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Exponential increases 
in high‑temperature extremes 
in North America
Ali Davariashtiyani  1, Mohsen Taherkhani  2*, Seyyedfaridoddin Fattahpour  1 & 
Sean Vitousek  1,3

Global warming in the 21st century will alter the frequency of extreme climatic events, such as 
high-temperature anomalies and “heat waves”. Observations of extreme high temperatures during 
recent decades have detected upward trends in their frequency of occurrence, and recent state-of-
the-art Global Climate Models (GCMs), e.g., Climate Model Intercomparison Projects (CMIPs), notably 
CMIP5 and CMIP6, have predicted acceleration of temperature trends and high-temperature events 
by 2100 under projected greenhouse-gas emission scenarios. Hence, the 21st century is expected 
to experience substantial shifts in the occurrence of extreme events, where present-day, extreme-
but-rare high-temperature events will become common during the summer months. The increasing 
frequency of extreme heat may affect the health and resiliency of social, biological, and infrastructure 
systems in many regions worldwide, underscoring the need for accurate and reliable long-term 
assessments of climatic change across global and regional scales. So far, many investigations of high-
temperature extremes have been carried out under end-point scenarios, e.g., by comparing GCM-
projected changes in the frequency of high-temperature extremes expected in the late 21st century to 
the late 20th century. In this study, we use extreme value theory and decades of observations of high-
temperature extremes at thousands of meteorological stations across North America to investigate 
continuous shifts in the frequency of extreme high-temperature events due to projected local warming 
trends. We find that the odds of exceedance of 50-year extreme high-temperature events increases 
exponentially with increases in mean local temperature. At a majority of the stations studied here, a 
local mean temperature increase of 0.5–1 ◦ C can double the odds of exceedance of 50-year extreme 
high-temperature events. Based on time-dependent temperature projections, the odds of exceedance 
of 50-year extreme high-temperature events doubles approximately every 20 years (or sooner) for ∼ 
96% of the stations. Moreover, we find that, for ∼ 80% of the stations in North America, investigated 
here, the 50-year extreme high-temperature events will be exceeded annually before 2100.

Earth’s global average surface temperature has risen 1.09 ◦ C (1.59 ◦ C over land regions) since pre-industrial 
levels1. This rise is linked to the growing concentration of atmospheric greenhouse gases1,2, predominantly from 
anthropogenic sources since the mid-20th century3–7. Increased concentrations of greenhouse gases and global 
warming trends also affect extreme climatic events8,9, such as high-temperature extremes, which can have a 
multitude of ecological and societal impacts3,10–13.

A simple increase in mean temperatures can lead to increases in the frequency and intensity of extreme tem-
perature events10,13,14. Further, anthropogenic emissions1,2,15,16 can also drive fundamental, non-linear changes to 
extreme climatic events (i.e., changes in the skewness and tail behavior of probability distributions for extreme 
temperatures, for example). In a warming climate, the occurrence of extreme high-temperature events is expected 
to increase with time, such that rare (e.g., decadal and longer return period) events can become common (e.g., 
annual) in the future17.

Investigations of extreme temperature events in the literature are primarily assessed via two different 
approaches: (1) climate-extreme indices, which represent pre-defined, relatively frequent annual or monthly 
climatic events, and (2) extreme-value theory (e.g., refs.18), a branch of statistics to model extreme events and 
their probability distributions, typically using historical observations3,10,11,19–24.
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Global Climate Models (GCMs) have played a central role in assessing historical and future changes in global 
and regional climatic extremes, including temperature extremes21. Among them, the popular Coupled Model 
Intercomparison Project Phase 5 (CMIP525) and Phase 6 (CMIP626), coordinated by the World Climate Research 
Programme (WCRP), have projected increases in the frequency and intensity of high-temperature extremes 
and extended heat waves under the majority of emission scenarios (e.g., refs.1,22,27–32). For the contiguous U.S., a 
significant increase in the frequency of extreme high temperatures has been observed during recent decades33,34, 
and a persistent upward trend in the frequency of high-temperature extremes and heat waves is projected by the 
end of the 21st century24,35–38,.

Many studies investigating the transformation of extreme high-temperature events (e.g., refs.22,27) have 
focused on end-point scenarios, e.g., comparing GCM-derived late 21st-century extreme high-temperature events 
to late 20th-century events. Fewer studies have investigated the continuous trend in the frequency of extreme 
high-temperature events in the coming decades. Here, we use stationary Generalized Extreme Value (GEV)18 
and empirical probability distribution based on decades of historical temperature observations to demonstrate 
an exponential increase in the frequency of extreme high-temperature events throughout Northern America 
(U.S., Canada, and Mexico) driven by local temperature projections under a range of emission scenarios (i.e., the 
ensemble low-end, intermediate, and high-end Representative Concentration Pathway [RCP] 8.54,39).

The remainder of the manuscript is divided into four sections. We present the results of this study in sec-
tion “Results”, discuss them in section “Discussion”, and conclude in section “Conclusions”. Outside of the main 
body of the article, section “Methods” elaborates on the methodology and temperature data used in our analysis.

Results
Our study analyzes 4266 long-standing climate stations in North America (shown in Fig. 1A), of which 3,737 are 
located within the U.S., while 497 and 32 stations are in Canada and Mexico, respectively, using data and tech-
niques described in section “Methods”. North America is chosen as the focus region for the current study due to 
its rich availability of high-quality temperature data (e.g., the density of climate stations and the high frequency/
long duration of recorded temperature data). Additionally, North America possesses a diverse but manageable 
number of micro-climates for meaningful clustering analysis (see Fig. 1C–E). Finally, North America generally 
exhibits higher mean temperature projections by 2100 [ ∼ 3.9–7.3 ◦ C] than the global average [ ∼ 2.8–5.2 ◦ C] 
under a range of RCP 8.5 emission scenario projections (where 2000 is the baseline year; see Extended Data 
Fig. 1).

