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Soil moisture controls 
the partitioning of carbon stocks 
across a managed boreal forest 
landscape
Johannes Larson 1*, Jörgen Wallerman 2, Matthias Peichl 1 & Hjalmar Laudon 1

Boreal forests sequester and store vast carbon (C) pools that may be subject to significant feedback 
effects induced by climatic warming. The boreal landscape consists of a mosaic of forests and 
peatlands with wide variation in total C stocks, making it important to understand the factors 
controlling C pool sizes in different ecosystems. We therefore quantified the total C stocks in the 
organic layer, mineral soil, and tree biomass in 430 plots across a 68  km2 boreal catchment. The 
organic layer held the largest C pool, accounting for 39% of the total C storage; tree and mineral C 
pools accounted for 38% and 23%, respectively. The size of the soil C pool was positively related to 
modelled soil moisture conditions, especially in the organic soil layer  (R2 = 0.50). Conversely, the tree C 
pool exhibited a unimodal relationship: storage was highest under intermediate wetness conditions. 
The magnitude and variation in the total soil C stocks observed in this work were comparable to those 
found at the national level in Sweden, suggesting that C accumulation in boreal landscapes is more 
sensitive to local variation resulting primarily from differences in soil moisture conditions than to 
regional differences in climate, nitrogen deposition, and parent material.

Forests provide many life-sustaining ecosystem services. It has been suggested that management interventions 
in forest ecosystems could be among the most effective nature-based solutions combating climate  change1,2 
because forests play critical roles in global carbon (C) sequestration and long-term carbon  storage3. Boreal forest 
landscapes store approximately one third of the entire terrestrial C  pool4, with the majority of this C being stored 
below ground as soil organic carbon (SOC)5. Various biomass components including tree trunks, branches, roots, 
foliage, and deadwood also hold large C  pools6. However, the relative sizes of these above- and belowground C 
pools within boreal landscapes are rather poorly constrained. Global, national, and regional estimates of boreal 
forest C stocks are often associated with large  uncertainties7, which are typically attributed to under-sampled 
regions, a lack of remote sensing data, and differences in sampling methods and intensities between  studies4. 
This limits our ability to develop strategies for improving the carbon sequestration potential of forest landscapes.

It is well established that soil forming factors are sensitive to climate, time, organisms, parent material and 
 topography8, all of which by extension influence the development of the SOC pool. Several studies have identi-
fied climate as a key driver of SOC accumulation on global and regional scales, mainly because of its impact on 
temperature and  precipitation9,10. However, on smaller landscape scales (up to several tens of  km2), site-specific 
soil-forming factors such as local topography may be more important because some of the factors mentioned 
above can be considered constant and are thus controlled for in small scale observational  studies11. For example, 
in mountainous landscapes where the parent material can be assumed to be constant, the spatial variation in the 
SOC stock is largely regulated by differences in altitude and aspect that have large control on climatic  variability12.

The central role of local topography as a primary controlling factor of soil moisture conditions is particu-
larly evident in boreal landscapes, which are often dominated by unsorted glacial till with limited variation in 
hydrological  properties13–15. Soil moisture is a major factor governing SOC  accumulation16–18 because it influ-
ences the input of organic carbon via its effects on plant production and also controls decomposition rates. The 
accumulation of the aboveground C stock in boreal landscapes is also sensitive to disturbances such as fires 
and forest  management19, while forest productivity is tightly constrained by climate, nutrient availability, and 
water  levels20,21. Specifically, tree growth in dry sites is often limited by water and nutrient  availability22, whereas 
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excessive wetness leads to soil saturation and limits tree growth by creating anoxic conditions that are often 
associated with increased organic layer  thickness23,24.

Managed boreal landscapes are particularly heterogeneous in terms of vegetation structure and composition, 
which can enhance variation in C stocks across smaller spatial scales. However, the lack of spatially extensive 
soil moisture data means that the landscape-scale effects of management on C stocks are poorly  constrained11. 
This is a significant problem because climatic change is likely to change the water balance in boreal landscapes 
and thereby affect soil moisture conditions. Consequently, there is a clear need to improve our understanding of 
the size and distribution of C stocks on the landscape scale and to identify the factors governing them in order 
to develop sustainable forest management strategies.

