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Deterministic‑stochastic analysis 
of fractional differential equations 
malnutrition model with random 
perturbations and crossover effects
Yu‑Ming Chu 1, Saima Rashid 2,3*, Shazia Karim 4, Aasma Khalid 5 & S. K. Elagan 6

To boost the handful of nutrient-dense individuals in the societal structure, adequate health care 
documentation and comprehension are permitted. This will strengthen and optimize the well-being 
of the community, particularly the girls and women of the community that are welcoming the new 
generation. In this article, we extensively explored a deterministic-stochastic malnutrition model 
involving nonlinear perturbation via piecewise fractional operators techniques. This novel concept 
leads us to analyze and predict the process from the beginning to the end of the well-being growth, as 
it offers the possibility to observe many behaviors from cross over to stochastic processes. Moreover, 
the piecewise differential operators, which can be constructed with operators such as classical, 
Caputo, Caputo-Fabrizio, Atangana-Baleanu and stochastic derivative. The threshold parameter is 
developed and the role of malnutrition in society is examined. Through a rigorous analysis, we first 
demonstrated that the stochastic model’s solution is positive and global. Then, using appropriate 
stochastic Lyapunov candidates, we examined whether the stochastic system acknowledges a unique 
ergodic stationary distribution. The objective of this investigation is to design a nutritional deficiency 
in pregnant women using a piecewise fractional differential equation scheme. We examined multiple 
options and outlined numerical methods of coping with problems. To exemplify the effectiveness of 
the suggested concept, graphical conclusions, including chaotic and random perturbation patterns, 
are supplied. Consequently, fractional calculus’ innovative aspects provide more powerful and flexible 
layouts, enabling us to more effectively adapt to the system dynamics tendencies of real-world 
representations. This has opened new doors to readers in different disciplines and enabled them to 
capture different behaviors at different time intervals.

From conception to old age, diet has been a dominant problem in each process of biological progression. The 
performance of nourishment influences the lifestyle, especially the mental well-being of a pregnant woman1. 
When a lactating mothers are malnourished, the foetus in the womb faces numerous challenging situations from 
childhood to adulthood. The effectiveness of a pregnant woman’s medical coverage is critical to the well-being 
of the baby to be born2. However, nutritional supplementation or deficiency has an effect on the child’s weight. 
Birthweight is defined as a newborn infant weighing just under 2.5 kg. Infant mortality, economic growth, intel-
lectual advancement, head trauma, iron deficiency, low body weight and other symptoms that characterize this 
scenario3, 4.

Fetuses are often placed in contemporary ventures for a time frame and then survived. The performance of 
the life process is determined by the supplements absorbed by the expecting mothers throughout this phase. In 
underdeveloped nations, including the Sub-Saharan continent, the circumstances are even more severe; numer-
ous communities struggle to provide pregnant women with nutritious meals. So, several pregnant women are 
refused a balanced meal in certain parts of the country owing to religious and societal beliefs5–7.
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An underdeveloped infant is characterized by a newborn whose size is significantly less than what he or she 
should be at a certain age as a result of poor diet throughout pregnancy. Other contributing considerations to this 
scenario include genetics, food insecurity and unbalanced nutrition8. In fact, when a child reaches adolescence, 
hedgerows seem to become a critical concern9. A variety of therapies are available to help alleviate the symptoms 
of prepubescent hedgerows. For example, UNICEF aims to enhance the nourishment of juvenile girls as they are 
presumably pregnant women10. It has been identified that a female’s initial period of teenage advancement neces-
sitates additional power and vitamins, and UNICEF offers nutrient and folic probiotics via training throughout 
this phase of growth11, 12. The evolution is the foundation of humanity and necessitates investment in the supply 
of enough nutrient content to living creatures, especially pregnant women13, 14.

A wide range of research has now developed that mathematical modelling is an indispensable tool for ana-
lyzing socio-cultural issues and delivering cost-effective solutions. There are a number of computational forms 
on infection trends15, 16, whereas there is little documentation on the numerical techniques of an entire lifespan. 
All analyses on under-nutrition have emphasized local distinctiveness with no compelling rationalization. It is 
pertinent to mention that the community delineation has dropped beyond expectations due to the nonlocality 
consequences of mathematical structure. As a result, computational difficulties describing the nonlocality of 
scientific processes are necessitated. Among previous techniques, fractional calculus (FC) has the distinctive 
and exclusive property of documenting memory impact, which is also encountered in nearly all biochemical 
mechanisms.

The FC has played an important role in the simulation of bacterial infections17–24. To comprehend the efficacy 
of environmental factors, multiple fractional formulas have been used, such as Caputo25, Caputo-Fabrizio26, and 
Atangana-Balenau operator27. However, due to complexities of several real world problems, these classes of dif-
ferential equations have failed several times to replicate the observed facts. For example, several real world prob-
lems displaying some randomness that could not be captured by these differential equations, thus, the concept 
of stochastic differential equations have been suggested and used intensively in the last decades with some great 
successes. However, some problems did not follow randomness, instead they follow some trends of non-localities, 
including fading memory, long range dependence, memory effect, power law process, anomalous process, fractal 
processes, crossover behaviors meaning a physical problem displays multiple behaviors. To solve these issues, a 
range of differential operators were suggested, including fractal differential operators, fractional derivatives with 
singular kernels, fractional derivatives with non-singular kernels, fractal-fractional differential operators and 
differential operators with respect to other functions17–19. These differential operators have given birth to differ-
ent classes of ordinary and partial differential equations that have been used to solve many problems with great 
success. Nevertheless, the problem of crossover behaviors has not been clearly solved. In the case of fractional 
differential and integral operators, the behaviors of their kernels are analyzed, unlike the power law kernel, expo-
nential decay and the generalized Mittag-Leffler functions are found to exhibit crossover behaviors26, 27. A physical 
property that is observed in many real-world problems, including: biological modelling, diffusion, advection, 
flow of fluid in complex media and many others28–30. Nevertheless, although these crossover properties of the 
Mittag-Leffler function and the exponential function have been recognized as a powerful mathematical tool to 
depict real world problems, one should note that, only real world problem following the crossover properties of 
these two functions can be modeled with some limitations as in real-world problems; these two functions will 
not be able to establish the time at which the crossover took place. Indeed, real-world problems exhibit different 
processes that are presented by the generalized Mittag-Leffler function and exponential decay function cannot 
be replicated using the Caputo-Fabrizio and Atangana-Baleanu derivatives. For example, if a real-world problem 
presents first a power law process, then later a fading memory process, it is clear that neither the general Mittag-
Leffler or exponential decay functions will not be able to capture such behavior. In this paper, we will introduce 
different classes of differential and integral operators called piecewise derivatives and integrals. These operators 
will be used to deal with problems exhibiting crossover behaviors. For such methodologies, many appropriate 
analysis estimates for tackling various types of fractional differential equations were additionally developed17–19. 
Nonetheless, a few have made attempts to analyze such methodologies in an attempt to identify the most suc-
cessful one. Rashid and Jarad31 presented the qualitative analysis of a stochastic fractal-fractional Ebola epidemic 
model combining fear and environmental spreading mechanisms with a Mittag-Leffler kernel. Furthermore, 
the researchers32 expounded the global positive solutions of the dengue infection system pertaining to multi-
receptors using general kernels in the Atangana-Baleanu sense. Nosrati et al.33 presented the extended fractional 
singular Kalman filter using stochastic reasoning. Wei et al.34 contemplated an improved pseudo-state estimator 
for a class of commensurate fractional-order linear systems based on fractional modulating functions. Nosrati 
et al.35 expounded the optimal robust filter for uncertain fractional-order systems. This modern understanding, 
in contradiction to traditional fractional challenges, produces a different conception of nonlocal progression. 
Also, the performance of memory kernels is examined in the case of fractional derivative/integral formulations; 
in addition to the index-law kernel, exponential decay and the generalized Mittag-Leffler functions are revealed 
to illustrate crossover interactions. Atangana and Seda have successfully created new features widely recognized 
as piecewise differentiation and integration, where a contemporary interpretation is mentioned as a piecewise 
within a predefined duration36. This is a previously developed quantitative instrument for highlighting impor-
tant challenges with complex cross-over traits. The innovative breed of simulation37 will address a wide range 
of underlying problems. A schematic view has been indicated in a variety of real-world applications, such as 
medical application modelling, propagation, thermal conduction in artificial media, and numerous others38, 39.

