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Uncertainty analysis of contagion 
processes based on a functional 
approach
Dunia López‑Pintado 1*, Sara López‑Pintado 2*, Iván García‑Milán 3 & Zonghui Yao 2

The spread of a disease, product or idea in a population is often hard to predict. We tend to observe 
one or few realizations of the contagion process and therefore limited information can be obtained 
for anticipating future similar events. The stochastic nature of contagion generates unpredictable 
outcomes throughout the whole course of the dynamics. This might lead to important inaccuracies in 
the predictions and to the over or under-reaction of policymakers, who tend to anticipate the average 
behavior. Through an extensive simulation study, we analyze properties of the contagion process, 
focusing on its unpredictability or uncertainty, and exploiting the functional nature of the data. In 
particular, we define a novel non-parametric measure of variance based on weighted depth-based 
central regions. We apply this methodology to the susceptible-infected-susceptible epidemiological 
model and small-world networks. We find that maximum uncertainty is attained at the epidemic 
threshold. The density of the network and the contagiousness of the process have a strong and 
complementary effect on the uncertainty of contagion, whereas only a mild effect of the network’s 
randomness structure is observed.

The ability to predict the spreading behavior of a new idea, product, or disease in a population characterized 
by a complex network of influences and interactions, either virtual or in person, is a fundamental challenge 
faced by scientists, such as sociologists, economists and epidemiologists1–6. Regardless of whether the focus is 
on the spread of a new “TV series”, “technology” or “biological virus”, all of these widely different phenomena 
have in common that they are hard to anticipate7. For instance, in the case of an infectious disease, our running 
example, the rule describing how an agent becomes “infected” by an infectious neighbor is often perceived as 
stochastic. Infection depends on numerous factors, such as the time and type of exposure or the status of the 
agent’s immune system. This, together with the complex network of interactions makes the spreading of the 
disease subject to the accumulation of interdependent and uncertain events which leads to random outcomes. 
Nevertheless, not all network structures nor contagion rates lead to the same amount of unpredictability. Under 
some circumstances the past experience (e.g., a disease that has already spread elsewhere) is more useful than 
in others for anticipating and reacting to further similar events. Thus, understanding the determinants of such 
inherent uncertainty is of vital importance.

Most of the literature on diffusion in networks has focused on studying the long-run or endemic state of the 
process, either through simulations or by mean-field theory models that approximate the average behavior2,6. 
Focusing just on average predictions and ignoring the heterogeneity and randomness inherent to most of these 
processes under appreciates information on the evolution of contagion which, in some cases (e.g., an epidemic), 
could help avoid mistakes in policy-making. In this paper we analyze the most stylized form of unpredictability, 
one that simply arises from the stochastic nature of contagion which takes place on a fixed network of interac-
tions. We propose a methodology that helps discerning features of the model that lead to more predictable 
outcomes by considering the complete time course of contagion. There are recent theoretical studies which 
significantly contribute to this line of thought by quantifying, in real time, the probability that an epidemic goes 
supercritical or conversely, dies stochastically. Some of these studies apply the method of probability generating 
functions8, whereas others analyze systems of stochastic differential equations which permit fluctuations in terms 
of the mean and the variance of infected individuals9,10. Advances in this front have been conceived mostly for 
random networks with arbitrary degree distributions but lacking clustering. In reality, however, the network con-
tains some structure and this could potentially affect the predictions. From an empirical perspective, the recent 
experience with COVID-19 provides an example of the large variety across infection curves reported throughout 
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the world, which could be due in part to the differences in the underlying network structures of different com-
munities, and also to the inherent unpredictability of the contagion process as will be highlighted in this study11,12.

Our work complements previous studies by using a non-parametric functional data approach to analyze, 
through simulations, how the variability of the contagion process crucially depends on the contagion rate and 
the properties of the network of interactions. The analysis can be performed on any type of network structure, 
even those far from random which are hard to analyze theoretically. For concreteness, we focus on the case of 
the susceptible-infected-susceptible (SIS) epidemiological model13 applied to small-world networks14, i.e., net-
works with properties such as high clustering and small average path length, that are quite common in the real 
world15. Alternative scenarios, such as the susceptible-infected-recovered (SIR) epidemiological model, have 
been analyzed in the Supplementary Information.

Summary of our findings.  The basic unit of study is a random curve (infected proportion curve) defined 
as the fraction of infected agents in the population as a function of time, where the maximum time period is 
set exogenous. Multiple realizations of this random process generate a sample of infected proportion curves 
with characteristics that depend on the given network structure and the diffusion model. We apply robust non-
parametric statistical methods based on statistical depth notions for functional data to describe and analyze the 
properties of the contagion process. In particular, the variability and, ultimately, unpredictability of this process 
is estimated by a weighted average of the depth-based central regions of the generated sample of infected pro-
portion curves16,17. We analyze two types of variance measures; the total (or overall) variance and the before 
steady state (or short-run) variance. The steady state is defined based on the point-wise median curve, which 
is smoother than each sampled curve. The infection proportion curve is characterized by a cyclical behavior 
around the steady state which provokes variability also in the long run. By using the first definition of variance, 
the total/overall variance, we do not distinguish between variance before or after reaching a steady state which 
implies that, in the overall variance, the time when the process reaches the steady state is a main component of 
the measure. In general, those processes that reach the steady state later will have a higher variance. The second 
measure of variability we propose, the before steady state variance, aims to consider the uncertainty of the pro-
cess/contagion curve before reaching the steady state, regardless of how long it takes to reach to it, since we are 
normalizing by this length. Therefore, these two concepts of variability are complementary and jointly provide 
a more complete information.