To address these needs, we conducted a comprehensive forest and soil survey across a 68  km2 managed boreal 
forest catchment in Northern Sweden with the aim of quantifying the magnitude and variation of forest ecosys-
tem C stocks. We sampled 430 plots, obtaining detailed soil profile descriptions of organic and inorganic soils 
down to 50 cm in the mineral soil and performing chemical analyses of samples from fixed soil depths. The soil 
survey was combined with an extensive forest survey using the same survey grid and a high resolution airborne 
laser scanning (ALS) dataset. Recent advances in ALS have made it possible to retrieve various forest biophysical 
 properties25 and acquire high resolution topographic information, opening up new approaches to soil moisture 
modelling and digital soil mapping. For example, in Sweden ALS-derived topographical information has been 
combined with additional geographical datasets to model soil moisture conditions at a spatial resolution of 2 m 
using machine learning  algorithms26. This approach was shown to accurately delineate peat  soils27. Furthermore, 
high resolution estimates of above- and belowground biomass have been obtained by combining ALS and forest 
survey  data28–30. These developments offer new ways to identify factors controlling the magnitude and variation 
of above- and below-ground forest ecosystem carbon stocks.

The specific objectives of this study were to (i) estimate the size and spatial variation of C stocks in soil and 
trees in a managed boreal forest landscape, (ii) characterize the relationships between the sizes of these C stocks 
and soil moisture conditions (iii) and produce high-resolution wall-to-wall estimates of soil and tree C stocks 
within the landscape. We hypothesised that (i) soil C is the largest and most variable C pool across the landscape, 
(ii) soil moisture conditions control SOC levels at the landscape scale, with increased soil moisture being associ-
ated with larger SOC stocks, and (iii) soil moisture effects on the organic layer C pool are a key determinant of 
the studied landscape’s total C stock.

Methods
Site description. This study was conducted in the Krycklan catchment, situated in northern Sweden (Lat. 
64°,23′N, Long. 19°,78′E)31. The catchment has a cold temperate humid climate with a 30 year (1991–2020) mean 
annual air temperature of 2.4 ± 0.3 °C and a mean annual precipitation of 638 ± 40 mm, of which 35% falls as 
snow. The catchment spans 68  km2 and has a gentle topography, with elevations ranging from 127 to 372 m.a.s.l. 
and a poorly weathered gneiss bedrock. The soils of the upper parts are dominated by unsorted glacial till while 
those of the lower parts consist primarily of sorted sediments of sand and silt. Approximately 25% of the catch-
ment has been protected for research since 1922; ownership of the remaining area is divided among private own-
ers and forest companies. The catchment’s land cover is dominated by forests, which account for 87% of its total 
area and consist primarily of Scots pine (Pinus sylvestris L.) (63%) and Norway spruce (Picea abies (L.) H. Karst.) 
(26%). Forests in the non-protected areas are managed by conventional rotation forestry and are predominantly 
even-aged, artificially regenerated, and thinned. The forest soils are dominated by well-developed iron  podzols32. 
Mires and lakes cover 9% and 1% of the landscape, respectively, while arable land covers 2%.

Field data. The survey grid covers the entire catchment area and consists of 500 plots that each have a radius 
of 10 m and an area of 314  m2, with a spacing of 350 m between adjacent plots (Fig. 1). The survey grid is densi-
fied in a 1500 × 1500 m area around an eddy covariance tower in the centre of the study area, where the spacing 
between adjacent plots is 175 m. Plot locations were established in 2015 using a randomly chosen origin and 
were oriented along the coordinate axis of the Swereff 99 TM projection. The centre of each plot was located in 
the field using a Trimble GeoXTR GNSS receiver.