As of now, the malnutrition model with nonlinear perturbations has received little consideration. The goal 
of this research is to create a new deterministic-stochastic mathematical model that will examine fresh insights 
into pregnant women’s malnutrition conditions via crossover behaviours. The concept of piecewise differential 
and integral operators is applied in the framework of fractional differential operators and stochastic schemes. It 
is reported that the generalized Mittag-Leffler kernel and exponential decay functions are able to depict some 
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crossover behaviours, but their abilities to achieve this may be limited due to the complexity of nature. In this 
implementation, we employ the broader identity of fractional differential equations with singular and nonsin-
gular kernels36. Furthermore, the deterministic and stochastic aspects of the model are discussed in a detailed 
manner. Ergodicity and stationary distribution analyses are carried out. Additionally, simulation analysis of the 
proposed model exhibits cross-over from deterministic to stochastic or vice versa. We noticed a very peculiar 
way of expansion exhibited by the malnutrition model, in which the distribution demonstrates an indication of 
determinism within a specific time period and then reveals a gesture of stochastic unpredictability. As a result, 
this truly innovative model has the capability to portray important features of the malnutrition mechanism 
throughout the entire life-cycle better than the classic techniques.

The following describes the article being presented. First, the important mathematical interpretations and 
representations are introduced. Then, in stochastic randomness, we display the mathematical description of the 
proposed model. Following that, we evaluate the suggested model’s global positive solutions. Furthermore, the 
ergodicity and stationary distribution (ESD) of the solution associated with the malnutrition system are dis-
cussed in “Qualitative aspects of proposed model” section. “Numerical simulation” section develops a numerical 
technique for solving the fractional model under deliberation. Eventually, we display our numerical outcomes 
and contrast them to those acquired using the piecewise fractional differential equations methodologies in 
“Results and discussion” section. In a nutshell, we explain the accumulated realities of our research results in 
our conclusion part.

Model and preliminaries
This portion describes a mathematical model of nutritional deficiencies in pregnant women. Figure 1 depicts the 
evolution of this concept. Table 1 contains all requirements and their understandings.

Malnourished pregnant women Sf  lead up to malnourished boys M̄b and girls M̄g . Boys and girls are 
undernourished as a result of vulnerable females at propagation rates �b and �g , respectively. Even before low-
weight newborns are not granted immediate healthcare treatment, they develop into underdeveloped kids at 
rates of γb and γg for both genders, respectively. The fundamental fatality rate is signified by ϑ , and the hand-
ful of underweight people is symbolized by Ū  . Furthermore, Nh determines the the entire community, where 
Nh = Sf + M̄b + M̄g + Ū . The respective complex differential equations framework illustrates malnutrition 
at various varying phases of an entire evolution40:

where ε indicates the progression of disease to a newly born community and B signifies the new female recruit-
ment rate. In (2.1), the other specifications δg , χb , χg depict the restoration proportion of malnutrition girls and 
the proportions of underweight newborns progressing to M̄b and M̄g , respectively. Because framework (2.1) 
is concerned with human population demographics, all specifications and system specifications are assumed to 

(2.1)























dSf
dζ = (B + ε)− (�bM̄b + �gM̄g + ϑ)Sf + δgM̄g ,
dM̄b
dζ = �bSfM̄b − (ϑb + γb + ϑ)M̄b + χbŪ ,

dM̄g

dζ = �gSfM̄g − (γg + δg + ϑ)M̄g + χgŪ ,
dŪb
dζ = γbM̄b + γgM̄g − (χb + χg + ϑ)Ū ,

Table 1.   Explanation of system’s feature.

Symbols Explanation Values

Sf Number  of  females  susceptible  to  nutrients 30

M̄b Number  of  poor  nutrient  boys 2

M̄g Number  of  poor  nutrient  girls 4

Ū Percentage of  underweight  individuals 1

B Generation  of  new  female 0.01 day−1

ε Vertical spread  to  a  new  born  community 0.001 day−1

�b Emaciated  boy’s  transfer  rate  from  vulnerable  female  cohort 0.1 day−1

�g Emaciated  girl’s  transfer  rate  from  vulnerable  female  cohort 0.2 day−1

ϑ Death  rate 0.1 day−1

ϑb Natural  restoration  rate 0.3 day−1

γb The  proportion  of  boys  who  progress  from  malnourishment  to  underweight 0.01  cell ml−1 day−1 person−1

γg The  proportion  of  girls  who  progress  from  malnourishment  to  underweight 0.1 day−1

χb Proportion  of  underweight  shifted  to M̄b 0.014 day−1

χg Proportion  of  underweight  shifted  to M̄g 0.01 day−1

ϑ1 Health  promoting  candidacy  evaluation  (per  day) [0,1]

ϑ2 Undernourished  girl’s  treatment  rate  (per  day) [0,1]

δg Undernourished  girl’s  recovery  rate 0.1 day−1
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be non-negative, respectively21, 40. The mathematical formulation provided by (2.1) has been investigated earlier 
in40 to explore the propagation of food insecurity and underweight participants in a community. This framework, 
even so, excludes the consequences of memory, which are present in several natural systems. When analyzing 
the existence of stochastic processes using the Has’minskii concept41, the challenges experienced include how to 
assemble a Lyapunov function and determining an appropriate subset such that the dispersion operator is nega-
tive beyond the subset. Encouraged by the monitoring and evaluation process, we contemplate the stochastic 
theory of underweight four-species cooperative frameworks in this article as follows:

where Wk(ζ ), k = 1, ..., 4 denotes the standard one-dimensional Brownian motion described on a complete 
filtered probability space {℧̃,P, {Pζ }ζ≥0,P} having a σ-filtration {Pζ }ζ≥0. Also, σk, k = 1, ..., 4 is the white 
noise intensity.

The framework is hypothesized all segmentation based this inquiry (2.1) is acknowledged as a complete 
probability space (℧̃,P, {Pζ }ζ>0,P) having a right continuous filtration {Pζ }ζ>0 and an {P0} constituted all 
the elements with criterion zero.

The stochastic DE in d-dimensions is presented below:

where u : Rd
× [ζ0,T] �→ Rd and q : Rd

× [ζ0,T] �→ Rd×m1 are Borel measurable having W = {W(ζ )}ζ≥ζ0 is 
an Rm1-valued Wiener process, and v0 is an Rd-valued random variable presented as �.

