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Modelling the effects 
of topographic heterogeneity 
on distribution of Nitraria 
tangutorum Bobr. species in deserts 
using LiDAR‑data
Huoyan Zhou 1,2, Linyan Feng 3, Liyong Fu 3, Ram P. Sharma 4, Xiao Zhou 5 & Xiaodi Zhao 2,6*

Microclimate ecology is attracting renewed attention because of its fundamental importance in 
understanding how organisms respond to climate change. Many hot issues can be investigated 
in desert ecosystems, including the relationship between species distribution and environmental 
gradients (e.g., elevation, slope, topographic convergence index, and solar insolation). Species 
Distribution Models (SDMs) can be used to understand these relationships. We used data acquired 
from the important desert plant Nitraria tangutorum Bobr. communities and desert topographic 
factors extracted from LiDAR (Light Detection and Ranging) data of one square kilometer in the inner 
Mongolia region of China to develop SDMs. We evaluated the performance of SDMs developed with 
a variety of both the parametric and nonparametric algorithms (Bioclimatic Modelling (BIOCLIM), 
Domain, Mahalanobi, Generalized Linear Model, Generalized Additive Model, Random Forest (RF), 
and Support Vector Machine). The area under the receiver operating characteristic curve was used 
to evaluate these algorithms. The SDMs developed with RF showed the best performance based on 
the area under curve (0.7733). We also produced the Nitraria tangutorum Bobr. distribution maps 
with the best SDM and suitable habitat area of the Domain model. Based on the suitability map, we 
conclude that Nitraria tangutorum Bobr. is more suited to southern part with 0–20 degree slopes at an 
elevation of approximately 1010 m. This is the first attempt of modelling the effects of topographic 
heterogeneity on the desert species distribution on a small scale. The presented SDMs can have 
important applications for predicting species distribution and will be useful for preparing conservation 
and management strategies for desert ecosystems on a small scale.

The Ulan Buh Desert is the 8th largest desert in China, and is located in the mid-latitudinal zone. It is character-
ized by a typical continental climate with little precipitation. The desert is located in a transitional zone with a 
temperate climate ranging from semiarid to arid  conditions1. It is one of the driest regions at similar latitudes 
in the world and has a very sensitive ecological environment, which creates a fragile desert ecotone. The desert 
ecotone is the key ecoregion and is suitable for researching ecosystem degradation and recovery mechanisms. 
Desert ecotones may have high ecological significance, which quantitatively reveals the interactions between 
plants and environmental factors. The spatial distribution pattern of the desert plants is therefore the result of 
the interactions between the plant communities and the harsh environmental  factors2.

Spatial distributions are fundamental to species  ecology3 and help identify threats to the conservation of 
plant species, manage the impacts of biological  invasion4, and plan conservation strategies. Climate, edaphic, 
and topographic factors are the main factors affecting species  distributions5. These factors are affected by a 
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variety of biophysical processes including competitive interactions between plant species and their dispersal 
 history6,7. SDMs, like habitat suitability or ecological models, are developed with the observed species occur-
rence as a response variable and environmental factors as predictor  variables8. Many modelling techniques are 
available to developed  SDMs9–11. Although previous SDMs studies have compared different modelling techniques 
for their  precision12–17, most of them describe species distributions over a large scale, and therefore have low 
predictive performance in small-localized  condition6,18–20. Most SDMs are calibrated only with climate data at a 
low spatial resolution, such as the climate data acquired from WorldClim(https:// www. world clim), with a 1  km2 
grid resolution. However, some studies have indicated that the predictive performance of SDMs can be substan-
tially improved by incorporating other environmental factors in addition to climate  factors21 or by considering 
finer-scale processes, such as topo-climatic  processes22. Topographic heterogeneity is the most important fac-
tor affecting the spatial distribution of desert  plants23. In the mountainous regions, topography may precisely 
describe local temperature, light, and humidity, Topography significantly affects light and water availability and 
soil development. Furthermore, topography affects species composition, structure, appearance, and dynamics 
of the plant  communities24–26.

Building on the previous work done in this field, the current study intends to answer a few important ques-
tions including ‘What distribution patterns are followed by the desert plant species?’ and ‘Which topography 
factors play a major role in affecting the species distribution?’ Intense solar radiation, high evapotranspiration, 
extreme temperatures, degraded soil and vegetation cover, low atmospheric moisture, and harsh topographic 
features are important factors in the desert environment. The desert is extremely arid with < 60–100 mm mean 
annual precipitation, and therefore, its moisture regime is the most critical factor for regulating biological pro-
cesses and species distribution. The rainfall spatially varies at different scales, not only at the regional scale rang-
ing from 0.1 to 10 km, but also at a local scale of few meters. Rainfall is the main source of moisture for desert 
plants, which triggers species’ survival and  growth27. Many studies have explored the appropriate methods for 
understanding the relationships between vegetation dynamics, soil moisture, and temperature in the desert 
 ecosystem28–30. However, under similar climate and desert environmental conditions, the influence of topography 
on species distribution has rarely been investigated in a small scale.