Soil survey. The soil survey was conducted during the snow-free seasons of 2019 and 2020, following the 
methods of the Swedish National Forest Soil Inventory (SFSI; http:// www- ris. slu. se). Soil profile descriptions 
and site variables such as soil moisture classes (described below), humus form, organic layer thickness, and soil 
texture were determined, measured, or recorded for each plot. The organic layer was sampled volumetrically 
using a 10 cm diameter corer to the full depth of the O-horizons or to a maximum depth of 30 cm after removing 
the litter layer and bottom layer of mosses and carefully separating them from the mineral soil below. Samples 
were collected from 1 to 9 sampling points until the target sample volume of ca 1.5 L was obtained. These points 
were distributed within a 3.14  m2 subplot close to the survey plot’s centre. Mineral soil was sampled to a depth 
of 65 cm (or to bedrock or boulder depth) at fixed intervals of 0–10, 10–20, and 55–65 cm. Total C was analysed 
on the fine fraction (< 2 mm) after samples had been dried at 65 °C, ground to a fine powder and homogenised. 
A total of 1500 individual samples were analysed for soil C concentration by mass spectrometry using a Delta 
IRMS instrument coupled to a Flash EA 2000 analyzer (Thermo Fischer Scientific, Bremen, Germany). Analyses 
were performed with 5–50 mg soil material depending on the organic matter content. Organic layer C stocks 
were calculated by multiplying each sample’s C concentration by its dry weight and then dividing the result by 
the total sampled area. Mineral soil C stocks in each sampled layer (0–10, 10–20, and 55–65 cm) were calculated 
based on the C concentration, bulk density (g/cm3), soil layer thickness (cm) and the volume percentage of 
stones and boulders using the following expression:

http://www-ris.slu.se
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The bulk density of the mineral soil horizons was calculated using the SFSI procedure, which is based on a 
pedotransfer function that depends on the C concentration and depth (cm)10,33:

The volume of stones and boulders in each plot was estimated using the stoniness index, which is determined 
by driving a 1 cm diameter metal rod into the soil using a small sledge hammer (2 kg) until the rod cannot 
penetrate further. The penetration depth (max 30 cm) is then measured from the top of the mineral soil surface. 
Measurements were done at 12 predetermined locations across each plot and the volume percentage was then 
calculated using a transfer  function34,35. The total SOC stock was calculated as the sum of the organic and mineral 
C pools. For plots with peat soils where the organic layer thickness was > 30 cm, the total C stock was calculated 
to a maximum depth of 1 m from the organic layer surface. In these plots, the C stock of the organic layer was 
estimated by collecting samples to a maximum depth of 30 cm and extrapolating downwards.

Forest survey. The forest survey was conducted in the late fall of 2019 and the early spring of 2020. A total 
of 488 plots were surveyed, of which 430 were also included in the soil survey (Fig. 1). All trees within each 10 
m radius plot were measured and the stem diameter at breast height (DBH; 1.3 m) of trees with DBH > 4 cm 
was recorded along with the heights of saplings. In regenerating/young forests and some other stands with very 
high stem densities, the plot radius was reduced to 5 m to limit the time needed for surveying. Species and DBH 
were recorded for all trees and tree heights were measured using a laser-guided hypsometer on a subjectively 
selected sub-sample of at least three trees that were chosen to capture the tree size variation of each species. 
The height of the remaining trees was estimated using plot-level fixed mixed effects modelling for single trees 
and then imported into the Heureka system for plot biomass  calculations36. The aboveground biomass in each 
plot was estimated using allometric equations for stumps, stems, bark, dead and living branches, and foliage for 
Scots pine, Norway spruce, and birch, with tree height and DBH as independent  variables37. For Lodgepole pine 
(Pinus contorta Bol.), we used the same functions as for Scots pine; other deciduous species were modelled using 
the birch functions. Belowground biomass was estimated for individual trees using species-specific allometric 
equations with DBH as the independent variable and were summarized per  plot38. The total tree C pool was cal-
culated by summarizing the above- and belowground biomass for each plot and then converting to Mg C  ha−1, 
assuming a C concentration of 50% in biomass.

(1)Storage = Concentration (%)× BulkDens × LayerThickness × (100− StoneVol)/100

(2)BulkDens = 1.5463× EXP(−0.3130× CarbonConc0.5)+ 0.0027× Depth

Figure 1.  Topography of the Krycklan catchment and locations of soil and forest survey plots (represented as 
black and grey dots, respectively). Forest surveys were also conducted on soil survey plots. Most plots are located 
on the vertices of a 350 × 350 m grid but there is a densified 175 × 175 m grid around an Eddy covariance tower 
in the catchment’s centre. The map was created using Esri ArcGIS Pro 3.0.2, https:// www. esri. com/ en- us/ arcgis/ 
produ cts/ arcgis- pro/ overv iew.