We show that the transition from the zero-diffusion to positive (and large)-diffusion regimes occurs abruptly 
at what has been called the epidemic threshold5,13,18, and that this threshold crucially depends on the combina-
tion of the contagion rate and the density of the network, but it is generally independent of the structure of the 
network. Moreover, maximum variability is attained precisely at the epidemic threshold, where the process takes 
longer time to converge to the endemic state. The overall variance is larger at the threshold than the short-run 
variance, whereas the opposite is true as the parameters are set further away from the threshold. Finally, the effect 
of the network randomness is mild (as already mentioned), but we do find that for the lattice or small-world 
networks the time of convergence to the endemic state is significantly larger than for other network structures 
(but this does not seem to have important consequences on the other measures analyzed).

Methodological approach
The SIS model and small‑world networks.  The SIS model is typically used to formalize the diffusion 
of infections that do not confer any long-lasting immunity and thus, upon recovery, individuals become suscep-
tible again (such as the common cold and influenza). There are other related models that can also be conceived 
for describing social phenomena such as diffusion of innovations, cultural fads, or economic conventions that 
share the logic of contagion2,19–21. The SIR case (Susceptible-Infected-Recovered) is briefly analyzed in the Sup-
plementary Information.

Formally, in the SIS model a susceptible agent may become infected with a probability β when interacting 
with an infectious agent. Reversely, with a probability µ an infected agent can become susceptible again. For 
simplicity, we will assume a fixed value of µ and vary β . The key parameter is considered as � =

β
µ

 , denoted as 
the “contagion rate” which, when multiplied by the average number of contacts per unit of time coincides with 
the basic reproductive number (R0) , i.e., the average number of secondary infections caused by a primary case 
in the random network setting5,20. We assume that there is a small initial seed of agents that are spontaneously 
infected. The infected proportion of agents in the population at certain time t is a random function denoted as 
X(t). Given the recurrent transition from susceptible to infected and vice-versa, the identities of infected agents 
vary over time. Also, a realization of the random process, x(t), is not necessarily monotonic and its particular 
shape depends on the parameters of the contagion process and on the realization.

The SIS model is applied to small-world networks14. To generate the networks we create a ring over S nodes 
in which each node is connected with its k nearest neighbors (or k - 1 neighbors if k is odd). Each existing link is 
randomly rewired with a probability rp , which tunes the nature of the network between that of a unidimensional 
lattice if rp = 0 and that of a random network if rp = 1. For small, but positive, values of rp (as i.e., rp = 0.01 ) we 
obtain networks satisfying the small-world properties, i.e., high clustering and short average path lengths. A 
given network will be characterized by its average density (i.e., k) and randomness (i.e., rp ) as illustrated in the 
inset of Fig. 1.

Functional data‑based analysis of the contagion process.  The SIS model on a fixed network deter-
mines a Markov process in which the state of the system at a given time is the profile of nodes that are infected 
versus those that are susceptible. Due to its stochastic nature, multiple realizations of the process generate dif-
ferent infected proportion curves. Figure 1 shows a sample of 40 infected proportion curves from independent 
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draws of the SIS contagion process with � = 1 , and 5 clustered initially infected nodes (see the graph in the inset 
of Fig. 1).

Steady state point and value.  Given a contagion process determined by (k, rp ) and � , let X be a random func-
tion, as defined before, where X(t) is the infected proportion of individuals at time t, with t ∈ [0,T] , T being the 
maximum time considered and X(t) ∈ [0, 1] . Let x1, x2, . . . , xn be a sample of n independent realizations from 
the random function X, i.e., a sample of infected proportion curves. We denote as M(t) the point-wise median 
curve, that is,

The “steady state point” (SSP), denoted by t∗ , is the time period where M(t) starts converging to an equilibrium 
and slightly fluctuates around this value, i.e., when the point-wise median reaches “approximately” a stationary 
state. In fact, the SSP is interpreted as the moment in time that separates the short-run versus long-run of the 
process and we calculate it by taking the first derivative of the point-wise median curve (numerical difference 
approximation) and smoothing it using a moving average approach. This is illustrated in Fig. S1 in the Supple-
mentary Information. The SSP is defined as the point in time for which such estimated derivative function is 
close to zero, e.g., reaches a value lower than a predefined small threshold, from such point on-wards. Figure 1 
illustrates the corresponding point-wise median given a sample of infected proportion curves and its SSP. The 
“steady state value” (SSV), denoted by x∗ , is computed as the average of the values taken by M(t) after the steady 
state point is reached (see x∗ in Fig. 1). In the simulation study the maximum time T is set high enough so that 
t∗ is always smaller than T. Formally,

As shown in Fig. 1 the curves in the sample fluctuate around the steady state value SSV, defined based on the 
point-wise median. This is the long-run (or after steady state) variance inherent in the finite version of the SIS 
model. This type of variance, which becomes smaller as the size of the network becomes larger, is quite different 
to the one we want to focus on in the paper. This leads to two definitions of variance, introduced in the next 
section, both of them based on the idea of functional data depth.