Therefore, C2,1(Rd
× [ζ0,∞);R+) is considered as the family of all non-negative functions V(v, ζ ) on 

Rd
× [ζ0,∞) that are continuously twice differentiable in v ∈ Rd and once in ζ ∈ [ζ0,∞) . The differential for-

mulation L for the stochastic DE (2.3) is given as

(2.2)















dSf (ζ ) =
�

(B + ε)− (�bM̄b + �gM̄g + ϑ)Sf + δgM̄g

�

+ σ1Sf (ζ )dW1(ζ ),

dM̄b(ζ ) =
�

�bSfM̄b − (ϑb + γb + ϑ)M̄b + χbŪ
�

+ σ2M̄b(ζ )dW2(ζ ),

dM̄g(ζ ) =
�

�gSfM̄g − (γg + δg + ϑ)M̄g + χgŪ
�

+ σ3M̄g(ζ )dW3(ζ ),

dŪ(ζ ) =
�

γbM̄b + γgM̄g − (χb + χg + ϑ)Ū
�

+ σ4Ū(ζ )dWr(ζ ),

(2.3)dv(ζ ) = u(v(ζ ), ζ )dζ + q(v(ζ ), ζ )dW(ζ ), v(ζ0) = v0, ∀ ζ0 ≤ ζ ≤ T < ∞,

Figure 1.   Flow diagram of malnutrition and underweight.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14824  | https://doi.org/10.1038/s41598-023-41861-4

www.nature.com/scientificreports/

Introducing the functional V ∈ C2,1(Rd
× [ζ0,∞), then

where Vζ :=
∂V
∂ζ

; Vs1 = (Vvς , ...,Vvd), Vvv = (Vvς ,Vvς )d×d.
For v(ζ ) ∈ Rd, then Itô’s method can be described as:

Here, we furnish the associated overview here to assist viewers who are familiar with FC (see;25–27).

Definition 2.1  (25) The Caputo fractional derivative of order � for a continuous function G is defined by

Our second notion is a fractional derivative without singular kernel introduced by Caputo and Fabrizio26.

Definition 2.2  (26) Let b1 > 0, u1 ∈ H1(a1, b1), and � ∈ (0, 1). The Caputo-Fabrizio derivative of order � for 
a function G is defined by

where M̄(�) = 2
2−�

 is stated to be normalized mapping with M̄(0) = M̄(1) = 1.

Definition 2.3  (27) Let b1 > 0, G ∈ H1(a1, b1), and � ∈ (0, 1). The ABC derivative of order � for a function 
G is defined by

where ABC(�) = 1−�+
�

Ŵ(�)
 is the normalization function satisfying ABC(0) = ABC(1) = 1 and E� repre-

sents the one-parameter Mittag-Leffler function.

Qualitative aspects of proposed model
Shah et  al.40 researched the global features of the nonlinear malnutrition model, explaining how boys 
and girls relocate from one cohort to another as described in (2.1). For the sake of simplicity, we denote 
X̄ = (Sf ,Mb,Mg ,U).

For framework (2.1), there is always a feasible region as follows:

Thus, the malnutrition steady state E0 =
(

B+ε
ϑ

, 0, 0, 0
)

.

Now, using the next-generation matrix approach42, compute the basic reproduction number R0 . The next-
generation matrix can be described as FV−1 , where F  and V are both Jacobian matrices of individuals in an 
experimental setting is presented as follows:

Therefore, the basic reproduction number R0 is the spectral radius of matrix FV−1 which is presented by

L =
∂

∂ζ
+

d
∑

ς=1

uς (v, ζ )
∂

∂vς
+

1

2

d
∑

i,ς=1

m1
∑

ℓ=1

qςℓ(v, ζ )qςℓ(v, ζ )
∂2

∂vς ∂vi
.

LV(v, ζ ) = Vζ (v, ζ )+ Vv(v, ζ )f(v, ζ )+
1

2

d
∑

i,ς=1

m1
∑

ℓ=1

qiℓ(v, ζ )gςℓ(v, ζ )Vvv(v, ζ ),

dV(v(ζ ), ζ ) = LV(v(ζ ), ζ )dζ + Vv(v(ζ ), ζ )q(v(ζ ), ζ )dW(ζ ).

CD�G(ζ ) =
1

Ŵ(n−�)

ζ
∫

0

G′(w)(ζ − w)n−�−1dw,
(

n =
[

�
]

+ 1
)

.

CFD�G(ζ ) =
(2−�)M̄(�)

2(1−�)

ζ
∫

0

G′(w) exp

[

−
�

1−�
(ζ − w)

]

dw, � ∈ (0, 1],

ABCD�
ζ G(ζ ) =

ABC(�)

1−�

ζ
∫

0

G′(w)E�

[

−
�

1−�
(ζ − w)�

]

dw, � ∈ (0, 1],

(3.1)� :=

{

X̄ = (Sf ,Mb,Mg ,U) ∈ R
4
+
: 0 ≤ X̄ ≤ N ≤

B + ε

ϑ

}

.

FE0 =









�b(B+ǫ)
ϑ

0 0 0

0
�g(B+ǫ)

ϑ
0 0

0 0 0 0
0 0 0 0









and VE0 =









γb + ϑb + ϑ 0 − χb 0
0 γg + ϑ + δg − χg 0

−γb − γg χb + χg + ϑ 0
�b
ϑ
(B + ǫ)

�g

ϑ
(B + ǫ)− δg 0 ϑ









.

R0 =
�g(B + ε)((ϑ + ϑb)(ϑ + χb + χg)+ γb(ϑ + χg))

ϑ(ϑ + ϑb)(ϑ(ϑ + γg + δg + χb + χg)+ χb(γg + δg)+ χgδg)
.
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Furthermore, the global behaviour of approach (2.1) is essentially depend on the fundamental reproduction 
number R0.

•	 If R0 ≤ 1 , then E0 =
(

B+ε
ϑ

, 0, 0, 0
)

 is globally asymptotically stable (GAS) in �.
•	 If R0 > 1 , then E1 =

(

Sf
∗

0,M̄
∗

b,M̄
∗

g , Ū
∗

)

 is GAS in �.

Stochastic analysis.  Initially, we formulate the respective underlying formalism in terms of a unique global 
non-negative stochastic system solution (2.2).

Theorem 3.1  Assume there is initial setting X̄(0) ∈ R4
+
, there exists a unique solution X̄(ζ ) ∈ R4

+
 of system (2.2) 

on ζ ≥ 0 and the outcome will stay in R4
+

 with unit probability.

