentrations (Fig. 5), clearly demonstrate the 
power of the proposed reactive transport modeling approach in terms of reproducing the effects of biases that 
are unavoidable due to the experimental setup, including the presence of filters, tubing ‘dead’ volumes, and vari-
able duration sampling events. The same was true for experimental  Br− diffusion data for which two parameters 

Figure 4.  (A,B) Comparison of diffusion breakthrough curves, computed with CrunchEase/CrunchClay, 
for different sampling time intervals in simulations 17–19 (A KD = 0 L  kg−1), and simulations 20 to 22 (B 
KD = 2 L  kg−1). Full lines: instantaneous fluxes [calculated with very small time steps, or equivalently with the 
analytical solution shown in Eq. (15)]. Symbols: fluxes integrated using Eq. (13) over 0.25-day (open circles; 
simulations 17 and 20), 0.5-day (open squares; simulations 18 and 21) and 1-day (open triangles; simulations 
19 and 22) sampling intervals. The dotted lines are eye guides only. (C) Instantaneous flux (plain line) and 
integrated flux with sampling events (triangles; dotted line is an eye-guide) in simulation 19 (1-day sampling 
interval) with plotting time set at tplot = (tn + tn−1)/2 . (D) Instantaneous flux (full line) and integrated flux 
(triangles and circles) for a KD value of 0 and a sample length Lsample = 5 mm, simulated with CrunchEase/
CrunchClay. Time intervals were generated randomly. Triangles show results in the absence of tubing volumes 
(simulation 23), while circles are results for simulations in the presence of tubing (dead) volumes (simulation 
24). The dotted lines are eye guides for time-integrated flux only. The plotting time for integrated flux was set at 
tplot = (tn + tn−1)/2.
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were fitted: τclay,Br = 0.040; εclay,Br = 0.55, corresponding to De,Br = 4.4 ×  10−11  m2  s−1 and αBr = 0.55 (Figs. 5), as well 
as for  Ca2+ diffusion data for which three parameters were fitted: τclay,Ca = 1.1–2.3 (Figs. 5 shows that it is not 
possible to give a better estimated than this range of values); εclay,Ca = 0.72; and KD,Ca = 79 L  kg−1 , corresponding 
to De,Ca = 6.28 ×  10−10  m2  s−1 to 1.26 ×  10−9  m2  s−1 and αCa = 63.5 (Fig. 5). The τclay,Ca value fitted here differs signifi-
cantly from the value reported in Tinnacher et al.23. The difference is due to improper handling of filter tortuosity 
in PHREEQC calculations carried out by Tinnacher et al.23 for the  Ca2+ diffusion simulation.

Beyond the De–ε–KD modeling approach. Although CrunchEase is not (yet) intended to handle the 
creation of CrunchClay files with complex solution chemistry and porosity distributions, the code can be used 
to create input files with a specific geometry of interest (1D or 2D rotational, presence or absence of filters, tub-
ings, actual reservoirs volumes, etc.), and can also handle sampling events of the low-concentration reservoir. 
These files (text files with free format) can then be modified directly by the user to include additional chemical 
reactions and porosity characteristics, such as surface charge and the diffuse layer pore distribution of the clay (a 
model input file is provided in the Supplementary Materials as a template for interested users).

The strength of this approach is illustrated with a dual-porosity model to simulate  Ca2+,  Br− and HTO diffu-
sion data from Tinnacher et al.23 (Fig. 6). Model input files were modified from the input files built by CrunchEase 
and used to simulate and plot Fig. 5. The porosity of the clay sample was split into two contributions: a bulk 
porosity (εbulk) and a diffuse layer porosity (εDL) in which the surface charge (0.9 mol  kg−1

clay) of montmorillon-
ite was compensated  (see18,23,29–31 for full details about theory and parameters). An almost perfect data fit was 
obtained with the following parameters (Fig. 6): εbulk = 0.19; εDL = 0.53; τbulk = 0.1; τDL = 0.032; log KNa = 0 for the 
surface complexation reaction:

and log KCa = 0.7 for the surface complexation reaction:

While the model prediction using a dual-porosity model (Fig. 6) is not better than the model prediction made 
with a simple De–ε–KD modeling approach (Figs. 5), it has the advantage to produce model parameters that are 
more realistic with regards to sample porosity properties. In this respect, CrunchEase can help simplify the use 
of CrunchClay to achieve process level understanding.