A novel depth‑based measure of variance.  There are many different ways of measuring the dispersion or vari-
ability in a sample of curves. We calculate the variability of a sample of curves in a robust and non-parametric 

M(t) = median (x1(t), x2(t), . . . , xn(t)).

SSV ≡ x∗ =

∫

t∗<t<T M(t) dt

T − t∗
.

Figure 1.   A sample of infected proportion curves. The graph illustrates n = 40 infected proportion curves 
simulated given a small-world network and the SIS model with � = 1 . The corresponding network (inset) is 
formed by S = 50 nodes, density k = 4 , randomness rp = 0.5 , and five concentrated initially infected nodes 
(colored in green). The point-wise median is represented, as well as the estimated steady state point t∗ and steady 
state value x∗.
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fashion by using the notion of functional data depth. The idea of data depth was originally proposed to rank 
multivariate observations from center outward22–24 and it was later extended to functional data. It is a power-
ful exploratory tool for analyzing the distribution of samples of curves16,25,26. Functional data depth provides a 
rigorous way of ranking functions in terms of their representativeness/centrality with respect to the sample and 
of defining non-parametric and robust functional statistics. The higher the depth of a function within a sample 
the most representative/central it is, in contrast, low depth implies that the observation is in the outer-skirt of 
the sample distribution and it is a potential outlier. We use the “modified band depth” (MBD) concept, one of the 
first definitions of functional depth proposed in the literature, which is based on the regions/bands created by all 
possible pairs of curves in the sample16.

Let x1, . . . , xn be a sample of curves that are independent realizations of the random function X defined on 
the interval [0, T] and taking real values in the interval [0, 1]. The (sample) MBD of a function x with respect to 
the sample x1, . . . , xn , is defined as follows:

where

and � is the Lebesgue measure on the real line normalized by T. Hence, MBD(x) measures the proportion of 
time the function x is in the band determined by xi1 , xi2 , averaged over all possible bands defined by pairs of 
functions from the sample. Note that there is a population version of this sample depth that we do not use in 
this paper16, so we have avoided a notation distinguishing between the population and sample depths, i.e., MBD 
verse MBDn , as we are always considering the later.

In Fig. 2 we illustrate how to calculate MBD of a sample of infected proportion curves (left graph) by repre-
senting the band generated by two random curves from the sample and the proportion of time that a third curve 
from the sample, say x (bold green), is inside the band (as illustrated in the middle graph). MBD(x) considers this 
“in band time proportion” of x, averaged over all possible pairs of curves from the sample and it assigns to the 
curve x a number between zero and one. The higher this number the more representative the curve x is within 
the sample. MBD then generates a reasonable and rigorous ranking for the sample of curves from the deepest or 
more central curve to the least deep or extreme one16. Based on the MBD values one can define robust location 
estimators, such as the median or trimmed mean functions. For example, the median curve is defined as the 
curve from the sample with highest MBD value and the 0.50-trimmed mean is the average of the 50% deepest 
curves from the sample.

The MBD ranking can also be used for measuring the variance or dispersion of a sample of curves in a robust 
and non-parametric way. In particular, the “area of the p central region” ( ACRp ) defined formally below deter-
mines the variance of a sample of curves as the area of the region encompassed exclusively by the proportion 

MBD(x) =

(

n
2

)−1
∑

1≤i1<i2≤n

�{B(x; xi1 , xi2)},

B(x; xi1 , xi2) = {t ∈ [0,T] : min
r=i1,i2

xr(t) ≤ x(t) ≤ max
r=i1,i2

xr(t)},

Figure 2.   Left. Sample of curves. Middle. Visualization of how the modified band depth is calculated for the 
bold curve as the proportion of time such curve is in the band determined by two curves from the sample; the 
average of these proportions over all possible pairs of curves from the sample is the modified band depth. Right. 
Blue gradient representing the regions determined by the 25%, 50%, 75% and 100% deepest curves in the sample 
based on the modified band depth (MBD). See text for details.
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p of deepest curves from the sample, where p ∈ [0, 1] . This idea of measuring dispersion based on data depth 
rankings was first introduced for multivariate data27 and later extended to functional data16,28.

More concretely, ACRp based on MBD is defined as:

where x[1], . . . , x[n] are the center-outward ranked curves, with x[1] being the deepest (most central or median) 
curve, x[n] being the most outlying curve, and ⌈n · p⌉ rounding up to the nearest integer. The advantage of this 
measure of variance is that it is intuitive, non-parametric, easy to calculate, and robust, as it neglects the pos-
sible outliers in the sample. It is straightforward to show that these areas are nested, that is, if p ≤ p̃ then 
ACRp ≤ ACRp̃ . Also, ACR0.50 is the area of the central region/band determined by the 50% deepest curves from 
the sample and it can be seen as an extension of the standard univariate Interquartile Range (IQR) concept to 
functional data16. This notion of variance out-performs alternative definitions of dispersion for functional data, 
especially in the presence of outliers28.