Additionally, several studies have been conducted on the topographic factors affecting animal communities 
in the desert. In recent decades, some studies have been conducted to model the environmental variables influ-
encing kit fox distribution. For example, Maxent fixed-effects and generalized linear mixed-effects models have 
been developed to describe kit fox  distribution30. These modelling studies show the large effects of elevation on 
kit fox survival and growth, followed by that of the slope and canopy height of the vegetation at the landscape 
scale. The Maxent algorithm was used to predict the habitat in the Mojave desert and parts of the Sonoran 
desert considering the geographical and topographical factors at the spatial grid of one square  kilometer31. The 
field-validated site—and landscape-level SDMs were developed to identify the potentially rare and endemic 
plant habitats in the Great Basin of Western North  America32, in which the potential habitat combined with the 
elevation, slope, aspect, rock type, and geologic processes are mapped with the resolution of 100 square meters. 
Similar to climatic factors, non-climate predictors (e.g., topography and habitat) are also important at a finer 
 scale33. Thus, the analysis of these factors on a finer scale could be the most appropriate for developing SDMs and 
increasing their predictive  accuracy34. As mentioned above, topography is one of the most important predictors 
of SDMs. It controls the habitat structure, biota, and all growing conditions  locally35, especially in the desert, 
where topographic features are more unfavorable than other land features. Thus, a high-resolution topographic 
map is necessary to develop SDMs.

For dominant species, such as Nitraria tangutorum Bobr. in the desert, a small geographic range and nar-
row habitat may lead to acute habitat limitation, which is strongly correlated with other environmental factors. 
The microclimate, which influences ecosystem dynamics and processes, is often disregarded in ecology and 
 evolution36. It is meaningful to investigate the geographical variations of Nitraria tangutorum Bobr. species in the 
desert on a small scale, such as within the scale of 100 m, where topographic factors significantly affect species 
distribution. Existing studies have shown that geographic and topographic predictors can substantially improve 
the fitting performance of  SDMs37.

High-resolution terrain data are rarely available. Remote sensing technology, which offers alternative solu-
tions to various data sets, can supply accurate high-resolution terrain data using the light detection and ranging 
(LiDAR) technology. Remote sensing data is important for determining species  distribution38,39. In recent years, 
LiDAR datasets have become useful for modelling biodiversity and habitat analyses. For example, LiDAR data 
could improve the prediction of composition and changes in the plant  communities40,41, improve the descriptions 
of animal behaviors and their spatial  distributions42, and enhance the species richness  prediction17.

In this study, we developed SDMs for revealing the relationships between desert plants and topographic 
factors affecting species distributions. Topographic variables used in the SDMs were derived from LiDAR data 
(resolution: 0.15 m). The SDMs could be used to predict the precise distribution of species covering an area of 
one square kilometer with a resolution of 10 m. Different modelling algorithms proposed in this study were 
evaluated based on the dataset obtained from 67 Nitraria tanguotrum species in the Ulan Buh Desert, an arid 
land in northern China. The objectives of this study were to: (1) compare various modelling algorithms includ-
ing parametric and non-parametric modeling based on statistical indexes, and determine the best to develop 
SDMs; (2) evaluate the contribution of topographic factors to the precise prediction of distribution of the plant 
species of interest in the desert; (3) determine the effects of topographic heterogeneity on the distribution of 
Nitraria tangutorum Bobr; and (4) present the habitat suitability map for Nitraria tangutorum Bobr. and show 
the corresponding management implications of the presented SDMs.

https://www.worldclim
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Results
Model performances. Random sampling and each of the seven models were run ten times, and the Area 
Under Curve (AUC), true positive rate (TPR), and false positive rate (TNR) were calculated. With the presence 
of 67 and the absence of 100, the results indicated the AUC varied from low (0.59) to high (0.81), indicating dif-
ferent qualities of the prediction SDMs of Nitraria tangutorum Bobr. (Fig. 1). The RF produced the highest AUC 
value, and the Domain had the lowest AUC value (Table 1). All the model performances were fair and satisfac-
tory, except for BIOCLIM and Domain. RF produced the largest AUC, but not with maximum TPR and TNR; 
TPR and TNR of RF were the third lowest of seven models. Mahalanobis produced the highest TPR + TNR value.