Proof  It should be remarked that such framework (2.2) parameters are locally Lipschitz continuous, which means 
that for any specified initial settings (X̄(0)) ∈ R4

+
, there is a unique maximal solution X̄(ζ ) on ζ ∈ [0,φε), where 

φε is the explosion time. Assume that ℓ0 be sufficiently large such that X̄(0) lies in [1/ℓ0, ℓ0]. For every integer 
ℓ ≥ ℓ0, specify the stopping time

It is obvious that φℓ is increasing as ℓ  → ∞. We acquire φ∞ = lim
ℓ�→∞

φℓ, whenever φ∞ ≤ φε (a.s). To demonstrate 
a local global solution X̄(ζ ), we just require to confirm φ∞ = ∞ (a.s). Therefore, two positive constants values 
ε from (0, 1) and T must exist, such that

Consequently, the integer ℓ1 ≥ ℓ0 exists in the subsequent way

Introducing the non-negative C2-Lyapunov mapping as follows:

The inequality κ − 1− lnκ ≥ 0 for κ > 0 can be used to calculate V1 ’s positivity.
Utilizing the Itô’s technique43 to V1, we have

In (3.3), LV1 : R
4
+
�→ R+ is described as

Therefore, we have

inserting ℧̃ℓ = {φℓ ≤ T} for ℓ ≥ ℓ1 and utilizing (3.2), P(℧̃ℓ) ≥ ε . Observe that for every ω from ℧̃ℓ there exists 
at least one X̄(φℓ,ω) which yields 1

ℓ
or ℓ.

 Finally, V1

(

X̄(φℓ)
)

 is no less than 1
ℓ
− 1+ log ℓ or ℓ− 1− log ℓ. Thus

φℓ = inf
{

ζ ∈ [0,φε) : Sf (ζ ) �=

(1

ℓ
, ℓ
)

, M̄b(ζ ) �=

(1

ℓ
, ℓ
)

,M̄g(ζ ) �=

(1

ℓ
, ℓ
)

, Ū(ζ ) �=
(1

ℓ
, ℓ
)}

.

(3.2)P
{

T ≥ φ∞
}

> ε.

P
{

T ≥ φℓ
}

≥ ε, ∀ ℓ1 ≤ ℓ.

(3.3)
V1(X̄) =

(

Sf − 1− lnSf

)

+ (M̄b − 1− lnM̄b)+
(

M̄g − 1− lnM̄g

)

+ (Ū − 1− ln Ū).

dV1(X̄) = LV1(X̄)dζ + σ1(Sf − 1)dW1(ζ )+ σ2(M̄b − 1)dW2(ζ )

+ σ3(M̄g − 1)dW3(ζ )+ σ4(Ū − 1)dW4(ζ ),

LV1 =

(

1−
1

Sf

){

(B + ε)− (�bM̄b + �gM̄g + ϑ)Sf + δgM̄g

}

+

(

1−
1

M̄g

){

�gSfM̄g − (γg + δg + ϑ)M̄g + χgŪ

}

+

(

1−
1

M̄b

){

�bSfM̄b − (ϑb + γb + ϑ)M̄b + χbŪ

}

+

(

1−
1

Ū

){

γbM̄b + γgM̄g − (χb + χg + ϑ)Ū

}

+
σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4

2

≤ B + ε + γg + δg − ϑb − γb + χb + χg + ϑ +
σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4

2
=: K1.

U

[

V1

(

Sf (φℓ ∧ T)
)

,
(

M̄b(φℓ ∧ T)
)

,
(

M̄g(φℓ ∧ T)
)

,
(

Ū(φℓ ∧ T)
)

]

≤ V1(X̄(0))+ U

∫ φℓ∧T

0
Kdζ

≤ V1(X̄(0))+KT.
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In view of (3.2) and (3.4), we express

where I
℧̃(ω)

 is the indicator mapping of ℧̃ . Applying ℓ  → ∞ leads to the contradiction

which implies that φ∞ = ∞, (a.s) and this concludes the evidence. 	�  �

Existence of ergodic stationary distribution.  When an ailment arrives in a community and begins 
to grow rapidly, health authorities are notably interested in its protracted behaviour, which can be efficaciously 
dealt with mathematically by incorporating stability techniques. In terms of deterministic modelling techniques, 
it is possible to demonstrate that in specific settings, the accompanying framework has an endemic equilibrium 
that is globally asymptotically stable. However, there is no endemic equilibrium in stochastic structures such 
as model (2.1), making it difficult to predict when the disorder will persist in communities. Depending on 
Has’minskii’s41 concept, we aim to demonstrate in this portion that framework (2.1) has an ESD, indicating that 
the ailment will endure. If we assume that σ1 = σ2 = σ3 = σ4 = 0, we can conveniently procure a deterministic 
preview of scheme (2.1); nevertheless, the stochastic model is remarkably distinct from its corresponding deter-
ministic one. It is also understood that there is no endemic disorder state in the stochastic framework. As a result, 
the linear stability explanation cannot be used to investigate the disease’s perseverance. As a result, we focused on 
the envisaged system’s stationary distribution (2.2), which assumes that the concern will persist. Assume that the 
function X(ζ ) is a regular time-homogeneous Markov process Rn1

+ with the mathematical version

The diffusion matrix is as shown in:

Lemma 3.2  (41) Suppose there is a Markov technique X(ζ ) admits a unique stationary distribution π(.) if there 
is a bounded region Ū ∈ Rd having a regular boundary such that its closure Ū ∈ Rd has the subsequent criterion: 

(M1)	� The smallest eigenvalue of the diffusion matrix A(ζ ) is very close to zero in the open region Ū and some of 
its neighbours.

(M2)	� For κ ∈ RdŪ , the mean time it takes for a path emanating from κ to approach the set Ū  is finite, and 
sup

κ∈κ Eφκ < ∞ for each compact subset. Moreover, if f(.) is an integrable mapping with regard to the 
measure π(.), then 

Now let’s classify some other threshold significance for future needs:

Theorem 3.3  For Rs
0 > 1, then the model (2.2) X̄(ζ ) is ergodic. Moreover, there is a unique stationary distribution 

π(.).

Proof  First, we should indeed illustrate the design specifications M1 of Lemma 3.2 to validate the Theorem, we 
assert a positive C2-mapping H1 : R

4
+
�→ R+ in the frame of

The positive components must be determined later in this case. These specifications must be found out later on. 
To communicate directly with (3.11), we first should apply Itô’s approach to the design process (2.2) as

(3.4)V1

(

X̄(φℓ)
)

≥

(1

ℓ
− 1+ log ℓ

)

∧ U(ℓ− 1− log ℓ).

(3.5)
V1(X̄(0))+KT ≥U

{

I
℧̃(ω)

V1

(

X̄(φℓ)
)

}

≥ε

{(1

ℓ
− 1+ log ℓ

)

∧ U(ℓ− 1− log ℓ)
}

.

(3.6)∞ > V1(X̄(0))+KT = ∞,

(3.7)dX(ζ ) = b(X)dζ +

κ
∑

w=1

δwdWw(ζ ).

(3.8)A(X) = [ak (κ)], ak (κ) =

κ
∑

w=1

δkw(κ)δ

w(κ).

(3.9)P

{

lim
T  →∞

1

T

T
∫

0

f(Xκ(ζ ))dζ =

∫

Rd1

f(κ)π(dκ)
}

= 1.

(3.10)R
s
0 =

�g�b
(

�b + ϑ −
σ 2
1
2

)(

ϑb + γb −
σ 2
2
2

)(

γg + δg + ϑ −
σ 2
3
2

)

.