Figure 1B shows an example of a Generalized Extreme Value (GEV) distribution fitted to observations of 
the top three annual maxima of daily maximum temperature (at Chicago, Illinois, U.S.). Figure 1C–E show four 
clusters (obtained via K-means clustering method40) of the GEV parameter estimates (i.e., µ , σ , and k, which 
represent proxies for the mean, standard deviation, and tail behavior, respectively). Although the stations are 
not directly classified/clustered based on their geographic locations, the clustering analysis reveals consistent 
geographical patterns in the GEV parameters, which are driven by the underlying patterns of temperature 
extreme across North America (e.g., stations colored in red generally occur at low- to mid-latitudes and exhibit 
extreme high temperatures with low inter-annual variability, as discussed in more detail in section “Discussion”).

Using the GEV distributions, whose parameters are shown in Fig. 1, we calculate the differences between the 
50-year and 1-year extreme temperatures, denoted by �T50yr→1yr (as shown in Fig. 2A, which is calculated using 
Eq. (12)). We target �T50yr→1yr as a metric to characterize severe global warming impacts since it expresses the 
transformation from a “once-in-a-lifetime” event to an annual event. Furthermore, we consider the difference 
between the 1-year (annual) extreme temperature event and the mean summer temperature (MST), denoted by 
�T1yr→MST (as shown in Fig. 2B, which is calculated using Eq. (13)). This metric is significant as it projects a 
future where the “once-per-summer” extreme temperatures could become the norm during summers, creating 
severe and persistent high-temperature conditions that pose serious challenges to human habitation in certain 
locations.

The �T metrics, shown in Fig. 2, can be compared to projections of local warming trends. For example, a 
projected temperature rise equivalent to �T50yr→1yr would cause the present-day 50-year temperature event to 
occur every year (in an otherwise stationary climate system). For instance, Fig. 1B shows the difference between 
the TR = 50-year temperature event (40.2 ◦ C) and the TR = 1-year temperature event (35.3 ◦ C) at Chicago, which 
is equivalent to �T50yr→1yr = 4.9 ◦ C. Hence, a projected temperature increase of about 4.9 ◦ C (which is antici-
pated by 2100 according to the intermediate RCP 8.5 scenario for Chicago; see Extended Data Fig. 1) could cause 
present-day “once-in-a-lifetime” temperatures to be exceeded annually. Fortunately, our projections suggest that 
for a majority of stations, the condition represented by �T1yr→MST is not likely to occur in the next few decades, 
except at a limited number of stations. However, the consideration of this scenario is important to understand 
the potential long-term impacts of climate change.

Figure 2 also depicts how the �T50yr→1yr and �T1yr→MST metrics are affected by the GEV shape parameter, 
k, and scale parameters, σ , across each observation station. Each station is color-coded by its corresponding 
scale parameter, σ , which is often associated with the station’s inter-annual variability and its vulnerability to 
rapid increases in the frequency of extreme events due to local warming trends (as discussed in more detail in 
section “Discussion”). Parameter k has a positive correlation with the �T metrics, i.e., increasing k increases 
�T (Fig. 2), but only a small minority of the stations (1.4%) have a positive shape parameter ( k > 0 ). Parameter 
σ is also positively correlated with the �T metrics, i.e., increasing σ increases �T (Fig. 2). By comparing the 
two metrics in Fig. 2, we observe a more obvious relationship with the GEV parameters in �T50yr→1yr than in 
�T1yr→MST . However, this is perhaps not surprising considering the fact that the GEV parameters uniquely 
describe the �T50yr→1yr metric, but the �T1yr→MST metric is affected by the site’s mean summer temperature, 
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which can be somewhat unrelated to the GEV parameters, given that the GEV distribution only parameterizes 
the occurrence of extreme temperature events, which are generally well above mean summer temperatures.

We find that the difference between the 50-year event and the 1-year event is less than 5 ◦ C for 70% of the 
climate stations in Fig. 2. This portion increases to more than 95% of stations for which the differences between 
the 50-year event and the 1-year event are less than 6.5 ◦ C. The average temperature difference between the 
1-year event and MST is 7.4 ◦ C (with a standard deviation of 1.9 ◦C). For the sake of comparison, note that the 
RCP 8.5 scenario projects an average temperature rise of ∼ 5.7 ◦ C ( ∼ 4 ◦ C) in North America (globally) by 2100.

In the following analysis, we apply intermediate RCP 8.5 projections of local temperature rise (described in 
section “Extreme value theory”) at each climate station to find the year in the future when projections of local 
temperature increase surpass �T50yr→1yr and �T1yr→MST (Fig. 3). As above, time horizons shown in Fig. 3 occur 
sooner for lower values of σ and k.

According to the intermediate RCP 8.5 temperature rise scenario, the present-day 50-year extreme tempera-
ture events transition to an annual occurrence for more than 80% of the stations by 2100. Washington D.C., 
Boston, Dallas, Seattle, Chicago, and Honolulu are among the cities projected to undergo such a transformation. 
As shown in Fig. 3, only ∼13% of sites are projected to experience the transition from present-day 1-year events 
to the present-day mean summer temperature by 2100.

So far, our results provide some insight into extreme temperature characteristics and the time horizon for 
regime transitions among extreme thresholds, but they do not explain how the effects of temperature rise mani-
fest continuously over time. In Figs. 4 and 5, we investigate the continuous growth in the frequency of extreme 
temperatures caused by a shift in mean temperature (i.e., µT ). To this end, we analyze “odds of exceedance” (O), 
which is a close alternative to the “probability of exceedance” (E) and is calculated via Eq. (6) [ O = E/(1− E) ]. 