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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Soil moisture classes. Each plot was assigned to one of five soil moisture classes based on its average 
groundwater table depth, which was estimated from the plot’s position in the landscape, soil texture, and vegeta-
tion patterns. The five soil moisture classes were: dry (7% of all plots), mesic (73%), mesic-moist (11%), moist 
(7%) and wet (2%). These classes are described briefly below and at greater length in previous  publications39.

• Dry soils have an average groundwater table > 2 m below the soil surface. They tend to be coarse-textured 
and can be found on hills, ridges, and eskers. Dry soils are mainly Leptosols, Arenosols, Regosols, or Podzols 
with thin organic and bleached horizons.

• Mesic soils have an average groundwater table between 1 and 2 m below the soil surface. Podzol is the 
dominating soil type with a fairly thin (4–10 cm) organic mor layer covered mainly by dryland mosses (e.g., 
Pleurozium schreberi, Hylocomium splendens and Dicranum scoparium). They can be walked on dry-footed 
even directly after rain or shortly after snowmelt.

• Mesic-moist soils have an average groundwater table depth < 1 m below the soil surface and are normally 
located on flat ground in lower-lying areas or lower parts of hillslopes. The soils become wet seasonally fol-
lowing snowmelt or heavy rain events. The feasibility of crossing with dry feet in normal shoes depends on 
the season. Peat mosses (e.g., Sphagnum sp., Polytrichum commune) in patches are common, and trees often 
grow on humps. Podzols are commonly found but often with a thicker organic layer than in mesic sites. The 
organic layer is often classified as peaty mor.

• Moist soils have an average groundwater table depth < 1 m below the soil surface and the surface water is 
commonly visible in depressions within the plot. Moist soils are found at lower altitudes, on the lowest parts 
of slopes and flat areas below larger ranges. They can be crossed in shoes without getting wet feet by utilizing 
tussocks and higher-lying areas. The vegetation includes wetland mosses (e.g., Sphagnum sp., Polytrichum 
commune, Polytrichastrum formosum). When stepping in depressions, water should form around the feet 
even after dry spells. Trees often grow on small mounds and the soil type is most often Histosol, Regosol, or 
Gleysol.

• Wet soils have a ground water table close to the soil surface and permanent pools of surface water are com-
mon. Soils are typically Histosols or Gleysols. Drainage conditions are very bad and they cannot be crossed 
in shoes without getting wet feet. Wet areas are often located on open peatlands and coniferous trees seldom 
develop into stands.

Modelled soil moisture conditions. Soil moisture conditions were modelled using the newly developed 
SLU machine learning soil moisture map with a resolution of 2   m26. The map was developed using multiple 
nationwide geographical information datasets including various terrain indices, climate data, and quaternary 
deposit information. The training and validation data consisted of almost 20,000 field soil moisture classifica-
tions (1–5) from the national forest inventory that were spread across the entire Swedish forested landscape. The 
final model used Extreme Gradient Boosting (XGBoost) to produce a 2-class model in which the depth water 
 index40 and topographic wetness  index41 were the most important predictors. The survey grid employed in the 
present study was used for external validation of the modelled soil moisture, which yielded a kappa value of 
0.5226. The model’s output is presented as a wetness index map showing the predicted probability (0–100%) of 
wetness for each pixel and is publicly available (Swedish University of Agricultural Sciences, 2022). Modelled soil 
moisture conditions for each survey plot were extracted using the coordinates of the plot’s centre.

Carbon pool mapping. Data representing all plots included in the forest survey of 2019 were used as 
ground truth for Tree C pool mapping. ALS data were acquired in August 2019 using a Reigl VQ-1560i-DW 
1064 nm (NIR) scanning system with an average point density of 20 points  m−2. The raw ALS data were pre-pro-
cessed by classifying point returns as ground, unclassified, or noise. A digital terrain model was then generated 
and the ALS points were normalised to represent the tree canopy height above the ground surface. Finally, met-
rics were generated from the ALS data to summarize the point-cloud information on the raster cell level using 
the CloudMetrics program in the Fusion software  package42. These metrics were calculated for 12.5 × 12.5 m grid 
cells using methods previously developed to generate ALS estimates on a national  scale43. Plots were excluded 
if the absolute difference between Lorey’s mean height and the ALS metric P95 (the 95th percentile of the ALS 
point cloud’s height distribution) was above 5 m. Regression models relating the observed Tree C pool at the plot 
level to several other explanatory ALS metrics were fitted and extrapolated over the entire study area. The total 
SOC stocks over the catchment area were mapped using the modelled relationship between plot-level measure-
ments of total SOC stocks and the SLU soil moisture map.