(3.11)H1 = Sf + M̄b + M̄g + Ū − ψ1 lnSf − ψ2 lnM̄b − ψ3 lnM̄g .
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As a result of this,

Further, we express

After plugging the values into the upcoming equation, produces

Now, we suppose that

where

Consequently, we have

Furthermore, one can achieve that

here, ψ4 > 0 is a fixed value that will be discovered later. It is critical to illustrate that

here Ūκ = ( 1
κ
, κ)× ( 1

κ
, κ)× ( 1

κ
, κ)× ( 1

κ
, κ). The following procedure will demonstrate that H2(X̄) has a least 

value H2(X̄(0)).
The partial derivative of H2(X̄) regarding to X̄ is as follows

(3.12)L(Sf + M̄b + M̄g + Ū) = (B + ε)− ϑN − ϑbM̄b.

(3.13)

L(− lnSf ) = −
B + ε

Sf
+ (�b + �gM̄g + ϑ)−

δgM̄g

Sf
−

σ 2
1

2
,

L(− lnM̄b) = −�bSf + (ϑb + γb + ϑ)M̄b −
χb

Ū
−

σ 2
2

2
,

L(− lnM̄g) = −�gSf + (γg + δg + ϑ)M̄g −
χg

Ū
−

σ 2
3

2
,

L(− ln Ū) = −
γbM̄b

Ū
−

γgM̄g

Ū
− (χb + χg + ϑ)−

σ 2
4

2
.

(3.14)L(H1) = L(Sf + M̄b + M̄g + Ū)− ψ1L(lnSf )− ψ2L(lnM̄b)− ψ3L(lnM̄g).

L(H1) = (B + ε)− ϑN − ϑbM̄b + ψ1
B + ε

Sf
− ψ1(�b + �gM̄g + ϑ)+ ψ1

δgM̄g

Sf
+ ψ1

σ 2
1

2
+ ψ2�bSf

− ψ2(ϑb + γb + ϑ)M̄b + ψ2
χb

Ū
+ ψ2

σ 2
2

2
+ ψ3�gSf − ψ3(γg + δg + ϑ)M̄g + ψ3

χg

Ū
+ ψ3

σ 2
3

2

≤ −4
(

ψ1
B + ε

Sf
ψ3�gSfψ2�b

)1/4
− ψ2(ϑb + γb)− ψ1(�b + ϑ)− ψ3(γg + δg + ϑ)+ (B + ε)

+ ψ1
δgM̄g

Sf
+ ψ2

(χb

Ū
− (ϑb + γb+ϑ )

)

+ ψ3

(χg

Ū
− (γg + δg + ϑ)

)

+ ψ1
σ 2
1

2
+ ψ2

σ 2
2

2
+ ψ3

σ 2
3

2

= −4
(

ψ1(B + ε)ψ3�gψ2�b

)1/4
− ψ2(ϑb + γb)− ψ1(�b + ϑ)− ψ3(γg + δg + ϑ)+ (B + ε)

+ ψ1
δgM̄g

Sf
+ ψ2

(χb

Ū
− (ϑb + γb+ϑ )

)

+ ψ3

(χg

Ū
− (γg + δg + ϑ)

)

+ ψ1
σ 2
1

2
+ ψ2

σ 2
2

2
+ ψ3

σ 2
3

2
.

B + ε = ψ1(�b + ϑ −
σ 2
1

2
) = ψ2(ϑb + γb −

σ 2
2

2
) = ψ3(γg + δg + ϑ −

σ 2
3

2
),

ψ1 =
B + ε

(

�b + ϑ −
σ 2
1
2

)

, ψ2 =
B + ε

(

ϑb + γb −
σ 2
2
2

)

, ψ3 =
B + ε

(

γg + δg + ϑ −
σ 2
3
2

)

.

(3.15)

L(H1) ≤ −4
( (B + ε)4�g�b
(

�b + ϑ −
σ 2
1
2

)(

ϑb + γb −
σ 2
2
2

)(

γg + δg + ϑ −
σ 2
3
2

)

− 4(B + ε)4
)1/4

+ ψ1
δgM̄g

Sf
+ ψ2

(χb

Ū
− (ϑb + γb+ϑ )

)

+ ψ3

(χg

Ū
− (γg + δg + ϑ)

)

≤ −4(B + ε)
[(

Rs
0

)1/4
− 1

]

+ ψ1
δgM̄g

Sf
.

H2 = ψ4(Sf + M̄b + M̄g + Ū − ψ1 lnSf − ψ2 lnM̄b − ψ3 lnM̄g)− lnSf − ln Ū − lnM̄g

+ Sf + M̄b + M̄g + Ū

= (ψ4 + 1)(Sf + M̄b + M̄g + Ū)− (ψ1ψ4 + 1) lnSf − ψ4ψ2 lnM̄b − ln Ū − ψ4ψ3 lnM̄g ,

lim inf
(X̄)∈R4

+\Ūκ

H2(X̄) = +∞, as κ �→ ∞,
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It is straightforward to show that H2 has a distinctive stagnation point, which seems ascertained by the afore-
mentioned computation:

Also, the Hessian matrix of H2

(

X̄
)

 at 
(

X̄(0)
)

 is presented by the following

The preceding link demonstrates unequivocally that B is a non-negative definite matrix. Thus, H2(X̄) has mini-
mum value (X̄(0)). Finally, Lemma 3.2 concludes and the continuity of H2(X̄) that it has a distinct lowest value 
of about (X̄(0)) in the interior of R4

+
. Further, we define a positive C2

: R4
+
�→ R+ as follow

The application of Itô’s strategy and the structure (2.2) will give us

or finally we can express

where ψ5 = 4(B + ε)
[

(Rs
0)

1/4
− 1

]

> 0.
The representation of a collection is supplied by

where εk, k = 1, 2 , are fixed which are extremely small and will have to be revealed afterward. The domain 
R4
+
\ Y is separated into ten zones, which are as follows:

(3.16)

∂H2(X̄)

∂Sf
= 1+ ψ4 −

1+ ψ1ψ4

Sf
,

∂H2(X̄)

∂M̄b

= 1+ ψ4 −
ψ2ψ4

M̄b

,

∂H2(X̄)

∂M̄g

= 1+ ψ4 −
ψ3ψ4

M̄g

,

∂H2(X̄)

∂Ū
= 1+ ψ4 −

1

Ū
.

(3.17)
(

X̄
)

=

(1+ ψ1ψ4

1+ C4
,
ψ2ψ4

1+ ψ4
,
ψ2ψ4

1+ ψ4
,

1

1+ ψ4

)

.

(3.18)B =















1+ψ1ψ4

S2
f

0 0 0

0 ψ2ψ4

M̄2
b

0 0

0 0 ψ3ψ4

M̄2
g

0

0 0 0 1
Ū2















.

(3.19)H1(X̄) = H2(X̄)−H2(X̄(0)).