For the profile models, Mahalanobis produced the highest AUC, while AUC for Domain, which was the 
lowest, and AUC for BIOCLIM were more stable (Table 1). For GLM and GAM, the AUC values were almost 
identical. For the machine learning models, AUC for RF was higher than that for SVM, and the same was true 
for max TPR + TNR. RF proved to be better than SVM in modelling the distribution of Nitraria tangutorum 
Bobr. in the desert.

Habitat suitability and prediction maps for Nitraria tangutorum Bobr. distribution. We pro-
duced the maps (Sup. Figures  1–7) using R 3.4.3 and ARCGIS 10.5, which show the habitat suitability for 
Nitraria tangutorum Bobr. The potentially suitable habitat distribution maps of Nitraria tangutorum Bobr. in the 
study area were obtained from different algorithms. Furthermore, the corresponding species’ presence/absence 
with each algorithm was mapped. The Nitraria tangutorum Bobr. species distributed mainly in the eastern part 
of the study area. The spatial distributions of Nitraria tangutorum Bobr. simulated by the different models were 
significantly different. Concerning the most suitable area for Nitraria tangutorum Bobr, the most suitable habitat 
area simulated by the Domain model was the largest, and the most suitable habitat area simulated by BIOCLIM 
model was the smallest. The suitable habitat areas simulated by GLM and GAM models were identical; the suit-
able habitat simulated by GLM and GAM was the largest, while that simulated by BIOCLIM was the smallest.

The driven factors of topography on the Nitraria tangutorum Bobr. distribution. The responses 
of the driven factor- topography with different models were compared for Nitraria tangutorum Bobr. Different 
models delineated the topography characteristics of the potential distribution areas. With BIOCLIM, the exist-
ence probability followed a trend of increase at first and then decreasing trend, and aspect of the south part was 
on the top. For DEM, the existence probability trend of the species was steeper, reaching a peak at an altitude 
of approximately 1010 m. For the profile factor, the species Nitraria tangutorum Bobr. appeared more suitable 
at the predicted value of zero, and was also suitable for slope of 0°–20°. With the Domain model, the existence 
probability trend of the species was similar to that of the BIOCLIM model, but it seemed steeper. In the Malan-
hanobis model, at the aspect of the north by east 10°, the species Nitraria tangutorum Bobr. exhibited minimum 
fitness, and at the altitude range of 1007–1013 m, exhibited maximum fitness. Regarding the topography factor 
of the profile, there were two crests at the predicted value near zero. With the GLM and GAM models, the exist-
ence probability trend of the species was nearly the same as the linear trend line, but in the RF, the trend was 
nonlinear. Regarding the factor of aspect, predicted value fluctuated between 0.4 and 0.8, but for DEM factor, 

Figure 1.  The boxplots of different models (BIOCLIM: classic climate envelope model; Domain computes the 
Gower distance between environmental variables and locations of occurrence; Mahalanobis model based on 
the mahalanobis distance; GLM: Generalized Linear Model; GAM: Generalized Additive Model; RF: Random 
Forest; SVM: Support Vector Machine).
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predicted value was the highest at an altitude of approximately 1010 m. With the factors of profile and slope, at 
the degree of zero, predicted value reached the top, at a slope of 20°–60°, exhibiting a rising tendency.

Analysis of the maps showed the distribution of the species Nitraria tangutorum Bobr. was more suitable in 
the south, with an altitude of approximately 1010 m, from a slope between 0° and 20°, and general trend was the 
same with different models. The GLM or GAM was found inadequate for the distribution modelling of Nitraria 
tangutorum Bobr.

Discussion
Importance of LiDAR data and its ecological implications with selected predictor varia‑
bles. How does climate change affect organisms? In the past, our limited ability to map and monitor the 
microclimatic variations using modelling through the incorporation of the microclimate. The microclimate sen-
sors set in the networks provided point-based approaches and weather stations provided macroclimate data. 
However, means of interpolating and downscaling data were  lacking43. LiDAR is valuable for mapping microcli-
mates, as it provides spatially continuous and sub-meter-scale information about ground  topography44. Aerial 
photography provides an approach for assessing topography. However, these are less accurate than LiDAR at 
deriving terrain  elevation45. An important advantage of UAVs is that they are flexible, enabling the collection 
of time series of aerial imagery over a period at a reasonable cost. In our study, LiDAR data were used to obtain 
DEM for SDMs, thereby supporting more effective conservation monitoring, management, and policy decision 
for a sustainable  future46.