On the other hand, an issue with the standard ACR0.50 concept is that considering the 50% deepest curves (or 
p=0.50) instead of the 75% or 25% is quite arbitrary. Moreover, by concentrating only on the deepest subset of 
curves part of the information obtained in the sample and its ranking is lost. We thus propose a novel measure of 
variance that weights the more central curves more than the less central ones, while still including all curves in 
the sample. A natural way to formalize this idea is to consider a “weighted average” of ACRp for different values of 
p. Precisely, given the distribution of MBD values obtained from the sample, the q-quantiles divide such sample 
in q groups of same frequency, according to MBD (i.e., tertiles if q=3, quartiles if q=4, and so on, and so forth). 
We define the “q-weighted average of the central region area” ( WACRq ) as follows:

where

and MBD[1] · · ·MBD[n], represent the MBD values of the sample curves, from the deepest to the least deepest one. 
In other words, MBD[i] = MBD(x[i]) for i = 1, . . . , n . Note that q represents the numbers of groups we divide 
the sample in, and is set to be a whole number between 1 and n. For example, given q greater than one, then, if 
p = 2/q in the definition of WACRq the term ACRp is weighted by αp,q which corresponds with the sum of the 
MBD indexes of all curves in the second q-quantile divided by the sum of all MBD indexes. Since the MBD are 
ordered from highest to lowest, the second q-quantile corresponds to the second group of curves with highest 
depths. Also, by definition, these weights, αp,q , add up to one. Note that the dispersion of the deepest curves will 
be overweighted in the final WACRq dispersion value, but all curves in the sample are considered. In the case 
of q = 1 , WACR1 is just the normalized area determined by the whole sample of curves. Following the notation 
introduced above, let us also define the “relative MBD” of the curve x[i] for i = 1, . . . , n as

which are indexes defined in the interval [0,1], decreasing with respect to i and that add up to 1. Some basic 
properties of WACRq are established below:

Proposition 1  The WACRq measure satisfies the following simple properties:

(i) WACRq ∈ [0, 1] for any q ∈ {1, 2, ..., n}.

(ii) WACRq ≤ WACR1 for any q ∈ {1, 2, ..., n}.

(iii) Given two samples of curves x̃ = {x1, . . . , xn} and ỹ = {y1, . . . , yn} satisfying the following conditions:

(a) 
∑k

i=1 RMBDỹ
[i] ≤

∑k
i=1 RMBDx̃

[i] for any k ∈ {1, 2, ..., n} , and

(b) ACRp(x̃) ≤ ACRp(ỹ) for all p ∈ [0, 1],

then for any q ∈ {1, 2, ..., n}

ACRp =

∫ T
0
(maxj=1,...⌈n·p⌉ x[j](t)−minj=1,...⌈n·p⌉ x[j](t)) dt

T
,

WACRq =
∑

p∈{ 1q ,
2
q ,...,

q−1

q ,1}

αp,q · ACRp,

αp,q =

⌈n·p⌉
∑

i=⌈n·(p−(1/q))+1⌉

MBD[i]

n
∑

i=1

MBD[i]

,

RMBD[i] =
MBD[i]
n

∑

j=1

MBD[j]

,
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where RMBDz̃
[i] , ACRp(z̃) and WACRq(z̃) are interpreted as the corresponding measures evaluated for any given 

sample z̃.

The proof of this proposition is the following: Property (i) indicates that our measure of unpredictability (or 
variance) is a positive number between 0 and 1 which is a straightforward consequence of ACRp ∈ [0, 1] , 
∑

p∈{ 1q ,
2
q ,...,

q−1

q ,1}
αp,q =1 and αp,q ∈ [0, 1] for all p ∈ [0, 1] and q ∈ {1, 2, . . . , n} . Property (ii) holds as a conse-

quence of ACRp ≤ WACR1=ACR1 for all p ∈ [0, 1] by the monotonicity of ACRp in p and the fact that WACRq 
is (by definition) a weighted average of q values of ACRp . Nonetheless, this does not imply that the values WACRq 
are decreasing with respect to q. In fact, there are many parameter specifications for which we observe that 
although WACRq has a decreasing trend it is indeed non-monotonic (see Fig. S2). Finally, property (iii) provides 
a sufficient condition for ordering two sample of infected proportion curves in terms of our proposed measure 
of variance ( WACRq ). The proof of this property is considerably more challenging. First, let us show that if, for 
any given sample z̃ , we view αz̃

p,q as a probability distribution with respect to p, then it is the case that, given 
condition (a), αỹ

p,q first order stochastic dominates αx̃
p,q . This is due to the fact that for any k ∈ {1, 2, . . . , q}

and thus, following condition (a),

which indeed shows that αỹ
p,q first order stochastic dominates αx̃

p,q . Since, by definition, ACRp is an increasing 
function of p then, using a property of first order stochastic dominance, it holds that:

To complete the proof note that, given condition (b), it is true that:

which in turn implies that,

and this completes the proof.
The value given by WACRq can be interpreted as the total or overall variance of the process defined over an 

exogenous and large time interval T. This value combines the short-run and long-run variance. The short-run 
variance evaluates the process in the run-up to the steady state, whereas the long-run variance measures the 
variance at the point-wise median’s steady state. A disadvantage of the total variance measure defined above is 
that it depends on T and the larger the T, the more weight is given to the variance in the long-run. However, in 
many real processes external interventions modify the properties of the network or contagion rate before the 
long-run is even reached and thus, the behavior in the long-run is not often materialized. For these reasons, we 
also consider an alternative measure of variance which builds on the definition of WACRq but truncates it at 
the time period t∗ . This short-run variance will be referred to as the “q-before weighted average of the central 
region” ( BWACRq ) and equals:

where the “before average central region” for any given p ∈ [0, 1] is defined as

It is straightforward to see that Proposition 1 also holds for BWACRq.
In the simulation study presented in the next section time is discretized and thus, the integrals used to define 

SSV, ACRp and BACRp are substituted by sums. We analyze both the total and short-run variance concentrat-
ing on the case q = 4 . In other words, we assume the MBD values are divided into quartiles (four groups) from 
the highest to the lowest values and calculate WACR4 and BWACR4 , i.e., the weighted average of the p-central 
regions ACRp , or BACRp , respectively, for p ∈ {0.25, 0.5, 0.75, 1} . Figure 2 (right graph) represents, for a sample of 
curves and in a blue color gradient, the area of the nested central regions, where the darker the colour the deeper 

WACRq(x̃) ≤ WACRq(ỹ),

∑

p∈{ 1q ,
2
q ,...,

k
q }

αp,q =

k
∑

i=1

RMBD[i],

∑

p∈{ 1q ,
2
q ,...,

k
q }

αỹ
p,q ≤

∑

p∈{ 1q ,
2
q ,...,

k
q }

αx̃
p,q,

WACRq(x̃) ≡
∑

p∈{ 1q ,
2
q ,...,

q−1

q ,1}

αx̃
p,q · ACRp(x̃) ≤

∑

p∈{ 1q ,
2
q ,...,

q−1

q ,1}

αỹ
p,q · ACRp(x̃).

∑

p∈{ 1q ,
2
q ,...,

q−1

q ,1}

αỹ
p,q · ACRp(x̃) ≤

∑

p∈{ 1q ,
2
q ,...,

q−1

q ,1}

αỹ
p,q · ACRp(ỹ) ≡ WACRq(ỹ),

WACRq(x̃) ≤ WACRq(ỹ),

BWACRq =
∑

p∈{ 1q ,
2
q ,...,

q−1

q ,1}

αp,q · BACRp,

BACRp =

∫ t∗

0
(maxj=1,...⌈n·p⌉ x[j](t)−minj=1,...⌈n·p⌉ x[j](t)) dt

t∗
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the curves are. Recall that, for example, if p = 0.75 the value of ACR0.75 in the definition of WACR4 is weighted 
by the sum of the relative MBD indexes of the curves included in the third quartile of the MBD distribution. 
Therefore the extreme or outlier curves are under-weighted in the proposed measure of variance. For simplicity, 
in what follows we will use the notation WACR​ (BWACR​) for the measure of total variance (short-run variance) 
and avoid subscript 4.

Simulation results
The family of small-world networks considered for the simulations are formed by S = 1000 nodes, 10% of which 
are infected initially in a (randomly selected) “neighborhood” of the network. We consider a clustered (concen-
trated) seed because this is a reasonable assumption for many real-world examples of diffusion (e.g., the appear-
ance of a disease that mutates from an animal to a human virus in a certain location). In particular, a random 
node in the network is infected initially as well as its neighbors, neighbors of neighbors, etc, until 10% of these 
nodes are infected in the first period. We have also considered the case with a 1% initial seed. Most findings 
coincide for a smaller initial seed, although there are some differences that will be pointed out later in the text 
(see the Supplementary Information for details). The simulation study assumes average degrees k, ranging from 
4 to 14 (only pair values), rewiring probabilities rp , ranging from 0 to 1 and contagion rates � taking values from 
0.1 to 2.1. For every network created with parameters (k, rp ), a contagion rate � , and a fixed initial seed, we run 
100 repetitions of the SIS dynamics and derive a sample of infected proportion curves. We also set T = 9000 
which guarantees that the process reaches the steady state for all the parameter configurations considered. We 
summarize and visualize the results in a schematic way by representing, under the different parameter specifica-
tions considered, the SSP, SSV, WACR​ and BWACR​ measures as defined above.

The density of the network and the contagion rate.  We focus here on the joint effect on the diffusion 
process of the density of the network and the contagion rate (i.e., k and � ). The results are summarized in Fig. 3, 
where we show, through the intensity of the colours in a heatmap, how the SSP, SSV, WACR​ and BWACR​ values 
(first, second, third, and fourth rows, respectively) depend on k and � , for three levels of the rewiring probability 
such as rp=0.01, 0.5 and 1 (left, middle and right columns, respectively). The case rp=0.01 is of particular interest 
because it corresponds with a network structure satisfying the small-world network properties (high clustering 
and low average path lengths) which are common in real networks.