(3.20)

LH1 ≤ ψ4

{

− 4(B + ε)
[

(Rs
0)

1/4
− 1

]

+ ψ1
δgM̄g

Sf

}

−
B + ε

Sf
+ (�b + �gM̄g + ϑ)−

δgM̄g

Sf
−

σ 2
1

2

− �bSf + (ϑb + γb + ϑ)M̄b −
χb

Ū
−

σ 2
2

2
− �gSf + (γg + δg + ϑ)M̄g −

χg

Ū
−

σ 2
3

2

−
γbM̄b

Ū
−

γgM̄g

Ū
− (χb + χg + ϑ)−

σ 2
4

2
,

(3.21)

LH1 ≤ −ψ4ψ5 + (ψ1ψ4 − 1)
δgM̄g

Sf
−

B + ε

Sf
+ (�b − χb − χg)

− (�b + �g)Sf + (ϑb + γb + ϑ)M̄b −
χb + χg

Ū
+ (γg + δg + ϑ + �g)M̄g

−
γbM̄b + γgM̄g

Ū
−

σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4

2
,

(3.22)Y =
{

Sf ∈
[

ε1,
1

ε2

]

,M̄b ∈
[

ε1,
1

ε2

]

,M̄g ∈
[

ε1,
1

ε2

]

, Ū ∈
[

ε1,
1

ε2

]

}

,
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Clearly, R4
+
\ Y =

⋃8
k=1 Yk, k = 1, ..., 8. Finally, we will investigate H1(X̄) for each X̄ ∈ R4

+
\ Y . As a result of 

(3.21), it is not difficult to figure out that

Case I. If X̄ ∈ Y1, then by (3.21), we have

Case II. If X̄ ∈ Y2, then by (3.21), we have

Case III. If X̄ ∈ Y3, then by (3.21), we have

Case IV. If X̄ ∈ Y4, then by (3.21), we have

(3.23)

Y1 =

{

X̄ ∈ R
4
+
, 0 < Sf ≤ ε1

}

,

Y2 =

{

X̄ ∈ R
4
+
, 0 < M̄b ≤ ε2, Sf > ε2

}

,

Y3 =

{

X̄ ∈ R
4
+
, 0 < M̄g ≤ ε1, M̄b > ε2

}

,

Y4 =

{

X̄ ∈ R
4
+
, 0 < Ū ≤ ε1, M̄g > ε2

}

,

Y5 =

{

X̄ ∈ R
4
+
,Sf ≥

1

ε2

}

,

Y6 =

{

X̄ ∈ R
4
+
,M̄b ≥

1

ε2

}

,

Y7 =

{

X̄ ∈ R
4
+
,M̄g ≥

1

ε2

}

,

Y8 =

{

X̄ ∈ R
4
+
, Ū ≥

1

ε2

}

.

LH1(X̄), for X̄ ∈ R
4
+
\ Y =

8
⋃

k=1

Yk, k = 1, ..., 8.

LH1 ≤ −ψ4ψ5 + (ψ1ψ4 − 1)
δgM̄g

Sf
−

B + ε

Sf
+ (�b − χb − χg)

− (�b + �g)Sf + (ϑb + γb + ϑ)M̄b −
χb + χg

Ū
+ (γg + δg + ϑ + �g)M̄g

−
γbM̄b + γgM̄g

Ū
−

σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4

2

≤ −ψ4ψ5 + (ψ2ψ4 + 1)
δg

ε1
−

B + ε

ε1
≤ −1.

LH1 ≤ −ψ4ψ5 + (ψ1ψ4 − 1)
δgM̄g

Sf
−

B + ε

Sf
+ (�b − χb − χg)

− (�b + �g)Sf + (ϑb + γb + ϑ)M̄b −
χb + χg

Ū
+ (γg + δg + ϑ + �g)M̄g

−
γbM̄b + γgM̄g

Ū
−

σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4

2

≤ −ψ4ψ5 + (ψ2ψ4 + 1)
δg

ε1
− γbε2 ≤ −1.

LH1 ≤ −ψ4ψ5 + (ψ1ψ4 − 1)
δgM̄g

Sf
−

B + ε

Sf
+ (�b − χb − χg)

− (�b + �g)Sf + (ϑb + γb + ϑ)M̄b −
χb + χg

Ū
+ (γg + δg + ϑ + �g)M̄g

−
γbM̄b + γgM̄g

Ū
−

σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4

2

≤ −ψ4ψ5 − (γbε2 + γgε1) ≤ −1.
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Case V. If X̄ ∈ Y5, then by (3.21), we have

Case VI. IfX̄ ∈ Y6, then by (3.21), we have

Case VII. If X̄ ∈ Y7, then by (3.21), we have

Case VIII. If X̄ ∈ Y8, then by (3.21), we have

Final ly,  a l l  of  the previous contexts  demonstrate  that  a  non-negat ive B  exists ,  so 
LH1(X̄) < −B < 0 ∀ (X̄) ∈ R4

+
\ Y . Hence

Suppose (X̄) = (u1, u2, u3, u4, u5) = ū ∈ R4
+
\ Y , the time φū, where a path starting with ū led directly to the 

collection Y , φn1 = inf {ζ : |X(ζ )| = n1} and φn(ζ ) = min{φū, ζ ,φ
n1 }. Performing integration on (3.24) over 0 

to φ(n1)(ζ ), applying expectation and Dynkins process, we conclude that

LH1 ≤ −ψ4ψ5 + (ψ1ψ4 − 1)
δgM̄g

Sf
−

B + ε

Sf
+ (�b − χb − χg)

− (�b + �g)Sf + (ϑb + γb + ϑ)M̄b −
χb + χg

Ū
+ (γg + δg + ϑ + �g)M̄g

−
γbM̄b + γgM̄g

Ū
−

σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4

2

≤ −ψ4ψ5 −
γgε2

ε1
≤ −1.

LH1 ≤ −ψ4ψ5 + (ψ1ψ4 − 1)
δgM̄g

Sf
−

B + ε

Sf
+ (�b − χb − χg)

− (�b + �g)Sf + (ϑb + γb + ϑ)M̄b −
χb + χg

Ū
+ (γg + δg + ϑ + �g)M̄g

−
γbM̄b + γgM̄g

Ū
−

σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4

2

≤ −ψ4ψ5 −
δg

ε2
≤ −1.

LH1 ≤ −ψ4ψ5 + (ψ1ψ4 − 1)
δgM̄g

Sf
−

B + ε

Sf
+ (�b − χb − χg)

− (�b + �g)Sf + (ϑb + γb + ϑ)M̄b −
χb + χg

Ū
+ (γg + δg + ϑ + �g)M̄g

−
γbM̄b + γgM̄g

Ū
−

σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4

2

≤ −ψ4ψ5 +
(ϑb + γb + ϑ)

ε2
−

γb

ε2
≤ −1.

LH1 ≤ −ψ4ψ5 + (ψ1ψ4 − 1)
δgM̄g

Sf
−

B + ε

Sf
+ (�b − χb − χg)

− (�b + �g)Sf + (ϑb + γb + ϑ)M̄b −
χb + χg

Ū
+ (γg + δg + ϑ + �g)M̄g

−
γbM̄b + γgM̄g

Ū
−

σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4

2

≤ −ψ4ψ5 +
(γg + δg + ϑ + �g + ϑ)

ε2
−

γg

ε2
≤ −1.

LH1 ≤ −ψ4ψ5 + (ψ1ψ4 − 1)
δgM̄g

Sf
−

B + ε

Sf
+ (�b − χb − χg)

− (�b + �g)Sf + (ϑb + γb + ϑ)M̄b −
χb + χg

Ū
+ (γg + δg + ϑ + �g)M̄g

−
γbM̄b + γgM̄g

Ū
−

σ 2
1 ∨ σ 2

2 ∨ σ 2
3 ∨ σ 2

4

2

≤ −ψ4ψ5 −
(χg + χb)

ε2
≤ −1.