Our results showed that Nitraria tangutorum Bobr. species are specialists in the range of their habitat 
resources. In other words, Nitraria tangutorum Bobr. has a relatively narrow ecological niche.

It is limited to making the distribution by considering only topographic variables, the role of habitat hetero-
geneity in the desert ecosystem may be underestimated. If other environmental factors, such as light, soil, and 
water are considered, niche theory may be able to better explain the existence mechanism of species. Therefore, 
future studies need to consider more bio-variables to simulate the distribution of the species, and a permanent 
plot should be designed to contain the entire spatial gradient of the microclimate conditions in the study sys-
tem. Long-term microclimate data series are required to complement the dynamics of the microclimate around 
the species. Gathering georeferenced microclimate data from different habitat types across the globe would 

Table 1.  Evaluation measures of seven species distribution models. BIOCLIM: classic climate envelope 
model; Domain: computes the Gower distance between environmental variables and locations of occurrence; 
Mahalanobis: model based on the Mahalanobis distance; GLM: Generalized Linear Model; GAM: Generalized 
Additive Model; RF: Random Forest; SVM: Support Vector Machine; A: true positive (TP); A + B: positive (P); 
B: false negative (FN); C + D: negative; C: false positive (FP); D: true negative (TN); TPR: true positive rate = A/
(A + B) = TP/(TP + FN) = TP/P; TNR: False positive rate = C/(C + D) = FP/(FP + TN); Rating of the model 
accuracy: excellent = AUC > 0.9, fair = 0.7 < AUC < 0.9, and poor = AUC < 0.7 (Swets, 1988).

Run time Model evaluation BIOCLIM Domain Mahalanobis GLM GAM RF SVM

Number of presences 67 67 67 67 67 67 67

Number of absences 100 100 100 100 100 100 100

1
AUC 0.6767 0.7178 0.7741 0.7704 0.7704 0.8043 0.7681

TPR + TNR 0.1402 0.6595 0.6799 0.4836 0.4836 0.4565 0.7167

2
AUC 0.6689 0.7093 0.7555 0.7631 0.7704 0.8111 0.7477

TPR + TNR 0.1521 0.6370 0.6560 0.4211 0.4836 0.4221 0.1208

3
AUC 0.6808 0.6870 0.6949 0.7345 0.7345 0.7321 0.7169

TPR + TNR 0.0626 0.6209 0.5793 0.2996 0.2996 0.2884 0.1788

4
AUC 0.7227 0.6978 0.7531 0.7396 0.7396 0.7880 0.7337

TPR + TNR 0.1700 0.7222 0.6364 0.4825 0.4825 0.4647 0.3292

5
AUC 0.6325 0.6067 0.6932 0.7256 0.7256 0.7349 0.6713

TPR + TNR 0.0805 0.6565 0.8508 0.4108 0.4108 0.2795 0.1636

6
AUC 0.6619 0.5888 0.7218 0.6907 0.6907 0.7275 0.6184

TPR + TNR 0.1103 0.6253 0.6858 0.4211 0.4211 0.2051 0.0842

7
AUC 0.6962 0.6616 0.7157 0.7191 0.7191 0.7679 0.6988

TPR + TNR 0.1402 0.6376 0.6858 0.4211 0.4211 0.3134 0.1195

8 AUC 0.7055 0.7006 0.7717 0.6766 0.6766 0.7740 0.6857

TPR + TNR 0.2298 0.5183 0.5368 0.4220 0.4220 0.4669 0.4281

9 AUC 0.6767 0.7178 0.7741 0.7704 0.7704 0.8037 0.7638

TPR + TNR 0.1402 0.6595 0.6799 0.4836 0.4836 0.4687 0.7061

10 AUC 0.6334 0.6264 0.7375 0.7173 0.7173 0.7897 0.7103

TPR + TNR 0.2686 0.4677 0.3156 0.3961 0.3961 0.2720 0.2367

TPR + TNR (average) 0.1495 0.6204 0.6306 0.4242 0.4304 0.3637 0.3084

AUC (average) 0.6755 0.6714 0.7392 0.7307 0.7315 0.7733 0.7115
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significantly promote progress in microclimate  ecology47. UAVs equipped with multispectral or hyperspectral 
sensors and laser scanner systems are very promising, providing high-resolution data in the context of micro-
habitats, vegetation structures, and  topography48.