Comparison of the plots (left, middle and right) in every row indicates that the contagion patterns for the 
three network structures are quite similar, thus, the description of the findings can be done jointly. There are 
two clearly distinct regimes regarding diffusion; zero-diffusion and positive-diffusion (see the white versus red 
regions in the graphs represented in the second row of Fig. 3). The parameter configurations for which this, rather 
abrupt, transition occurs corresponds with the theoretical concept of an epidemic threshold of � , denoted by �∗ , 
a well-known phenomenon for the SIS model. In the simulations we will consider the epidemic threshold with 
respect to � as the first value of � for which SSV is positive (given k and rp ). Similarly we can define the epidemic 
threshold with respect to k as the first value of k for which SSV is positive (given � and rp ), and analogously with 
respect to rp , given the other two parameters. In some cases the concept of epidemic threshold does not apply. For 
example, for � sufficiently high (e.g., � above 0.6 in the graphs in the second row) there is positive diffusion for all 
values of k considered in the simulations, and therefore, the epidemic threshold with respect to k does not apply 
with our parameter specifications. Our main finding is that the variance (short-run and overall) of the contagion 
process is maximized at the epidemic threshold; it has an increasing trend below the threshold and a decreasing 
trend above it. This is true, largely because the time it takes to the steady state reaches its peak/maximum at this 
threshold, as illustrated in the first row of Fig. 3. However, note that the short-run variance (BWACR​), which is 
normalized by t∗ , is also higher at the epidemic threshold, although only slightly (see the fourth row in Fig. 3).

Moreover, the set of level curves for SSV as a function of k and � have a decreasing and convex pattern (i.e., a 
decreasing hyperbolic shape) which means that, apart from substitutes, there exist some degree of complemen-
tarity between the contagion rate and the density of the network regarding the diffusion levels. This implies that 
the combination of moderate network density with a moderate contagion rate enhance diffusion, in contrast to 
more extreme values of each parameter (as e.g., high value of k but low � , or vice-versa) and this pattern is true 
for all network structures considered. Note that SSP and the variability measures WACR​ and BWACR​ also have 
a similar pattern with level curves that have roughly a decreasing hyperbolic shape.

To analyze these findings in further detail, we focus on the contagion rate as the explanatory variable and 
illustrate, in Fig. 4, the steady state value as a function of � for a given network (in this case, k = 8 and rp=0.01), 
with increments of 0.1 in � . In the inset graph of Fig. 4 we show the simulated sample of 100 infected proportion 
curves for �∗=0.4, which is the epidemic threshold value of � in this setting. In Fig. 5 (left column) we extend 
the analysis by representing the measures SSP, SSV, WACR​ and BWACR​ as functions of � for the cases rp=0.01 
and k=4, 8, 12 and 14. We confirm that SSP, WACR​ and BWACR​ curves are maximized at the same value of � , 
which coincides with the epidemic threshold as shown in the SSV graphs. In Fig. 5 (right column) we perform 
an analogous study considering now the density of the network as the explanatory variable represented in the x 
axis. In particular, SSP, SSV, WACR​ and BACR​ are represented as functions of k for the cases rp=0.01 and �=0.3, 
0.5, 1 and 1.5. The general features coincide with the previous analysis. For instance, variance reaches a peak 
in the epidemic threshold, whenever such threshold exists (i.e., for �=0.3 and 0.5). We find, however, that SSP 
is not maximized at the epidemic threshold, but at a lower value of k for �=0.5. For the cases where there is no 
epidemic threshold since the SSV is always positive (for � =1 and 1.5), SSP and WACR​ tend to decrease with k, 
however SSV is stable or slightly increasing.
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The randomness of the network and the contagion rate.  The results shown in Fig. 3 suggest that 
the effects of the network randomness (or structure) on the contagion process are minor (by comparing first, 
second and third columns). To confirm this, we illustrate in Fig. 6 the joint effect on diffusion of the rewiring 
probability ( rp ) and the contagion rate ( � ), and compute the measures SSP, SSV, WACR​ and BWACR​ as before. 
We test the process at three different levels of k such as k = 4 , k = 8 and k = 12 (left, middle, and right columns, 
respectively, in Fig. 6). It is well-known that as rp increases, clustering decreases in the network and so does the 
average path length, although the average degree (or density) of the network remains constant14. Moreover, the 
degree distribution becomes more heterogeneous, converging to a Poisson distribution for the random network 
case (i.e., rp=1) when the size of the network is sufficiently large29. We find that the effects of rp on the four 
measures analyzed (i.e., SSP, SSV, WACR​ and BWACR​) are mild, (especially compared to � ’s and k’s effects). In 
order to formalize this idea, recall that the epidemic threshold with respect to rp is defined as the first value of rp 
for which SSV is positive (given � and k), thus, separating the zero-diffusion regime from the positive-diffusion 
regime. As observed in Fig. 6 (second row), this threshold rarely exists as diffusion is positive or not, usually 
independently of rp . In other words, rp typically plays no significant role on diffusion. For instance, in the first 
column, second row of Fig. 6 we observe that there exists an epidemic threshold with respect to rp only for the 
cases �=0.4 and 0.5. For values of � ≤ 0.3 there is zero diffusion regardless of rp , whereas if � ≥ 0.6 there is posi-
tive diffusion for every value of rp . Moreover, the actual value of SSV (and not only whether it is positive or not) 
does not seem to depend much on rp neither. We do find that for a wide range of values of � and small density 