Statistics. Descriptive statistics for the different C pools were generated using the statistical software  R44. 
The relationships between modelled soil moisture conditions and C pools were evaluated by linear regression, 
using polynomial models in some cases. Predictive models with log-transformed dependent variables were 
back-transformed using smearing  estimates45 to avoid bias. As no independent data were available to assess the 
accuracy of the models’ C pool predictions, we performed leave-one-out cross-validation46 by removing one 
sample from the model dataset and fitting the selected models on the remaining plots. Model performance was 
evaluated using  R2 and RMSE.
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Results
Soil carbon pools. The mean total SOC stock down to 50 cm of mineral soil including peat soils was 94 ± 5 
(SE) Mg C  ha−1 (Table 1). Excluding peat soils, the mean total C stock was 67 ± 2 Mg C  ha−1. The mean SOC 
stock in mineral soils was 40 ± 1 Mg C  ha−1 while that in the organic layer (to a maximum depth of 1 m) was 
59 ± 6 Mg C  ha−1. Forty-nine plots were classified as peat soils (organic layer thickness > 30 cm); the mean C 
stock for these plots was 307 ± 29 Mg C  ha−1.

Tree carbon pool. The forest age varied between 0 and 272 years with a mean of 79. The mean height and 
basal area were 13 m and 21  m2  ha−1, respectively (Table 2). The total tree C pool varied from 0 to 228 Mg C  ha−1, 
with a mean of 58 Mg C  ha−1. On average, 24% of the Tree C was stored below ground and 76% above ground 
(Table 3).

Total carbon stock estimates. The total SOC pool accounted for 62% (94 ± 1 Mg C  ha−1) of the land-
scape’s total C storage (152 Mg C  ha−1), with the remaining 38% (58 ± 2 Mg C  ha−1) being stored in the tree C 
pool. The largest individual C pool was the organic layer (59 ± 6 Mg C  ha−1), which comprised 39% the total C 
stock on average, while the mineral soil C pool accounted for 23% of the total (35 ± 1 Mg C  ha−1). If peat soils 
were included, the organic soil C pool accounted for 63% of the total SOC pool. However, if peat soils were 
excluded, the mineral soil C pool comprised 60% of the overall SOC stock.

Soil moisture effects on C allocation. The size of the total C pool differed significantly between soil 
moisture classes, ranging from 100 Mg C  ha−1 in the driest class to 270 Mg C  ha−1 in the wettest (Fig. 2). This 
relationship was mainly driven by an increase in the size of the organic layer C pool in the mesic-moist to wet soil 
moisture classes. The C stored in the mineral soil C pool decreased from 37 to 18 Mg C  ha−1 between the driest 
and the wettest class; this is mainly due to the greater depth of the organic layer in wetter soils and the fact that 
sampling was only conducted to a maximum depth of 1 m below the soil surface. The mineral soil C pool depth 
was therefore reduced or zero in cases where the organic layer thickness was around or above 1 m. The tree C 
pool increased from 44 Mg C  ha−1 in the dry class to a maximum of 80 Mg C  ha−1 in the mesic-moist sites but 
then decreased as the moisture increased further, falling to 40 Mg C  ha−1 in the wettest soil class (Fig. 2).

The median proportion of the total C stock in the tree C pool increased from the dry (42%) to mesic (51%) soil 
moisture classes (Fig. 3). The majority (57%) of the survey plots had over 50% of their total stored C in the soil.

Table 1.  Soil carbon stocks (Mg C  ha−1).