Suggestion for improvement of SDMs. In our study, not only AUC of the models but also the responses 
of the variables with the models were different. The parametric regression-based models (GLM and GAM) had 
lower mean performance, whereas nonparametric or machine learning-based models (RF and SVM) were more 
accurate. GLMs are widely used in SDM  studies49, but have poor nonlinear response performance. At the same 
time, the results confirmed the effectiveness and robustness of the machine-learning techniques. Similarly, Mar-
mion et al. found a single algorithm with lower accuracy than RF in predicting the plant  distributions50. The 
parameters of the model affect its accuracy; for example, the performance of RF depends on two important 
parameters, ntree and mty. As for the ntree, the optimal value using only the default may not be the best; there-
fore, future research should test and adjust the model parameters to the optimum state. In this study, various 
parametric and nonparametric algorithms were evaluated for SDMs. In the next step, semi-parametric  models51 
shall be used for better results.

A stable and reliable mathematical algorithm is required to develop more accurate SDMs. In previous studies 
of community-level predictions of the species distributions, the choice of how species and site-level occurrence 
probabilities are combined into species assemblage predictions is more important than the choice of the model 
type  used52. Following research shall use ensemble models to predict species distribution. As many researchers 
have expressed, no evidence has proven that one model is steadily accurate, but it is proven to be better than 
other models.

The number of environmental factors that accurately represent the habitat characteristics of a species was 
sufficient SDM has some limitations, for example, over-prediction of species richness per site and sensitivity to 
methodological biases. In addition, sample size, sample prevalence, sample design, model techniques, imperfect 
detection of species, or the choice of environmental variables could affect the uncertainty of the  predictions53.

The relationships between species occurrence and sets of predictor variables explored by the models produce 
two kinds of useful outputs: estimates of the probability that species might occur at a given unrecorded  location50, 
and estimates of an area’s suitability for species 16. Climate determines the distribution of desert  species54. Previous 
research has shown that the roots of desert plant species develop and depend on the  underwater55. As the study 
area was only one square kilometer, the variable of climate change could not be obvious, and species distribu-
tion could have been disturbed by the level of underground water. However, further studies are necessary in 
this regard. It is well known that biotic interactions play an important role in creating accurate SDMs for many 
species, particularly at small geographic scales, such as host requirements and  competition6,56. In this study, the 
model did not include the interaction between species and the influence of predators or human activities. More 
efforts should be dedicated to include fine-scale environmental measures, such as micro-temperature, under-
water, moisture, and rainfall, for fine-scale species mapping and management.

Management implication of SDMs. Species conservation and management are key to maintaining 
regional ecological balance, especially in ecologically fragile areas such as the Ulan Buh Desert. This study could 
distinguish the habitat requirements of Nitraria tangutorum Bobr., especially for the topography, to provide a 
reference for protection. Nitraria tangutorum Bobr. was found to be distributed mainly in the eastern part of the 
study area. This finding is consistent with the results of the actual survey. The suitable habitat area is larger than 
the real area, which indicates that the area of Nitraria tangutorum Bobr. is more widely distributed under cur-
rent environmental conditions. Some of the suitable habitat characteristics shown in our study were consistent 
with those of other  studies57. For example, the population size of Nitraria tangutorum Bobr. increases with sand 
depth, making it suitable for dunes. To expand the area of Nitraria tangutorum Bobr., the land should be dune, 
and will be a good choice at an altitude of approximately 1010 m, better to face the aspect of the south part, 
within the slope of 20°. Because of this characteristic, Nitraria tangutorum Bobr. can prevent quicksand from 
moving forward and land desertification. Nitraria tangutorum Bobr. is an excellent species for sand fixation.

Materials and methods
Study workflow. The study process shown in the flowchart (Fig. 2) consists of four parts: (1) preparing 
data, including species data and factors of topography; (2) fitting different models; (3) evaluating models by Area 
Under the Curve (AUC) and comparing the driving factors of different models; and (4) estimating areas suitable 
for habitat using the developed SDMs.

Study area and data analysis. Study area. The Ulan Buh Desert is located in the northern part of 
Inner Mongolia Province, 106°38′42″E—106°57′00″ E, 40°17′24″ N–40°28′36″ N (Fig. 3), covering an area of 
14,905.13  km2. The elevation ranges from 1009 to 1016 m, and the topographical profile on the surface varies 
from 1211.58 to 1339.63  m58. The climate is characterized by semi-arid to arid conditions, with a mean annual 
precipitation of 147.4 mm, mean annual evaporation of 2458.4 mm, mean annual relative humidity of 47.3%, 
and mean annual temperature of 6.8 °C in the  desert59. The eastern edge of the desert is important for dividing 
the desert and grassland in Central Asia. Our study was based on control plots, such as desertification processes 
and control  treatments60.