Figure 3.   Heatmaps of the steady state values and unpredictability. SSP, SSV, WACR​ and BWACR​ values 
(top, middle and bottom rows, respectively) as a function of � and k at three levels of rp (left, middle and 
right columns, respectively). The darker the colour the higher the values. The SSP values are represented in 
logarithmic scale.
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networks (e.g., k=4 or k=8) the time of convergence to the steady state decreases with network randomness, 
but this effect disappears once rp is sufficiently high. This effect might be a consequence of the degree distribu-
tion becoming more heterogeneous as rp increases, which is known to enhance diffusion in the SIS model (for 
purely random networks)13. Also, the uncertainty of the process does not seem to depend much on rp and it has 
a somewhat irregular behavior in the short-run. To properly discuss these findings we represent the measures 
SSP, SSV, WACR​ and BWACR​ as functions of rp for different selected values of k and � (see Fig. 7). We confirm 
that the effect of rp is minor. For instance, in the case of “high” density (second and third columns of Fig. 7), SSV 
is always positive and roughly constant with respect to rp for all values of � considered. The time of convergence 
is decreasing with respect to rp for small values of rp and constant otherwise. Furthermore, the short-run variance 
has a slightly decreasing trend, whereas the overall variance is approximately constant. For the case of a small 
density network (first column of Fig. 7 for which k = 4), and regarding SSP and WACR​, for a low value of � (i.e., � 
= 0.3), the trend is increasing, but for higher values of � (i.e., � = 0.5, 1 or 1.5) the trend is decreasing. The reason 
being that if � is low, there is some diffusion only when the network is sufficiently random, which is when some 
uncertainty might arise, since, otherwise, the disease simply disappears soon. If � is higher, diffusion takes place 
for all network structures considered, but it appears that it does so in a more irregular and uncertain fashion in 
the regular network case than in the random network case, although the magnitude of the effect is minor. To 
summarize, the structure of the network, given its density, has only minor effects on the uncertainty properties 
of the contagion process.

Further results.  Changes in the seed.  In this section we analyze the robustness of our results regarding 
the choice of the initial seed. A disease or idea typically originates in a small cluster of agents which is why we 
replicated the analysis but with a 1% cluster of initial infected agents, instead of a 10% (see Figs. S3–S6 in the 
Supplementary Information). From a theoretical point of view, we expect the endemic state (SSV) to be the same 
regardless of the size of the initial seed, at least for random networks, something which indeed holds (compare 
the third columns and second rows of Fig. 3 and Fig. S3). For some other network structures this might not be 
true. For example, for the case of rp = 0.01, k = 4 and � = 0.06 there is an endemic state with positive diffusion 
for the 10% initial seed, whereas there is no diffusion for the 1% seed (compare first columns and second rows of 
Fig. 3 and Fig. S3). Nevertheless, these misalignments with respect to the endemic state are the exception, since 
the endemic state, in general, coincides in both settings. The most significant difference between the two situa-
tions is the erratic behaviour of the total variance (WACR​) for relatively high values of k and � (see the third row 
of Fig. S3 and the third row, first column of Fig. S4). This finding is quite puzzling and not well understood. One 
possible explanation is that in a small seed case the sensibility to the particular location of the initial seed gener-
ates such distinct results for quite similar settings. We also note that the difference is mostly driven by changes in 
the long-run variance which plays a role only for the overall variance (WACR​). This might be because, depending 
on whether or not the cyclical behavior of the curves in the long-run are synchronized, the total variance might 
change drastically from low to high values. It seems that in the 1% seed case the time each curve in the sample 

Figure 4.   Representation of SSV as a function of � in the case k=8 and rp=0.01. The value �∗ corresponds with 
the epidemic threshold and the situation of maximum uncertainty (regarding WACR​ and BWACR​). The sample 
of proportion infected curves at �∗ is shown in the inset of the figure.
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reaches the endemic state might vary more than in the 10% case, which, in turn, leads to more asynchronous 
behavior in some cases and less in others. We find that, alike in the 10% case, the network structure plays little 
or no role on the measures studied.

The susceptible‑infected‑recovered model.  The Susceptible-Infected-Recovered (SIR) model differs from the SIS 
model in that infected individuals do not enter the susceptible state again but, instead, with a certain probability 
they recover and are immunized from then on. That is, recovery confers lasting resistance and once you recover 
this is an absorbing state. This process converges always to a situation in which the whole population is non-
infected (either recovered or susceptible). The focus here is to analyze the diffusion peak and the time it takes to 
reach such peak, considering again the point-wise median as the reference curve, given a sample of simulated 
infected proportion curves from different parameter/model settings. In this case, the short-run variance meas-
ures the variance of the sample curves only until the diffusion peak is attained, using the same depth-based 
central region definition (BWACR​) as with the SIS model. The overall (or total) variance, however, evaluates 
the variance throughout the whole time range (WACR​). Preliminary results from this model suggest that there 
are some important differences with the SIS model. For instance, structured networks (i.e. the lattice or even 

Figure 5.   Left column. Representation of SSP, SSV, WACR​ and BWACR​ as a function of � for k=4, 8, 12, and 14, 
and rp=0.01. Right column. Representation of SSP, SSV, WACR​ and BWACR​ as a function of k for �=0.3, 0.5, 1, 
and 1.5, and rp=0.01.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15522  | https://doi.org/10.1038/s41598-023-42041-0

www.nature.com/scientificreports/

small-world networks) would lead to little diffusion when the network has low density, and this is is true even 
for large contagion rates. The reason is that as infected individuals recover they create wholes in the network and 
disconnect it as the disease can no longer go through these nodes. This effect is stronger in structured networks 
than in random ones, in particular, if the network has low density. Also notice that the total variance is always 
lower than the short-run variance, a consequence of the fact that in the steady state there is indeed no variance at 
all since all curves reach the zero-diffusion state (see Figs. S7 and S8). Additional description about the settings 
of these simulations and the results are included in the Supplementary Information.