Figure 1.   (A) The network of climate stations used in the current study and (B) an example of the recorded 
extreme high-temperature data (red dots) and the GEV fit (blue line) for a single climate station in Chicago, 
Illinois, subject to a hypothetical future temperature rise (TR). Mean summer temperature (MST) is shown in 
the black dashed line in panel (B). Panels (C)–(E) present the “pair plots” displaying the relationship between 
the three best-fit parameters of each GEV distribution ( µ , σ , and k) for the 4266 stations investigated here. The 
stations are clustered into four groups (blue, green, orange, and red) representing different combinations of their 
GEV distribution parameters.
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Figure 2.   Differences in extreme temperatures (i.e., �T metrics) for 4,266 climate stations across North 
America (where some stations in major cities are labeled). (A) The �T50yr→1yr metric represents the 
temperature difference between the 50-year and the 1-year extreme high-temperature event, and (B) the 
�T1yr→MST metric represents the temperature difference between the 1-year event and the mean summer 
temperature. The metrics are displayed along with their corresponding GEV shape parameter (k) on the x-axis 
and the scale parameter ( σ ), which is color-coded according to the color bar.

Figure 3.   The anticipated year for regime shifts in return periods of extreme temperature events under the 
intermediate RCP 8.5 emission scenario. Panel (A) represents the year when the present-day 50-year extreme 
temperature occurs annually (in an otherwise stationary climate). Similarly, panel (B) shows the year when the 
present-day annual extreme events become the mean summer temperature. A few notable climate stations in 
major cities are labeled. As in Fig. 2, the x-axis represents the GEV shape parameter (k), and the color of each 
station depicts the GEV scale parameter ( σ).



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19177  | https://doi.org/10.1038/s41598-023-41347-3

www.nature.com/scientificreports/

Figure 4.   The relationship between local temperature rise ( µT ) and the relative increase in the odds of 
exceeding the present-day 50-year temperature event, O/O0 . Each colored solid line corresponds to a single 
climate station and is colored according to its classification as depicted in Fig. 1 (some transparency is employed 
to reduce visual blockage of the different lines). Panel (A) shows the relative odds ( O/O0 ; on a logarithmic scale) 
versus temperature rise ( µT ; on a linear scale). Accordingly, relationships following a straight line match an 
exponential growth (i.e., doubling) rate with a fixed amount of temperature rise. The purple, blue, black, and 
red dashed lines on panel A correspond to the doubling of the odds of exceedance for every 0.25, 0.5, 1, and 1.5 
◦ C of temperature rise, respectively. Panel (B) plots the base-2 logarithm of the relative odds, i.e., log2(O/O0) , 
versus the normalized temperature shift ( µT/σ̃ ), where σ̃ is determined empirically from the slope of each 
curve in panel (A). The bold dashed line on panel (B) represents Eq. (8), and the thin dashed lines enclose 
regions within a factor of four of the relationship in Eq. (8).

Figure 5.   Variability of the local temperature scale ( ̃σ ) that doubles the odds of exceeding the present-day 
50-year extreme temperature event. Panel (A) depicts the geographical distribution of σ̃ for all observation 
stations analyzed here, and panel (B) displays the histogram plot of σ̃ . The colors on the histogram bars in panel 
(B) represent the clusters shown in Fig. 1.
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We evaluate increases in the odds of exceedance of extreme temperature events ( O/O0 ) using the simplified 
expression in Eq. (8) [ O/O0 = 2µT/σ̃ , where σ̃ is a parameter that is equivalent to a required local shift in mean 
temperature to double the odds of exceedance]. To calculate the parameter σ̃ , we apply a shift in the empiri-
cal odds distribution, according to Eq. (7) in section “Methods”, and fit a trend line to the resulting curve (see 
Fig. 4A).

To model continuous rates of growth (which are idealized by the doubling parameter σ̃ ), we favor the use of 
the odds of exceedance variable over the probability of exceedance variable. As discussed in Taherkhani et al.41, 
the odds of exceedance can take on any value from zero to infinity, thus making it particularly well-suited to 
model growth rates, whereas the exceedance probability is less suitable due to its upper bound of E = 1 . The 
advantage of applying the odds of exceedance is evident for higher temperature shifts (i.e., higher µT values) 
when comparing Extended Data Figs. 2 and 3, and also Extended Data Figs. 4 and 5, where Extended Data 
Figs. 2 and 4 use the probability of exceedance (i.e., E/E0 ) and Extended Data Figs. 3 and 5 employ the odds of 
exceedance (i.e., O/O0 ) in representing the above-mentioned continuous growth.

Figure 4 shows the relationship between the temperature rise and the relative increase in the odds of exceeding 
the current 50-year extreme temperature event, O/O0 . The x- and y-axes of Fig. 4A are plotted on linear and loga-
rithmic scales, respectively, meaning that relationships that resemble straight lines exhibit an exponential growth 
rate in the odds of occurrence with respect to local temperature rise. Each solid line in Fig. 4A corresponds to 
a single climate station investigated here, which is color-coded based on its classification shown in Fig. 1. The 
purple, blue, black, and red dashed lines are computed according to Eq. (8) and represent a doubling of the odds 
of exceedance of the 50-year extreme temperature event under every 0.25, 0.5, 1, and 1.5 ◦ C of temperature rise, 
respectively. This means that, for locations that are particularly susceptible to extreme temperature events (such 
as the red-colored stations in Fig. 4A), a slight rise in mean temperature can lead to a substantial increase in 
the odds of exceedance. Fig. 4B depicts the base-two logarithm of the relative odds of exceedance as a function 
of the normalized local temperature rise ( µT/σ̃ ), recalling that µT is the shift in local mean temperature and σ̃ 
is the doubling parameter, which is derived empirically from the average slope of the curves in panel A. Note 
that the amount of temperature rise required for the doubling of the odds of exceedance ( ̃σ ) at any station is 
not the same as the GEV scale parameter ( σ ), although these values are closely related under certain conditions 
(e.g., when k ≈ 0 ; see Extended Data Fig. 6). The analysis shown in Fig. 4B is an attempt to normalize the rate 
of growth in the odds of exceedance using Eq. (8). The thick black dashed line on panel B plots the relationship 
based on Eq. (8), and curves closer to this black line will more closely follow the simplified form of exponential 
growth of their odds of exceedance. We find that approximately 98% of the curves (stations) fall within a factor 
of 4 of the rate predicted by Eq. (8) (areas enclosed by the thin black dashed lines in Fig. 4B) up to 8 doubling 
periods, which is equivalent to a 28-fold (256-fold) increase in the odds of exceedance.