Species data processing. Nitraria tangutorum Bobr. is a shrub species. It is 1–2 m tall, multi-branched, crooked, 
prone, and spreads with infertile needle-like apex branches and white tender branches. The leaves are clustered 
in 2–4 pieces on the young shoots, broadly lanceolate, 18–30 mm long, 6–8 mm wide, blunt apex, base narrowed 
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into a wedge, and entire rare apex lobed. The flowers are densely arranged. The drupe is oval and dark red when 
ripe, juice rose-colored, 8–12 mm long, and 6–9 mm in diameter. (http:// www. iplant. cn/) (State Key Laboratory 
of Systems and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences). Supplementary material 
Fig. 8 for photo of plant Nitraria tangutorum Bobr in the field investigation.

(1) Species data collection
The ground surveys were conducted between August and September 2019. 100 sample plots of Nitraria 

tangutorum Bobr. plant community was established in one square kilometer at the eastern edge of the study 
area. Each 100 × 100 m sample plot was divided into 100 small quadrats with an area of 10 × 10 m (Fig. 3). The 
center points GPS location is southeast corner of the sample F5, and the accuracy of the point is within a half 
meter. The grids that were created in the same direction as we sampled in field, all are facing north. 335 occur-
rence records for Nitraria tangutorum Bobr. were collected in the area (Fig. 5). The formal identification of the 
plant material used in my study has complied with the Chinese Virtual Herbarium (CVH): (https:// www. cvh. 
ac. cn/ spms/ detail. php? id= f76ac eff), and a specimen of this material has been deposited in a publicly avail-
able herbarium. And we were employed by the Chinese Academy of Forestry, which is also the State Forestry 
Administration Dengkou Desert ecosystem positioning observation station. To ensure that we have permission 

Figure 2.  Workflow of the study. ARCGIS 10.5 is the software of geographic information system, R3.4.3 is the 
data processing platform, AUC is the area under the receiver operator curve, which evaluates the fitted models. 
Species distribution models include Bioclimatic Modelling (BIOCLIM), Domain, Mahalanobis, Generalized 
Linear Model (GLM), Generalized Additive Model (GAM), Random Forest (RF), Support Vector Machine 
(SVM). SHI denotes suitable area index.

http://www.iplant.cn/
https://www.cvh.ac.cn/spms/detail.php?id=f76aceff
https://www.cvh.ac.cn/spms/detail.php?id=f76aceff
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to collect Nitraria tangutorum Bobr. We confirm that all methods were performed following current guidelines 
and regulations in China, Huoyan zhou, Xiao Zhou, and Xiaodi Zhao undertook the formal plant identification, 
and field investigation were carried out.

(2) Processing species data
The data were cleaned for use in our modelling. The longitudes and latitudes of the sample plot center were 

recorded as coordinates, and if the record was out of the boundary of the study area, it was checked with the 
UAV-RGB (Unmanned Aerial Vehicle—Red Green Blue) data and overlaid on the map. If the canopy was outside 
the plot boundary, the root inside was preserved.

The coordinates were cross-checked by a visual or ‘overlay’ function using ArcGIS 10.5. This study applied the 
coordinate function from the ‘SP’ (spatial point) package to create a Spatial Point Data Frame, and then the over 
function from ‘SP’ to do a point-in-polygon query with the study boundary. Moreover, the occurrence of each 
grid would be only once, without duplicate records; the function ’duplicate’ could be used to remove duplicates 
in the software R3.4.3.

The species data included the presence and absence data, the resolution of the grid was 10 m, and each grid 
retained only presence or absence data, reducing the bias of the model predictions by space  sampling61.

Environment data processing. LiDAR data
The UAV technique with the SPAN_IGM_STIM300 IMU (Fig. 4a) was used to gather airborne LiDAR data 

during the study conducted on October 24, 2019. The LiDAR parameters were a pulse rate of 125 kHz, a scan 
angle (FOV(field of view)) of ± 22.5°, and a laser beam divergence (IFOV) of 0.5 mrad. An average point density 
of 41.62 points per m2 and a footprint diameter of 25 cm was obtained.

Figure 3.  Location of study site in the Ulan Buh desert (the top of the figure is the northwest arid area in China; 
the bottom left is the study area located in Ulan Buh desert; and the bottom right is the plot of Ulan Buh desert. 
The number of rows are 0,1,2,3,…and the columns are A,B,C,…in the proper sequence).
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Topographic variables
The digital elevation model (DEM) was derived from the UAV LiDAR point cloud (Fig. 4b) with a resolution 

of 15 cm (Fig. 5a) and then resampled to 10 m (Fig. 5b) with image analysis tools. Other topographic variables, 
including slope, aspect, and profile (Fig. 6), were obtained using the spatial analysis model in ArcGIS 10.5. Pre-
dictor variables were organized as raster (grid) files for species distribution modelling. After generating the set of 
predictor variables (rasters) and the occurrence points, our next step was to extract the values of the predictors 
at the locations of the points using the raster tools of ‘extract’ in ArcGIS 10.5. To select the significant predictor 
variables, the variance inflation factor (VIF) was calculated. A VIF of 10 was acceptable as it showed no significant 
collinearity among the predictor  variables62. All variables were resampled using ArcGIS 10.5 to unify the space 
dimension of 10 m, which was the same value as the resolution of the species samples.