Conclusions
We have demonstrated that a reactive transport modeling approach that includes the full geometrical and opera-
tional complexity of an experiment, such as heterogeneities and time-dependent sampling effects is a very 
powerful tool for the interpretation of diffusion data. While a classical De–ε–KD model may be implemented 

(20)> Surf− +Na+ ⇋> SurfNa

(21)2 > Surf− + Ca2+ ⇋> Surf2Ca

Figure 5.  Modeling with CrunchEase/CrunchClay of HTO, Br, and Ca diffusion data from Tinnacher 
et al.23. Open squares: experimental data. Closed and open circles: modeling results. HTO model parameters: 
τclay = 0.049; εclay = 0.72. Br model parameters: τclay = 0.04; εclay = 0.55. Ca model parameters: τclay = 1.1–2.3; 
εclay = 0.72; KD = 79 L  kg−1. Closed circles: model with τclay = 1.6; Open circles: model with τclay = 2.3 (upper curve) 
or τclay = 1.1 (lower curve). The dotted lines are eye guides for modeling results only. Other (fixed) parameters are 
given in Table S1 in the supplementary materials.
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in any reactive transport code, the development of the new graphical user interface CrunchEase makes it easy 
to apply by experimentalists without background in reactive transport modeling. CrunchEase can also be used 
to fit through-diffusion data from experiments with changing boundary conditions (no reservoir replacement; 
not shown in this paper). In the future, the code may be easily extended to other types of diffusion experiments, 
such as in-diffusion experiments.

Since experimental biases can be modeled explicitly, the accuracy of calculated diffusion parameters with a 
reactive transport approach is expected to be better than for the application of analytical solutions, which cannot 
include the full complexities of real experiments. The numerical efficiency of CrunchClay makes our approach 
suitable to fit model parameters very quickly. For instance, for 1D problems simulating a diffusion experiment 
with an experimental time frame of approximately 50 days, the model running time is most often less than 1 min. 
This approach could also be used easily with parameter estimation softwares such as  PEST32.

On a final note, CrunchEase makes it easier to transition from a De–ε–KD modeling approach to a reactive 
transport modeling approach taking into account surface-enhanced diffusion processes and advanced chemical 
reactivity models such as surface complexation models. Very few reactive transport codes can handle all of these 
 features31, which currently makes the CrunchClay-CrunchEase combination unique. This will hopefully help to 

Figure 6.  Dual porosity (bulk and diffuse layer) model (black circles; dotted lines are eye guidelines) applied 
to diffusion data (open squares) from Tinnacher et al.23. Model input files were modified from files built by 
CrunchEase and used to simulate and plot Fig. 5.  Ca2+,  Br−

, and HTO diffusion were modeled simultaneously. 
 Ca2+ and  Br− input files were the same because of identical sampling times (same experiment), but the HTO 
input file was handled separately (different experiment, sampling times, and sampled volumes). Modeling 
parameters were otherwise the same (see text).
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facilitate the dialog between experimentalists, modelers, and radioactive waste agency decision-makers regard-
ing the most recent concepts applied to diffusion in clayey materials. This may ultimately lead to an improved 
decision-making process by radioactive waste agencies.

Data availability
The CrunchEase interface and data are available on an open Github repository: https:// github. com/ Tourn assat/ 
Crunc hEase ForAll/ relea ses/ tag/ v1.0.0.
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