Discussion
In this paper we study the unpredictability of a contagion process by means of a functional data-based analysis 
and simulations. The classical epidemiological literature has concentrated on determining under which condi-
tions there is positive prevalence of contagion in the long-run state for random networks13 and more recently, also 
for small-world networks30. Pair approximations have been applied to refine mean-field dynamics in the context 
of structured networks31, 32. There are two main directions in which our paper contributes to this literature. First, 
by considering the whole infection curve we study the process in the short-run and not just in the long-run. We 
believe that focusing on the complete time course of the contagion process is important since early interventions 
on a potential epidemics are not only critical for preventing it, but they also might significantly affect the net-
work structure and the contagiousness of the disease (e.g., through confinement policies and the enforcement of 
masks use). Therefore, the “theoretical” long-run might never be actually reached for the initial set of parameters. 
Second, unlike standard approaches in the literature, we analyze the properties of multiple realizations of the 

Figure 6.   Heatmaps of the steady state and unpredictability. SSP, SSV, WACR​ and BWACR​ values (top, middle 
and bottom rows, respectively) as a function of � and  rp at three levels of k (left, middle and right columns, 
respectively). The darker the colour the higher the values. The SSP values are represented in logarithmic scale.
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contagion process which allows us to deduce how much relevant information is missing when focusing on the 
“representative” average behavior. There is some recent interest in extending standard epidemiological models 
to account for stochastic outcomes and variance but this is mostly developed for random networks8–10. We con-
tribute to this literature by providing an alternative and flexible approach based on simulations and functional 
data analysis that can easily be applied to any contagion process.

Our analysis of the SIS model on small-world networks has led to novel results. First, we have observed some 
degree of complementarity between the contagion rate and network density. In other words, intermediate values 
of the contagion rate and density lead to more diffusion than unbalanced situations (i.e., high contagion rates 
but low density, or viceversa). Second, given the density of the network, the variance (or unpredictability) of 
the process increases rapidly with the contagion rate, reaches its maximum value at the epidemic threshold and 
then decreases at a lower pace. Also, although the structure of the network (structured versus random) does 
not seem to play a strong role on any of the studied variables, we do find some regularities. For instance, in the 
positive diffusion regimes it is always the case that the convergence time is highest in the lattice and decreases 
as the randomness of the network increases. In the zero-diffusion regime the opposite holds. A similar finding 
occurs for the overall variance, which relies strongly on the time of convergence to the steady state, but not for 
the short-run variance that is even less sensitive to network structure.

Both the SIS and SIR models have in common that the probability of becoming infected depends exclusively 
on the number of infected neighbors at a certain time and not on the neighborhood’s size, i.e., susceptible agents 
do not influence against infection. There are other models of contagion in contexts of opinion formation and 

Figure 7.   Uncertainty and network randomness. SSP, SSV, WACR​ and BWACR​ values as a function of rp given 
four values of � and k = 4, 8 and 12 (left, middle and right columns, respectively).
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social persuasion for which the probability of becoming an adopter depends on the relative number of adopters 
instead. These models were originally studied in the context of global interactions33 and later on in random 
networks34 as well as small-world networks35. In addition, the network structure can be extended to account for 
more realistic features such as homophily18,36. Our study, therefore, can be considered as a starting point, and 
investigating more sophisticated processes would be a natural and promising way of proceeding with this line 
of research.

Our methodology allows for the prediction of the most common patterns of diffusion through simulations, by 
determining the most central or representative infection curves according to the modified band depth definition, 
where the deepest curve would be considered as the median. Moreover, it allows ranking the sample of gener-
ated curves from center-outward and defining non-parametric and robust measures of variability or uncertainty. 
From an empirical perspective, other applications of this functional data approach could be considered. For 
instance, there is an extensive literature on robust classification depth-based methods for functional data37–39 
that could be used to infer unidentified information of the contagion process. For example, assume that the 
contagion rate ( � ) of a new infectious disease (or of a new product) is unknown, although there is information 
on the network structure and the contagion curve (number of cases over time) is observed. The most plausible 
contagion rate (among a set of potential ones) can be inferred by calculating the model that provides a sample 
of curves for which the observed one is deepest and, therefore, more likely to come from. A similar argument 
would apply to infer the properties of the network structure through which the infectious disease is spreading 
given the observed infection curves. We believe that the functional approach described here has potential for 
various fruitful applications by combining empirical findings with simulation studies, that will allow us to better 
understand the properties of contagion processes.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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