In this study, our findings are based on the empirical probability distribution of temperature events, i.e., 
E0(x) and O0(x) . Since the empirical distributions are non-parametric, the growth rates are not controlled by 
the behavior of any specific statistical model, such as GEV. Additionally, we utilize empirical distributions of 
all recorded temperatures instead of a distribution that only considers extreme temperatures, which assists in 
examining the transition from infrequent to common events. We show (in Extended Data Figs. 2 and 3) that 
the exponential growth rates are relatively insensitive to the form of the exceedance distribution when applying 
three different forms of probability distributions of extreme temperature events, i.e., (1) the empirical probability 
distribution of all recorded temperatures, (2) the empirical distribution of extreme temperature observations, 
and (3) the GEV model fitted to observations of extreme temperatures.

Figure 5 depicts the spatial variability across North America of σ̃ , i.e., the local temperature rise that doubles 
the odds of experiencing the present-day 50-year extreme temperature threshold. At most of the locations, σ̃ 
varies in the range of ∼ 0.4–1.3 ◦ C (2.5 and 97.5 percentiles) with an average of 0.73 ◦ C and a standard deviation 
of 0.24◦ C (Fig. 5B).

Figure 6 (panels B, D, and F) presents the continuous increase in the odds of exceedance of the present-day 
50-year extreme temperature event ( O/O0 ) at each station as a function of time under a range of RCP 8.5 sce-
narios. Panels A, C, and E in Fig. 6 correspond to the low-end, intermediate, and high-end RCP 8.5 scenarios, 
respectively, for the local projections of temperature rise at all stations considered. Each curve corresponds to 
the results for a single station, which is colored according to its associated cluster shown in Fig. 1. The dashed 
black and blue curves in panels A, C, and E represent the average of the global and North America temperature 
projections, highlighting that North America’s warming trend outpaces the global trend. In panels B, D, and F, 
the pink, blue, black, purple, and red dashed lines correspond to a doubling in the odds of exceedance every 1, 
5, 10, 25, and 50 years into the future, respectively. As in Extended Data Figs. 2 and 3, we compare three differ-
ent forms of probability distributions of extreme temperature events, E0(x) and O0(x) , and find that the growth 
rates are largely insensitive to the form of the distribution used (see Extended Data Figs. 4 and 5, respectively). 
In general, we find that North America exhibits more rapid, exponential growth in the frequency of extreme 
temperature events with increasing temperature-rise projections (i.e., for high-end RCP 8.5 projections compared 
to low-end projections).

Finally, we analyze the spatial variability of the doubling time scale, τ , which quantifies the amount of time 
required for projections of local temperature to double the odds of exceeding the present-day 50-year extreme 
temperature event (based on Eq. 9). This metric is calculated empirically by fitting trend lines to the curves shown 
in Fig. 6B. We examine the temporal variability of τ across all observation stations in North America during 
two different time periods: 2000–2050 and 2025–2075. These time periods were chosen to represent the cur-
rent/near-term state of climate and the future state where temperature rise accelerates, respectively. The results, 
presented in Fig. 7, show that the mean value of τ is ∼ 17 years for the 2000–2050 period and decreases to ∼ 13 
years for the 2025–2075 period due to the accelerated global and local warming. The histogram colors in panels 
B and D in Fig. 7 correspond to the stations’ cluster (shown in Fig. 1) based on their GEV model parameters.
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Figure 6.   The increase in the odds of exceeding the present-day 50-year threshold versus time. Here, the 
local temperature-rise projections are provided by KNMI42 and WDCC43, and low-end, intermediate, and 
high-end RCP 8.5 scenarios are shown in panels (A), (C), and (E), respectively. The colored lines in panels 
(A), (C), and (E) demonstrate the local temperature rise projections under each RCP 8.5 scenario applied to 
each station, while the black and blue dashed lines in these panels represent the global and North America 
average projections, respectively. Panels (B), (D), and (F) illustrate the relationship between the relative odds 
of exceedance of a 50-year extreme temperature event versus time at a given station. The use of a logarithmic 
scale on the y-axis indicates that linear relationships on panels (B), (D), and (F) correspond to exponential 
growth (i.e., doubling) over a fixed period of time on the x-axis. The pink, blue, black, purple, and red dashed 
lines denote a doubling rate of the odds of exceedance every 1, 5, 10, 25, and 50 years, respectively, according 
to Eq. (9). Each colored line in these panels represents an individual station and is color-coded based on its 
classification shown in Fig. 1 (with some transparency applied for better visualization).
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Discussion
Regional and local changes in air surface temperature can differ considerably from global trends44. For instance, 
due to regional variability22, a 2 ◦ C globally averaged temperature increase can correspond to at least 3 ◦ C of 
local warming for much of the Northern Hemisphere45. Thus, it is advantageous to investigate sub-regional 
changes in mean and extreme temperatures, as in the current study, in order to develop community-specific 
response plans45–47.