Forms for SDMs. To predict species distribution, a number of statistical and machine-learning approaches 
have been  used63,64. In conjunction with geographic information systems and remote sensing, the methods used 
in species distribution modelling can be classified as profile, regression, and machine learning methods. The 
profile method only considers the presence (occurrence) data, whereas the regression and machine learning 
methods use both the presence and absence data. The profile method includes  BIOCLIM65,  Domain66, and 
 Mahalanobis67. In addition to these methods, we also analyzed and compared the predictive performance of 
SDMs developed using regression methods, such as the  GLM68 and  GAM69,70, and some machine learning meth-
ods, such as  RF71 and SVM.

Figure 4.  The Unmanned Aerial Vehicle (UAV) Light Detection and Ranging (LiDAR); (a) is the UAV LiDAR; 
(b) is the digital elevation model (DEM), and legend describes the elevation of the point.
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Sampling bias may have been present in the occurrence data  used72. Random sampling was performed to 
record the presence or absence data with the random points function in the ‘dismo’ package. An ‘extent’ tool was 
used to further restrict the area from where random locations were  drawn8,73. The ‘dismo’ package containing 
the k-fold function facilitates the data partitioning and creates a vector that assigns each row in the data matrix 
to a group (between 1 and k with k = 5).

We used seven modelling algorithms, including both nonparametric and parametric algorithms, to develop 
the SDMs, seven modelling algorithms are briefly described below.

Bioclimatic modelling (BIOCLIM). BIOCLIM is a classic climate envelope  model65. Although it generally 
does not perform as well as some other modelling  methods74, particularly in the context of climate  change72, it is 
still being used, because the algorithm is easy to understand.

Domain. The Domain  algorithm66 has been extensively used for species distribution modelling. The Domain 
algorithm computes Gower’s  metric75 between the environmental variables at any location and those at any of 
the known locations of occurrence, which were defined as training sites in this study.

A suitable means of quantifying the similarity between the two sites is provided by Gower’s metric. In Euclid-
ean Q-dimensional space, the distance d between two points A and B is defined as

To equalize the contribution from each climatic attribute, Gower’s metric uses range standardization. In this 
application, the standardization method is preferred over variance standardization because it is less susceptible 
to bias arising from dense clusters of sample points. The complementary similarity measure ( RAB ) is defined as

RAB is constrained between 0 and 1 for points within the ranges used in Eq. 1 but may yield negative values 
for points outside this range. SA is defined as the maximum similarity between candidate point A and the com-
bination of known record site Tm:

SA is evaluated for all grid points in a target area, where m denotes the number of known records, and a 
matrix of continuously varying similarity values is generated, which can be displayed as a grayscale, thematic, 
or contour map. As with all models discussed here, the values generated are not probability estimates but the 
degrees of classification  confidence66.

Mahalanobis. The Mahal function implements SDMs based on Mahalanobis  distance67. The Mahalano-
bis distance considers the correlations of the variables in the dataset, and it is not dependent on the scale of 
measurements.

(1)dAB =
1

Q

∑Q

K=1

(
AK − BK

rangeK

)

(2)RAB = 1− dAB

(3)SA =
m

max
j=1

RTjA

(4)PD2
1 = αµv(da)

µ(da)v

Figure 5.  The original and rescaled LiDAR data with different resolution, (a) is LiDAR DEM with a resolution 
of 0.15 m, (b) is LiDAR DEM with a resolution of 10 m, and the purple points indicate the occurrence of 
Nitraria tangutorum Bobr.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13673  | https://doi.org/10.1038/s41598-023-40678-5

www.nature.com/scientificreports/

where αµv is the dispersion, (α)µ is the mean value, P is the independent variable, and D2 is the sample value of 
the �2 statistic. Both the dispersion and mean values are subject to sampling fluctuations.

Generalized linear models (GLM). In GLM,  Xk(k = 1, · · ·, r) is the vector of k predictor variables, which 
is related to the expected value µ = E(Y) of the response variable Y  (denote the response variable) through a link 
function g(·) (Eq. 5). The use of GLM in species distribution modelling is provided  in68.

where α is a constant called the intercept, and β is the vector of k regression coefficients (one for each predictor). 
(Eq. (6)).