Variable Case N Mean SD Median Min Max SE

Total SOC pool Including peat soils 430 94 109 62 9 959 5

Organic C pool Including peat soils 430 59 115 21 0 959 6

Mineral C pool Including peat soils 430 35 23 35 0 171 1

Total SOC pool Excluding peat soils 381 67 43 58 9 412 2

Organic C pool Excluding peat soils 381 27 33 19 0 336 2

Mineral C pool Excluding peat soils 381 40 22 37 0 171 1

Total SOC pool Only Peat soils 49 307 198 291 21 959 29

Table 2.  Field measurements of forest stand variables in the forest survey plots (n = 488).

Variable Mean SD Median Min Max SE

Age (years) 79 48 73 0 272 2

Hgv (m) 13 5 14 0 24 0.24

Basal area  (m2  ha−1) 21 12 21 0 58 0.5

Volume  (m3  ha−1) 156 111 149 0 601 5.0

Number of stems  (ha−1) 1459 1835 1178 0 33,205 83

Table 3.  Tree C pool stocks (Mg C  ha−1) in the surveyed plots (n = 488).

Variable Mean SD Median Min Max SE

Tree C pool 58 40 55 0 228 2

Above ground 44 30 41 0 170 1

Below ground 14 10 14 0 58 1



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14909  | https://doi.org/10.1038/s41598-023-42091-4

www.nature.com/scientificreports/

A model to predict C pool sizes based on soil moisture. Upon relating the measured C pools to soil 
moisture predictions obtained using the SLU soil moisture map, we found that the relationship between the tree 
C and SOC pools at different soil moisture levels was unimodal (Table 4; Fig. 4), in accordance with the results 
obtained using the field soil moisture classifications (see Fig. 3). The relationship between the total SOC pool 
size and the modelled soil moisture was described well by a polynomial regression  (R2 = 0.40)(Table 4), which 
accurately captured the large increase in C stocks with increasing soil moisture (Fig. 4b). This analysis also con-
firmed that the increase in the total SOC stock was mainly due to an increase in the size of the organic layer C 
pool  (R2 = 0.50). The mineral C pool showed a significant positive linear increase with the soil moisture, but this 
trend explained only 5% of the total variation in C pool size.

To avoid confounding effects from forest management on the standing biomass across our 430 plots, we 
also evaluated the relationship between the tree C pool and soil moisture in plots containing only tree stands 
that were at least 80 years old, representing mature forests (n = 166). In this analysis, the tree C pool showed a 

Figure 2.  Sizes of the tree, organic layer, and mineral soil carbon pools for different field-classified soil moisture 
conditions.

Figure 3.  The tree carbon pool as a proportion of the total carbon stock in each of the five soil moisture classes. 
Mean values are indicated by white circles.
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Table 4.  Results obtained using linear and polynomial regression models of the relationship between carbon 
pool size and predicted soil moisture (x). RMSE values were calculated by leave-one-out cross validation 
(LOOCV) in which the Total SOC and Organic SOC stocks were retransformed using SMEAR to avoid 
logarithmic bias.

Carbon pool n Regression R2 RMSE F-stat p-value

Tree C  pool(stand age>=80) 166 y = 80.57 − 129.3x − 165.9x2 0.14 40.74 13.09 5.362e−06

Total SOC pool 430 log(y) = 4.23 + 8.51x + 3.35x2 0.40 90.24 140.3 < 2.2e−16

Organic C pool 430 log(y) = 3.32 + 13.87x + 6.12x2 0.50 95.73 209.8 < 2.2e−16

Mineral C pool 373 y = 36.43 + 0.19x 0.05 20.36 24.82 7.108e−06

Figure 4.  Carbon pool sizes as functions of modelled soil moisture conditions. Regression lines are shown 
in red and 95% prediction intervals are shown using dashed lines. The modelled soil moisture represents the 
probability of plots being classified as wet (dry − wet) based on a 2-class XGBoost model. The tree carbon pool 
modelling results shown in plot (a) are based on data for survey plots with a stand age of 80 years or above 
(results indicated by blue dots) to reduce the impact of management effects. Results for plots with a mean stand 
age below 80 years are represented by grey dots.
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weak but significant (p-value < 0.01) unimodal relationship with the modelled soil moisture, indicating that the 
proportion of the total C stock in trees is generally higher in areas with intermediate soil moisture than in those 
with very low or very high wetness.