Many studies investigating changes in temperature extremes do not assess the continuous shift in the fre-
quency of temperature extremes. For example, Kharin et al. (2013)27 identified the increase in the frequency of 
20-year temperature extremes by comparing historical (1986–2005) and projected (2081–2100) extremes via 
CMIP5 models, and similarly, Li et al. (2021)22 found changes in the frequency of 50-year temperature extremes, 
by comparing periods of 1985–2014 and 2071-2100 using CMIP6 models. We have taken a slightly different 
approach to study extreme temperature end-members in the current analysis. As shown in Fig. 2, we investigate 
the differences in temperature end-members of rare (i.e., 50-year return period) events, annual events, and 
mean summer conditions using a vast number of historical observations. For most locations, the temperature 
differences between these end members are comparable in magnitude to projected changes in mean temperature 
over the 21st century.

Further, in this study, we also examine continuous shifts in temperature extremes by adopting a stationary 
statistical approach, which assumes that the underlying probability distributions (i.e., in this case, the empirical 
probability distributions or GEV-modeled probability distributions and their parameters) describing extreme 
high-temperature events will remain roughly constant over time, except for a shift in the mean caused by local 
warming. Hence, we do not consider the potential effects of non-stationary, future changes to distribution’s vari-
ability (i.e., σ ) or skewness (i.e., k), and as such, the current approach is subject to limitations, discussed below.

Stationary statistical models potentially oversimplify the behavior of future extreme climatic events48. The 
underlying assumption of stationarity (e.g., applying a fixed probability over time) may not be entirely valid since 
climate change can alter the variability and upper bounds (e.g., σ and k in our GEV analysis, respectively) of 

Figure 7.   The spatial and temporal variability of the doubling time scale ( τ ) over which local temperature rise 
doubles the odds of exceedance of a present-day 50-year extreme temperature event (see Eq. (9)). Panels (A) and 
(C) show the spatial variability of ( τ ) at all climate stations across North America under the intermediate RCP 
8.5 scenario for the time periods 2000–2050 and 2025–2075, respectively. Panels (B) and (D) show histogram 
plots of τ for these time periods. Similar to Fig. 5, the colors on the histogram bars in panels (B) and (D) 
represent the clusters shown in Fig. 1.
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extreme events11,13. The alternative, non-stationary approach11,49–51 allows for the probability distributions (and 
their associated parameters) to vary with time. However, the non-stationary methods generally require either 
longer-term historical observations or the use of climate models (i.e., GCMs) to project future extremes. When 
applying historical observations, the performance of stationary versus non-stationary approaches is problem-
specific52, although the two approaches often return similar results. Studies that fit model-predicted extreme 
temperature data, as opposed to historical observations, to obtain extreme value distributions are also subject to 
sources of error (26,53). For example, the model-predicted extreme temperatures may not resolve micro-climates 
(such as urban heat islands) in ways that they can be resolved using observations. Furthermore, many GCMs 
do not run continuous simulations but are instead often separated into 10-, 20-, or 30-year-long historical and 
future projected periods. Also, modes of climate variability (e.g., El Niño/Southern Oscillation (ENSO)) that are 
historically found to amplify the extreme high-temperature events across North America54,55, are a form of non-
stationarity that alter the tail behavior of extreme temperature distributions. Capturing the influence of ENSO 
on temperature extremes would require realistic projections of future ENSO events into the 21st century, which 
is currently beyond the state of the art of most (if not all) GCMs (see, e.g., refs.56–58), rendering the assessment of 
how future ENSO variability affects the statistics of future extreme temperatures beyond the scope of this study. 
There are, however, many aspects of extreme high-temperature change that can only be investigated using models. 
Some evidence indicates that the processes governing the extreme temperatures are partly independent of the 
ones affecting the mean temperatures; thus, temperature extremes and mean temperatures need not adhere to 
identical trends30,59. Moreover, the relationship between shifts in the mean temperatures and the corresponding 
changes in the probability of extreme temperatures is inherently nonlinear14. Along these lines, it is predicted 
that changes in extreme high temperatures may outpace the changes in annual mean temperatures over the 
majority of the land areas globally22,60. Nevertheless, the data-driven, stationary statistical approach adopted 
here can complement the plethora of complex climate model-driven studies10, particularly for investigating 
near-term, continuous shifts in extreme high temperatures over the next several decades, over which time scale 
the projections of increased regional mean temperatures are more robust/certain compared to the projections 
of climate modes, such as ENSO.

The vast number of stations analyzed here allows for sub-regional investigations of the behavior of extreme 
high temperatures. In Fig. 1, we investigate the spatial variability of GEV distribution parameters (i.e., µ , σ , and 
k) and find significant spatial coherence. As expected, there is a latitudinal dependence on the mean temperature 
(i.e., µ-parameter). For example, stations with red clusters generally appear at lower latitudes, and stations with 
orange clusters appear at higher latitudes. Likewise, there is a distinct correlation between latitude and the scale 
parameter ( σ ). Generally, low-latitude regions have smaller values of σ (as seen in the red cluster in Fig. 1A). 
Mid- and high-latitudes cover a broad range of σ (as seen in the orange, green, and blue clusters in Fig. 1A). It is 
well established that lower values of σ increase the vulnerability of that location to more frequent extreme events 
associated with a shift in the mean61–63, as in the current study. Interesting patterns in the GEV shape parameter 
(k) are evident across the U.S. Midwest and the Appalachian Mountains regions, as shown in the blue cluster in 
Fig. 1A, where the k values are generally the highest. This is potentially driven by the tendency for anomalously 
large, yet rare, high-temperature extremes occurring in the blue-clustered region (that is sometimes referred to 
as the “extreme heat belt”64, which hosted the 1995 heat wave in Chicago, Illinois65,66, for example).