(3.24)

dH1(X̄) <− Bdζ +
[

(ψ4 + 1)Sf − (ψ1ψ4 + 1)σ1
]

dW1(ζ )

+
[

(ψ4 + 1)M̄b − ψ1ψ4σ2
]

dW2(ζ )+
[

(ψ4 + 1)M̄g − ψ3ψ4σ3
]

dW3(ζ )

+
[

(ψ4 + 1)Ū − σ4
]

dW4(ζ ).
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As H(ū) is positive, thus

So, P{φε = ∞} = 1 and We can affirm that the proposed methodology (2.2) is correct. We require to apply 
Fatou’s well-known lemma as

Evidently, supū∈K Eφū < ∞, where K is a compact subset from R4
+
. As a direct consequence, Lemma 3.2’s second 

requirement is satisfied Also, the diffusion matrix of the framework (2.2) is

Selecting M1 = min
(X̄)

∈ Y ∈ R4
+

{

σ 2
1 S

2
f , σ

2
2 M̄

2
b, σ

2
3 M̄

2
g , σ

2
4 Ū

2
}

, we illustrate

where ζ = (ζ1, ζ2, ζ3, ζ4) ∈ R4
+
.

Thus, the M∞ of Lemma 3.2 is fulfilled. The proposed stochastic structure has a unique ESD as an outcome 
of Lemma 3.2. 	�  �

Numerical simulation
In what follows, we will contemplate the numerical modelling using the power-law kernel, the exponential decay 
kernel and generalized Mittag-Leffler kernel, respectively.

Power‑law kernel.  Here, we will examine at the nonlinear dynamics of poor nutrition systems (2.1) and 
(2.2) that incorporate malnutrition and underweight, using conventional, index-law and subsequently stochastic 
treatments. If we consider T to be the final time of dissemination, then the computational structure will be con-
structed during the initial process utilizing the classical derivative implementation, followed by the power-law 
kernel in the other approach and eventually the random perturbations in the later stages. The computational 
framework that accounts for this occurrence is then given as follows:

(3.25)

EH1

(

Sf (φ
(n1)(ζ )),M̄B(φ

(n1)(ζ )),M̄G1(φ
(n1)(ζ )), Ū(φ(n1)(ζ ))

)

−H1(ū)

= E

φ(n1)(ζ )
∫

0

H1

(

Sf (u1),M̄B(u1),M̄G1(u1), Ū(u1)
)

du1

≤ E

φ(n1)(ζ )
∫

0

−Bdu1 = −BEφ(n1)(ζ ).

(3.26)Eφ(n1)(ζ ) ≤
H1(ū)

B
.

(3.27)Eφ(n1)(ζ ) ≤
H1(ū)

B
< ∞.

(3.28)B =









σ 2
1 S

2
f 0 0 0

0 σ 2
2 M̄

2
b 0 0

0 0 σ3
2M̄2

g 0

0 0 0 σ 2
4 Ū
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dŪ
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ζ Ū = γbM̄b + γgM̄g − (χb + χg + ϑ)Ū ,
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Here, we employ the method reported in36 for the situation of Caputo’s derivative to calculate and investigate the 
piecewise configuration (4.1)–(4.3). We begin the methodology by doing the following:

Accordingly, we have

where

and

Exponential decay kernel.  In this segment, we will take a glance at the simulation framework of a poor 
nutrition framework that involves malnutrition and underweight congregation members, as well as conven-
tional, exponential decay and random perturbations. If we define T as the ultimate dissemination duration, then 
the computational formation will be established during the initial phase that uses the integer-order derivative 
implementation, then comes the exponentially decaying kernel in the other phase, and finally the Gaussian noise 
in the future period. In this reference, the scientific model we are using to exemplify this incidence is as follows:

Here, we employ the method reported in36 for the situation of Caputo-Fabrizio derivative to calculate and inves-
tigate the piecewise configuration (4.7)–(4.9). We begin the methodology by doing the following:
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It is worth noting that

Generalized Mittag‑Leffler kernel.  In this section, we will focus on the nonlinear behaviour of malnu-
trition that also illustrates multiple phases for the transport of malnutrition and underweight individuals in the 
community, such as integer-order, generalized Mittag-Leffler law, and dynamical provokes. If T is defined as the 
final time, the computational framework will be established during the initial stage using the classical derivative 
implementation, followed by the Mittag-Leffler kernel in the other approach, and consequently the Gaussian 
noise in future periods. The scientific formula used to explain the manifestation in this context is as follows:

Here, we employ the method reported in36 for the case of Atangana-Baleanu derivative to calculate and investigate 
the piecewise configuration (4.12)–(4.14). We begin the methodology by doing the following:

It is worth noting that
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where ℑ1,ℑ2 and ℑ3 are defined in (4.4)–(4.6).

Results and discussion
The simulation results of the framework (2.2) for all four sets of data reveal that malnutrition and body immu-
nization have a massive effect on undernourished pregnant females Sf , conceive famished boys M̄b , girls M̄g , 
and underweight individuals Ū via the crossover effects. Various dietary prestige and distinct immune defence 
stages have various sorts of effects, as shown by the graphs of differential equations for malnourished individuals 
utilizing the numerical scheme proposed by Atangana and Araz36. To overcome the malnutrition problem, an 
initial value and random intensities are required. It determines the variation in attributes over time depending 
on that initial value. To test the modifications in all three scenarios, we employ one initial value and steadily 
observe how initial values affect the modification. Also, Rs

0 = 1.245 > 1, where Rs
0 is described in Section 3. We 

can verify that system (2.2) will persist for a long time using the findings of Theorem 3.3 and a distribution of 
π(.). The numerical simulations below confirm this. Let us now examine the consequences for each individual.

Figures 2a and b depict the modifications in undernourished pregnant females’ cases for normal nutrient 
intake, Figure 3a and b represents the view of birth to malnourished boys, Figure 4a and b denotes birth of mal-
nourished girls and Figure 5a and b represents the under weight individuals with immune function in the sets 
of parameters under various random intensities σ1 = 0.08, σ2 = 0.09, σ3 = 0.1, σ4 = 0.12 and initial condi-
tions Sf (0) = 30, M̄b = 2, M̄g = 4 and Ū = 1, respectively via the piecewise fractional differential equations 
techniques. For the first set of values, we explore that a starting value of 30 results in linear decay, whereas values 
2,  4,  and 1 result in logarithmic growth. It shows logarithmic and wave growth for all random intensities in the 
second, third, and fourth sets of values when the Caputo fractional derivative is convoluted with the determin-
istic-stochastic case. The significance of immune function and nourishment is evident from the research, and it 
is interesting to note that maintaining strong immunity and appropriate nourishment in the bloodstream will 
substantially decrease hypersensitivity, decrease the risk of infestation, and improve the mental health process.