Carbon mapping (wall‑to‑wall estimates) across the forest landscape. To map the tree C pool 
(including both the above- and belowground pools) over the entire catchment area, we developed a model based 
on the relationship between the field tree C data and ALS-derived metrics by adapting the previously-reported 
area-based  method47. The final model (Eq. 3) included two dependent ALS variables relating to height distribu-
tion (P95 and SD, i.e., the 95th percentile and the standard deviation of ALS point heights above ground, respec-
tively), and one relating to tree canopy density (VR, i.e., the proportion of ALS points reflected in the vegetation).

The agreement between the predicted and observed data was good  (R2 = 0.9, p < 0.001) (Fig. 5), and leave-
one-out cross validation indicated an acceptable goodness of fit with a RMSE of 12.4 Mg C  ha−1. The model was 
therefore used to predict the tree C pool for each 12.5 × 12.5 m raster cell within the Krycklan catchment (Fig. 6a).

To map the SOC stock across the entire catchment, we applied the polynomial function described in section 
"A model to predict C pool sizes based on soil moisture" to each 2 m cell based on the modelled soil moisture 
(Table 4). This revealed a mosaic of clear cuts (white) and mature stands with high tree C stocks, demonstrating 
the profound effects of forest management on tree C pools within the landscape (Fig. 6a). Total SOC stocks were 
highest in wetlands (peat) and the riparian zones alongside streams (Fig. 6b). The inverse relationship between 
high soil C stocks and the size of the tree C pool was particularly pronounced in the wetland areas.

Discussion
Despite the importance of boreal forests for carbon sequestration and climate mitigation, the factors governing 
C stock variation and its distribution at the landscape scales remain poorly understood. Based on a extensive 
survey of the tree and SOC pools in > 400 sample plots within a landscape-scale study area, this work provides (i) 
insights into the magnitude and variation in C stocks across a meso-scale boreal landscape; (ii) empirical evidence 
of the profound impact of soil moisture conditions on SOC stocks; and (iii) high-resolution estimates of the C 
stock distribution over a managed boreal forest landscape. Taken together, our results show how the total and 
individual organic and mineral SOC stocks vary across the boreal landscape and co-vary with the tree C pool.

Although we found that the total C stocks at the plot level are highly variable across a 68  km2 managed boreal 
forest landscape catchment, our estimate of the average landscape SOC stock (94 ± 3 Mg C  ha−1) is similar to 
previous regional and national SOC stock estimates based on the Swedish national forest soil inventory. For 
instance, a national study focusing on Swedish podzols (i.e., excluding peat soil) estimated an average total SOC 
 stock16 of 82 ± 3 Mg C  ha−1. In the same study, Olsson et al. found that the average SOC pool size in the organic 
layer was 28 Mg C  ha−1, which is identical to the value obtained in our analysis when peat soils were excluded. 
In a regional analysis covering all of northern Sweden, Hounkpatin et al. estimated a mean total SOC stock of 
73 Mg C  ha−1, which also is consistent with our results. The fact that the average SOC stocks in our boreal catch-
ment are similar to previously reported regional- and national-scale estimates for Sweden suggests that SOC 

(3)Tree C pool = 4.94+ 0.02(P95× VR)1.2 − 3.17HSD

Figure 5.  Relationship between ground truth data and the Tree C pool predicted by the ALS model (Eq. 1).
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stocks are far more sensitive to local-scale variation than to differences along the national north–south gradient 
despite the associated wide variation in climate, nitrogen deposition, and parent material.

In accordance with our first hypothesis, the total C stock increased rapidly with the soil moisture level, 
primarily because of a large increase in the size of the organic layer C pool (Fig. 2). Findings from other boreal 
landscapes support our results: multiple studies have concluded that SOC stocks increase with soil moisture 
levels, whether evaluated on the basis of drainage class or wetness  indices18,48. However, this study goes beyond 
previous works because it is based on a unique high-density soil dataset for a catchment-scale site; the catchment 
scale has received little attention in previous research. Furthermore, while organic soils often are excluded or 
considered separately from mineral soils due to differences in soil formation conditions, our work highlights 
the need to include organic soils to fully understand overall variation in C stocks in high altitude landscapes. 
Peat soils host a large proportion of the total terrestrial C stock in boreal biomes; our estimates suggest that they 
account for about one-third of the global SOC stock to a depth of 1  m49. Even though only 11% of the plots within 
this study area were peat soils, they accounted for 37% of the total measured soil C stock.