A very small percentage (1.4%) of our locations, which mostly fall inside of the blue cluster, exhibit positive 
values of the GEV shape parameter ( k > 0 ), indicating that their exceedance probability distribution is not 
bounded. A non-zero probability for arbitrarily high temperatures may not make sense physically but potentially 
stems from outliers present in the relatively short data sets used in this study. Across much of our analysis (e.g., 
in Figs. 2 and 3), we find that cities on the East Coast (with smaller σ values and mid-range k values) represent 
higher susceptibility to temperature rise impacts compared to cities on the West Coast, which is also evidenced 
by the higher number of extreme heat waves causing heat-related mortality on the Eastern and Midwestern U.S. 
historically (e.g., ref.67).

The correlation between the cluster of the stations depicted in Fig. 1 and their susceptibility to temperature 
rise in shifting the extreme temperatures is shown in Fig. 4, where red-cluster stations (generally low-latitude 
stations) roughly exhibit more vulnerability to warming (i.e., approximately every 0.5 ◦ C of local temperature 
rise doubles the odds of exceedance). On the other hand, green, blue, and orange cluster stations (generally 
occurring at mid/high latitudes) are less vulnerable. There is significant spatial variability in the amount of tem-
perature rise required to double the odds of exceedance throughout the stations investigated here (see Fig. 5). 
For example, Western and Southeastern U.S. and Hawaii have σ̃ values in the range of ∼ 0.2–0.8 ◦ C. Stations in 
southern Canada, however, show limited vulnerability with σ̃ values of ∼ 1–2 ◦ C. On average (for all stations), 
the doubling temperature scale σ̃ is 0.73 ◦ C across North America.

For the majority of the stations, the odds of exceedance doubles approximately every 10–50 years or 5–20 years 
under low-end and high-end RCP 8.5 scenarios, respectively (see Fig. 6). The time span required for the odds 
of exceedance to double (i.e., τ ) exhibits less variability across all stations for the 2025–2075 period, relative to 
the 2000–2050 period, as shown in Fig. 7C, D. This is due to the acceleration of local temperature trends across 
North America and their tendency to increase faster for higher latitudes (see Extended Data Fig. 1), which leads 
to more consistency in τ across all regions. On average, the odds of exceedance doubles every 13 years, while 
most stations ( ∼ 96%) are characterized by τ < 20 years for the period of 2025–2075 under the intermediate 
RCP 8.5 scenario.

Under the “business-as-usual” (RCP 8.5) emission scenarios and their projected local warming levels (which, 
on average until 2100, correspond to ∼ 0.39, 0.58, and 0.71 ◦ C warming per decade for low-end, intermediate, 
and high-end scenarios, respectively), the odds of exceedance of the 50-year temperature events will still double 
(possibly multiple times) in the coming decades at some of the stations investigated here, where σ̃ < 1 ◦ C for 
∼ 90% of the stations. Even though we apply the “business-as-usual” (RCP 8.5) emission scenario for the local 
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temperature projections used here, the exponential nature of the compounding increase in the odds of exceed-
ance of a 50-year temperature event will still likely manifest under less severe emission scenarios (e.g., RCP 4.5), 
but the doubling time scales will be longer (since the doubling temperature scales remain the same). However, 
stabilizing global temperatures under low (e.g., RCP 2.6) emission scenarios would suppress the frequency 
increase in extreme high temperatures to a great extent, according to the stationary analysis presented here.

Conclusions
Projections of increasing global surface temperature lead to significant transformations in the behavior of high-
temperature extremes. Trends in global and local temperatures will transform present-day “once-in-a-lifetime” 
high-temperature events into frequent (e.g., annual) occurrences in the next several decades. We show that 
projected temperature trends will exponentially increase the odds of exceeding the 50-year extreme high-tem-
perature events across North America (U.S., Canada, and Mexico) with a doubling time scale of approximately 
13–17 years. This doubling time scale is equivalent to a doubling temperature scale of ∼ 0.5–1 ◦ C rise in the local 
surface temperatures. With the increased frequency of extreme high-temperature events, we expect a correspond-
ing acceleration of many temperature-related public health concerns (see, e.g., ref.68). Although it is likely that 
society has yet to fully comprehend the consequences of global temperature rise, we offer that the information 
provided here can aid in the development of prevention and mitigation plans at regional and global scales.

Methods
Extreme value theory
Extreme Value Theory (e.g., ref.18) is a commonly employed method to analyze the occurrence of rare events 
using probability distributions of a random variable, x, which corresponds to the magnitude of an extreme event, 
i.e., the extreme temperature in the current study. The probability that the event level x is exceeded is estimated 
by E(x), which is the so-called “exceedance probability distribution” and is given by

where F(x) is the cumulative probability distribution of the random variable x.
Cumulative probability distributions, i.e., F(x) , can be characterized using a variety of statistical models18. 

In the current analysis, we utilize the popular Generalized Extreme Value (GEV) distribution, which is given by

where µ , σ , and k represent the location (e.g., distribution mean), scale (e.g., standard deviation proxy), and 
shape (skewness/tail behavior) parameters, respectively18. The parameter k is of particular importance here since 
it defines the tail behavior of F(x). The probability distribution’s tail exhibits an upper bound when k < 0 and 
a lower bound when k > 0 . The GEV distribution combines three different families of extreme value distribu-
tions based on different k parameter values, i.e., Gumbel distribution ( k = 0 ), Fréchet distribution ( k > 0 ), and 
Weibull distribution ( k < 0 ). Combining Eqs. (1) and (2), the GEV exceedance probability distribution becomes

Note that since F(x) is a monotonically increasing function from 0 to 1, E(x) represents a monotonically decreas-
ing function from 1 to 0. When the shape parameter is close to zero ( k ≈ 0 ), E(x) decays exponentially with event 
level x (see Fig. 8A). When the distribution’s mean ( µ ) increases with time, the probability distribution shifts 
to the right (see Fig. 8A), causing an increase in the exceedance probability of a specific extreme event. In other 
words, when the shape parameter is close to zero ( k ≈ 0 ), the exceedance probability increases exponentially 
for a fixed event level x, subject to an increase in the distribution’s mean (see Fig. 8A).