Figure 6a and b depict the modifications in undernourished pregnant females’ cases for normal nutri-
ent intake, Fig. 7a and b represents the view of birth to malnourished boys, Fig. 8a and b denotes birth of 
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Figure 2.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.1)–(4.3) for 
undernourished pregnant women Sf using Caputo fractional derivative of order � = 0.95 with lowest random 
perturbations.
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malnourished girls and Fig, 9a and b represents the under weight individuals of variables with varying random 
intensities, σ1 = 0.08, σ2 = 0.09, σ3 = 0.1, σ4 = 0.12 and initial conditions Sf (0) = 30, M̄b = 2, M̄g = 4 
and Ū = 1, respectively via the piecewise fractional differential equations approaches. For the first set of values, 
we notice that a starting value of 30 results in linear decay, whereas values 2,  4,  and 1 result in logarithmic 
growth. It shows logarithmic and wave growth for all random intensities in the second, third, and fourth sets 
of values when the Caputo-Fabrizo fractional derivative is merged with the deterministic-stochastic scenario. 
The significance of immune function and nourishment is evident from the research, and it is interesting to note 
that maintaining strong immunity and appropriate nourishment in the bloodstream will substantially decrease 
hypersensitivity, decrease the risk of infestation, and improve the mental health process. It is indeed clear from 
simulation analysis that the consequences of dietary patterns and immune function tend to vary with changes in 
other attributes connected to the model’s conceptualization. This system will assist those responsible for attempt-
ing to make decisions to ameliorate losses incurred by complexities in pregnancy.
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Figure 3.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.1)–(4.3) 
for birth to malnourished boys M̄b using Caputo fractional derivative of order � = 0.95 with lowest random 
perturbations.
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Figure 4.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.1)–(4.3) 
for birth to malnourished girls M̄g using Caputo fractional derivative of order � = 0.95 with lowest random 
perturbations.
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Figure 10a and b depict the modifications in undernourished pregnant females’ cases for normal nutri-
ent intake, Fig. 11a and b represents the view of birth to malnourished boys, Fig. 12a and b denotes birth 
of malnourished girls and Fig. 13a and b represents the under weight individuals utilization and rational 
immune function were ascertained in a variety of variables with various different random intensities, 
σ1 = 0.08, σ2 = 0.09, σ3 = 0.1, σ4 = 0.12 and initial conditions Sf (0) = 30, M̄b = 2, M̄g = 4 and Ū = 1, 
respectively via the piecewise fractional differential equations approaches. For the first set of values, we notice 
that a starting value of 30 results in linear decay, whereas values 2,  4,  and 1 result in logarithmic growth. When 
the Atangana-Baleanu fractional derivative is combined with the deterministic-stochastic case, it exhibits loga-
rithmic and wave expansion for all random intensities in the second, third, and fourth value systems. Individual’s 
undernutrition has been assessed to quantify their resistance to destabilization during pregnancy. The immune 
system is impacted by an effective diet and nutritional requirements. As a result, the only long-term strategy for 
surviving in the current environment is to boost the immune system, develop diet and exercise plans. This article 
examines the relevance of nourishment in boosting resistance and provides some skilful and truthful nutritional 
recommendations for coping with the intricacies of pregnancy.

The quality of the graphs is very high, with a numerical scheme with respect to the fractional-order � = 1 in 
Figs. 14, 15, 16, close to that of the identified nutritional Caputo-derivative fractional model (4.1)–(4.2), Caputo-
Fabrizio fractional derivative model (4.7)–(4.8) and Atangana-Baleanu fractional derivative model (4.12)–(4.14), 
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Figure 5.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.1)–(4.3) for 
underweight Ū using Caputo fractional derivative of order � = 0.95 with lowest random perturbations.
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Figure 6.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.7)–(4.9) for 
undernourished pregnant women Sf using Caputo-Fabrizio fractional derivative of order � = 0.95 with lowest 
random perturbations.
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respectively. This fact shows that an integer-order model can approximate, within a given random perturbation, 
data generated by a fractional-order one with very high precision without the need for excessively high orders 
of derivation or computational resources.

Figures 17, 18, represents the histogram plots for the proposed system (2.2). In reality, controlling poor nutri-
tion will not affect the disruption of health issues or the spread of various infections. Simultaneously, when other 
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Figure 7.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.7)–(4.9) 
for birth to malnourished boys M̄b using Caputo-Fabrizio fractional derivative of order � = 0.95 with lowest 
random perturbations.
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Figure 8.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.7)–(4.9) 
for birth to malnourished girls M̄g using Caputo-Fabrizio fractional derivative of order � = 0.95 with lowest 
random perturbations.
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considerations hinder development of resistance to a newborn child population, such as constant treatment and a 
healthy life campaign, the number of deaths decreases along with the number of malnourished and underweight. 
This is essentially consistent with the system (2.2) research findings in this paper.

Finally, these findings indicate that fractional-order techniques are instinctively superior to classical ones 
when dealing with phenomena such as memory effects and non-local behaviour in general.
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Figure 9.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.7)–(4.9) for 
underweight individuals Ū using Caputo-Fabrizio fractional derivative of order � = 0.95 with lowest random 
perturbations.
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Figure 10.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.12)–(4.14) 
for undernourished pregnant women Sb using Atangana-Baleanu- Caputo fractional derivative of order 
� = 0.95 with lowest random perturbations.
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Figure 11.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.12)–(4.14) 
for birth to malnourished boys M̄b using Atangana-Baleanu fractional derivative of order � = 0.95 with lowest 
random perturbations.
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Figure 12.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.12)–(4.14) 
for birth to malnourished girls M̄g using Atangana-Baleanu- Caputo fractional derivative of order � = 0.95 
with lowest random perturbations.
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Conclusion
Numerical modelling is useful for analysing societal problems and following up with cost-effective remedies. 
Fractional calculus and stochastic perturbation, among existing schemes, have a phenomenal capacity for record-
ing, eventually afflicted by noise sources and memory effects, which have been revealed to include almost all 
biomedical functions. This research represents a deterministic-stochastic framework that employs crossover 
consequences to predict the intricacies of undernutrition in pregnant women. Initially, we use an inventive 
interconnection of Lyapunov candidates to determine the existence and uniqueness of the global non-negative 
outcome corresponding to the unit likelihood of occurrence. The necessary prerequisites for the stationary 
distribution of poor nutrition are therefore calculated. Whereas the generalized Mittag-Leffler kernel, exponen-
tial decay and index law have been shown to be competent at portraying numerous crossover tendencies, we 
assert that their abilities to achieve this might be strictly limited to the true extent of the environment. In the 
intervention of undernourishment as well as other insatiable hungers and dietary patterns influencing ailments, 
the concentration of Gaussian white noise is pivotal. The strategy requires stochastic perturbations (noise) and 
biological methods to enhance understanding of the scientific studies, which have critical repercussions for 
antibacterial drugs and genetic engineering. Several other intriguing discussions need to be researched further, 
such as the fractional nutrition model with Lévy noise and Poisson noise44, 45, which can generalize Brownian 
motion and include several important jump and impulsive random processes often found in neural and financial 
engineering models.
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Figure 13.   Two-dimensional view and phase portrait of dynamic pattern of malnutrition system (4.12)–(4.14) 
for underweight individuals Ū using Atangana-Baleanu- Caputo fractional derivative of order � = 0.95 with 
lowest random perturbations.
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Figure 14.   Two-dimensional view of malnutrition system (4.1)–(4.3) using Caputo fractional derivative of 
order � = 1 with lowest random perturbations.
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Figure 15.   Two-dimensional view of malnutrition system (4.7)–(4.9) using Caputo-Fabrizio fractional 
derivative of order � = 1 with lowest random perturbations.
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Figure 16.   Two-dimensional view of malnutrition system (4.12)–(4.14) using Atangana-Baleanu-Caputo 
fractional derivative of order � = 1 with lowest random perturbations.
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