Forest management practices, particularly clear-cut harvesting, have significantly affected the natural varia-
tion of tree C stocks within boreal forest landscapes, reducing the impact of natural disturbances that previously 
had central roles such as forest fires and wind. The long history of forest management in Sweden has probably 
obscured the relationship between the tree C pool and soil moisture conditions in a way that may depend on 
site-specific conditions (Fig. 4). Additionally, the legacy of peatland drainage efforts within the catchment and 
across Fennoscandia has enhanced forest production in many areas, greatly expanding the tree C  pool50. Evalu-
ating these impacts can be challenging, but the successful application of our area-based method in this work 
clearly shows that ALS provides an effective way to systematically collect forest information in order to quantify 
aboveground carbon stocks on the landscape  scale29 while also dealing with confounding factors resulting from 
forest management interventions (Fig. 6a).

The SOC pool accounted for a large proportion of the total C stock within our studied boreal landscape, 
highlighting the presence and impact of local C stock hotspots in wet peat soils (Fig. 6b). It is notable that peat 
soils are not only found in forested and open wetlands but also in the riparian zones lining most streams. The 
proportion of C stored in trees in these wet areas is substantially lower than in other forested regions, so less 
common management practices such as continuous-cover forestry may be preferable to ensure the preservation 
of these large SOC  stocks51. More generally, the presence of large SOC stocks in riparian zones suggests a need 
for greater caution in forest management when dealing with such near-stream  areas52.

To better understand the landscape-scale variation in SOC stocks, the effects of factors such as forest pro-
ductivity, management, tree species, and fire history will have to be studied. Future work should also focus on 
exploring the combined impacts of different soil forming factors across fine spatial scales, including soil texture, 
bulk density, soil depth, and chemical properties. Special attention should be given to improving the reliability 
of bulk density estimates for unsorted sediment soils because quantifying uncertainty in this area is difficult and 
time-consuming. Following the method of the Swedish national forest inventory, we modelled bulk density in the 
mineral soil using empirical pedotransfer functions; this represents a notable weakness in our C stock estimates 
given the limited accuracy of such functions. Furthermore, we chose to focus specifically on testing soil moisture 
effects by using a state-of-the-art map based on terrain indices and other geographical information in this  study26. 
However to better understand the influence of topography as a soil forming factor we could also consider the C 

Figure 6.  Tree C distribution map derived from ALS data using the area-based method (a) and the total SOC 
stock distribution derived by regression analysis of soil moisture data (b). Areas shown in white are dominated 
by clear-cuts and open peatland. The maps were created using Esri ArcGIS Pro 3.0.2, https:// www. esri. com/ en- 
us/ arcgis/ produ cts/ arcgis- pro/ overv iew.

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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stock in relation to individual terrain indices such as the commonly used Topographic Wetness Index (TWI)41 
and the associated effects on aboveground productivity and soil chemical properties.

Conclusion
We have presented a unique perspective on the total C stock of a managed boreal forest landscape that emphasizes 
the importance of soil moisture conditions as a key regulator of the SOC stock distribution. Our results indicate 
that the total C stock increases when moving from dry to wet areas, but the tree C stock is highest in regions 
with intermediate soil moisture levels. Landscape-scale soil moisture variation is largely governed by topography 
because it controls the distribution of water, which determines the spatial distribution of different soil types. 
To clarify the distribution and dynamics of the above- and belowground C pools, future studies should focus 
on disentangling the multiple drivers of C accumulation such as ecosystem productivity, species, forest history 
and other soil forming factors. Our results also indicate that potentially drier future conditions due to climate 
change might reduce the total landscape C storage and shift its allocation from soils towards tree biomass. This 
would have important implications for the C pool’s protection from disturbances (e.g., fire and wind throw) and 
associated risk of terrestrial C being emitted to the atmosphere.

Data availability
The dataset generated during the current study is available from the corresponding author on reasonable request.
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