In the following analysis, which mirrors that of Taherkhani et al.41 but for extreme temperature rather than 
extreme coastal flood level, we adopt a simple exponential form given by

to evaluate increases in the exceedance probability (E) of an extreme temperature event (with a specific return 
period, e.g., the 50-year event) subject to a mean temperature increase ( µT ) relative to the unaltered (present-
day) distribution ( E0).

In Eq. (4), µT is the mean temperature rise, and σ̃  is the amount of temperature rise required to double 
the exceedance probability for a given event level (x). For the sake of simplification, we take advantage of the 
exponential form 2x over ex [i.e., exp(x) ], which clarifies the doubling scale of the exceedance probability. For 
example, when assuming σ̃ = 2 ◦ C, the exceedance probability of a specific extreme temperature event doubles 
and quadruples under 2 ◦ C and 4 ◦ C of temperature rise, respectively. Note that (as discussed in Taherkhani 
et al.41), the variables σ and σ̃ are not identical, although they share some similarities in their behavior related to 
the increasing frequency of extreme events. By assuming that σ̃ remains nearly constant at a location of interest 
and that µT can act as a time-dependent variable derived from local temperature projections, we can obtain 
estimates of the continuous doubling scale σ̃ by curve fitting the shifted the exceedance probability ( E

E0
) versus 

a given temperature rise (µT ) projection for a temperature threshold of interest. Here, to calculate the increase 
in the frequency of the 50-year extreme temperature event (x50) , we use shifted (empirical) probability distribu-
tions according to the equation

(1)E(x) = 1− F(x),

(2)F(x;µ, σ , k) = e
−

(

1+k
(
x−µ
σ

))−1/k

,

(3)E(x;µ, σ , k) = 1− F(x;µ, σ , k) = 1− e
−

(

1+k
(
x−µ
σ

))− 1
k

.

(4)
E

E0
= 2

µT
σ̃ ,
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where E0(x50 − µT ) represents a rightward shift of the present-day distribution E0 by the amount of µT . Here we 
apply the 50-year temperature event threshold for our analysis since a 50-year event is nominally equivalent to a 
’once-in-a-lifetime’ event. However, other return period events (e.g., 100-year events) often exhibit similarities 
in terms of their rate of acceleration due to increases in the event mean.

An alternative way to estimate σ̃ is via applying the odds of exceedance of a given event, O(x), defined as the 
ratio of the exceedance probability for a given threshold relative to the probability of that event not exceeding that 
given threshold, instead of the exceedance probability. Mathematically, the odds of exceedance, O(x), is given by

Analogous to applying shifted (empirical) exceedance probability distributions, according to Eq. (5), we can 
write a corresponding shift in the odds of exceedance as

which is shown in Fig. 8B.
Similar to the increase in the exceedance probability in Eq. (4), the simplified exponential form of doubling 

behavior in the odds of occurrence can be applied and written as

Equation (8) is advantageous over Eq. (4) because the unbounded nature of O(x) allows for the evaluation of OO0
 

under a significantly larger range of µT , while, on the other hand, E(x) has the upper bound of 1, which narrows 
the range over which EE0 versus µT is amenable to curve fitting41.

So far, we have considered an exponential form that grows with a shift in the mean ( µT ). Alternatively, we 
can express the exponential growth (in the odds of exceeding an extreme threshold) with time, which is given by

Here, t represents the time, and τ represents a doubling time scale. Like the doubling scale σ̃  , the term τ is 
location-dependent, and we obtain its value at each station by using shifted empirical distributions of the odds 
of exceedance subject to local temperature rise projections.

In the current study, we apply temperature projections under a range of probabilistic RCP 8.5 emission sce-
narios (i.e., the ensemble low-end, intermediate, and high-end RCP 8.5) obtained from the Royal Netherlands 
Climate Institute (KNMI) Climate Explorer42 database, which is based on CMIP525 simulations (https://​clime​xp.​
knmi.​nl/​CMIP5/​Tglob​al/​index.​cgi) and the World Data Centre for Climate (WDCC)43 database, obtained from 

(5)
E

E0
=

E0(x50 − µT )

E0(x50)
,

(6)O(x) =
E(x)

1− E(x)
.

(7)
O

O0
=

O0(x50 − µT )

O0(x50)
,

(8)
O

O0
= 2

µT
σ̃ .

(9)
O

O0
= 2

t
τ .

Figure 8.   Schematic plots representing the shift in (A) the probability of exceedance and (B) the odds of 
exceedance of a particular present-day extreme temperature event under temperature rise ( µT ) based on Eqs. 
(5) and (6), respectively. As evident in panel (A), the probability of exceedance is bounded (by 1), while the odds 
of exceedance, shown in panel (B), exhibits an unbounded behavior. In both panels, the values on x- and y-axes 
are on linear and logarithmic scales, respectively.

https://climexp.knmi.nl/CMIP5/Tglobal/index.cgi
https://climexp.knmi.nl/CMIP5/Tglobal/index.cgi
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CMIP626 simulations (https://​www.​wdc-​clima​te.​de/​ui/​cmip6?​input=​CMIP6.​Scena​rioMIP.​DKRZ.​MPI-​ESM1-2-​
HR.​ssp585). The KNMI and WDCC databases provided a total of 15 different global RCP 8.5 projections up to 
2300, from which we calculate and apply their ensemble average to utilize as the intermediate RCP 8.5 scenario 
in our analysis. The low- and high-end RCP 8.5 projections are constructed by taking the ensemble minimum 
and maximum projections at each time (year) among the 15 projections, respectively. To exclude the inter-annual 
anomalies present in the temperature projections (which are often associated with climate modes such as ENSO), 
we apply a low-pass filter (a 4th-order Butterworth low-pass filter with a normalized cut-off frequency of 0.01) to 
each ensemble time series. Applying the low-pass filter to local temperature projections ensures that the derived 
growth rates in the odds of exceedance are not dependent on any unknown future phase of ENSO events realized 
in GCM simulations. Unfiltered temperature projections (with inter-annual variability included) show quite 
similar (but more noisy) results in terms of the doubling time scale τ (although this analysis is not shown). This 
is largely because the doubling time τ is typically longer (e.g., 5–15 years) than the time scale of many climate 
modes that control inter-annual variability in regional temperatures.

It is often more intuitive to assess changes in the return period [ TR(x) ] rather than changes in the exceedance 
probability or the odds of occurrence at a given threshold. Equation (10) depicts the inverse relationship that 
exists between TR(x) and E(x), i.e., an increase in the exceedance probability results in a decrease in the return 
period of a given threshold, and it follows as

where ri is the recurrence interval or sampling interval of the observed historical data that are used to obtain the 
probability distribution. According to the relationship given above, a 1% exceedance probability during a given 
year (when ri = 1 year) is equivalent to an event with a 100-year return period. Thus, under a positive change in 
the mean temperature ( µT > 0 ), the change in the return period can be calculated as

which means that any potential form of exponential growth in the exceedance probability (or, similarly, odds) 
at a given threshold corresponds to an exponential decay in the return period.

Data and application
NOAA’s National Centers for Environmental Information (NCEI) archives the hourly/daily temperature obser-
vations across North America (U.S., Canada, and Mexico) in the NOAA-GHCND database (https://​www.​ncei.​
noaa.​gov/​produ​cts/​land-​based-​stati​on/​global-​histo​rical-​clima​tology-​netwo​rk-​daily). For the current analysis, we 
obtained these temperature data set via their API data access protocols. The hourly/daily maximum temperature 
record for 18,698 stations across U.S., Canada, and Mexico were downloaded, with the longest records containing 
data from 1840 to 2018 (178 years). All stations that provided only hourly temperature records were converted 
to daily maximum temperature records for the analysis described below. Only stations with more than 50 years 
of data and at least 80% data coverage are retained in this analysis. Additionally, stations with less than 80% 
coverage during summer periods (June-July-August) were removed from the analysis. This process filters out ∼
77% of the stations initially considered, leaving 4266 stations with high-quality data that we used in the present 
analysis. On average, the length of available historical data for these stations is 88 years. Similar to Taherkhani 
et al.41, to obtain the parameter estimates for the GEV distribution (2), we apply the top three annual maxima 
(i.e., ri = 1/3 ; block size of 1 year for extreme event selection) from the set of available temperature observations. 
Annual block sizes are found to be reasonable for the analyses of high-temperature extremes10,11. To eliminate 
the effect of local warming trends on the magnitude and frequency of extreme high temperatures, we detrended 
(linearly) the time series of historical temperatures. The choice of the top three annual events ensures that the 
influence of large, isolated extreme high-temperature events is restricted.

GEV has proven to be a robust model for analyzing temperature extremes; however, it is not without limita-
tions (see, e.g., ref.23). GEV is highly sensitive to the length of the available observational data, where limited 
records return less reliable estimates of extreme events. However, the GEV model is generally capable of assessing 
the statistical behavior of rare events (e.g., a 50-year event) even when the observational time series available 
is shorter than the return period of those events (i.e., 50 years)10,23. Fortunately, in the case of our analysis, all 
stations have records of 50 years of data or more, lending confidence to the estimates of GEV model parameters.

We examine two different scenarios to assess transformations of extreme temperature events. In the first 
scenario, we investigate the potential temperature increase that would cause the present-day 50-year event to 
become exceeded annually, which is calculated as follows

where �T50yr→1yr is the difference in temperature extremes corresponding to a 50-year, x(TR = 50 ;µ, σ , k) , and 
a 1-year (annual), x(TR = 1;µ, σ , k) , temperature event. Both 50-year (TR = 50) and 1-year (TR = 1) temperature 
events are obtained by inverting the GEV distribution at each location. As shown below in Fig. 2A, the value of 
�T50yr→1yr is typically ∼2-7 ◦ C across North America (see section “Results” for more details).

In the second scenario, we inspect the temperature rise needed to cause a shift from an annual event to the 
nominal mean summer temperature (MST) level, according to the equation

(10)TR(x) =
ri

E(x)
,

(11)
TR(x;µ+ µT , σ , k)

TR(x;µ, σ , k)
=

(
E(x;µ+ µT , σ , k)

E(x;µ, σ , k)

)−1

,

(12)�T50yr→1yr = x(TR = 50; µ, σ , k)− x(TR = 1;µ, σ , k),

https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.DKRZ.MPI-ESM1-2-HR.ssp585
https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.DKRZ.MPI-ESM1-2-HR.ssp585
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
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Here, similar to Eq. (12), �T1yr→MST  represents the difference between the annual temperature event, 
x(TR = 1; µ, σ , k) , and MST, which is defined as the average of the daily maximum temperature in summer 
(June-July-August) from the (linearly detrended) time series of the observed hourly/daily temperatures at each 
station. As shown below in Fig. 2B, the value of �T1yr→MST is typically ∼2–12 ◦ C across North America.

Having calculated the required temperature difference for each station under the two above-mentioned 
scenarios, we find the time (year) in the future that each of these two scenarios is expected to take place for each 
location based on projections of local temperature rise under a range of RCP 8.5 emissions scenarios (described 
in section “Extreme value theory”).

Data availibility
The data and programming codes required to reproduce this analysis are publicly available at https://​github.​
com/​adava​ria/​tempe​rature-​extre​mes.
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