It is assumed that the topographic factor is normally distributed and is defined as X, and the species distribu-
tion probability as Y; Therefore in the response distribution of GLM, which uses the “family = gaussian”.

Generalized additive models (GAM). GAM69,70 are extensions of GLMs. In GAMs, the linear predictor 
is the sum of the smoothing functions. This makes GAMs very flexible and they can fit complex functions. This 

(5)g(E(Y)) = α + XTβ

(6)g(µi) = α + β1xi1 + β2xi2 + · · · + βkxik

Figure 6.  Maps of the predictor variables. The horizontal and vertical coordinates represent latitude and 
longitude, respectively. The (a) indicates different aspect of the study area, (b) indicates different elevation of the 
study area, (c) indicates different profile of the study area, and (d) indicates different slope of the study area
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also makes them very similar to machine-learning methods. The GAMs were implemented using the ’mgcv’ 
package R 3.4.3.

where µ = E(Y
∣∣X1,X2, · · ·Xp ) , n is for the linear prediction, and si(·) is the nonparametric smooth function. 

This model does not require any assumptions. It consists of a random component, an additive component, and 
a link function connecting the two parts. The distribution of the response variables(Y) belonging to the family 
of exponential distributions can be binomial.

Random forest (RF). The RF method is an extension of the regression and classification trees (CART)71. 
This method can be implemented using the “random forest” function in the package with the same package 
name in R 3.4.3. The function RF can take a formula, or in two separate arguments, a data frame with the predic-
tor variables and a vector with the response. If the response variable is a factor (categorical) type, RF performs 
classification; otherwise, it performs regression. In species distribution modelling, because RF showed remark-
able modelling results, it is considered a viable option.

(1) Suppose there is a dataset D =
{
xi1, xi2, · · ·xin, yi

}
(i ∈ [1,m]) ( Xim is the vector of m predictor variables, 

yi are the response variables) with feature number n, sampling with replacement can generate a sampling 
space (m ∗ n)m∗n.

(2) Build a basic learner (a decision tree): di =
{
xi1, xi2, · · ·xin, yi

}
(i ∈ [1,m]) generates a decision tree for 

each sample (where K <  < M) and records the results of each decision tree hj(x).
(3) Training times to T H(x) = max

∑T
t=1φ(h(x) = y) , where φ(x) is an algorithm (absolute majority voting, 

majority voting, weighted voting method, etc.).

RF requires two parameters: (1) mtry, the number of predictor variables performing data partitioning at each 
node, and (2) ntree, the total number of trees to be grown in the model run. In this study, ntree (number of trees 
to grow) was set to 500 and mtry to 10 after some initial tuning experiments.

Support vector machines (SVM). SVM76 applies a simple linear method to data; however, in a high-
dimensional feature space, nonlinearly exists in the input space. However, in practice, this does not involve 
any computations in a high-dimensional space. This simplicity, combined with state-of-the-art performance 
on many learning problems (classification, regression, and novelty detection), has contributed to the popularity 
of  SVM77. They were first used in species distribution modelling by Guo et al.78. There are several implementa-
tions of SVM in R 3.4.3. The most useful implementations in our context are the function ’ksvm’ in the package 
’kernlab’ and the ’svm’ function in the package ’e1071’. The ’ksvm’ includes many different SVM formulations and 
kernels, provides useful options, and features a method for plotting, but it lacks a proper model selection tool. 
The ’svm’ function in package ’e1071’ includes a model selection tool: the ’tune’  function77.

Given the training examples, xi(i = 1, 2, · · ·m) indicates the samples to be classified,  ŷ ∈ {+1,−1} indicates 
the marked label value for the samples, + 1 denotes the point above the separating hyperplane, and -1 denotes the 
point under the separating hyperplane, where K(x, xi) is the Gaussian kernel function, K(x, xi) is nonlinearity, 
and �∗i  is the optimal solution to the primal problem obtained by solving the dual problem. Note that if a sample 
xi is not a support vector, to maximize the Lagrangian function, there must be a λ* = 0 non-support vector cor-
responding to �∗ equal to zero, which theoretically shows that the decision boundary of the SVM is only related 
to the support vector.

Evaluation and comparison of SDMs. Accuracy assessment. Different measures may be used to evalu-
ate the prediction ability of each  model79–81. Many measures for evaluating models based on presence-absence 
or presence-only data are threshold dependent. This implies that a threshold must first be set. However, many 
statistics are threshold independent, such as the correlation coefficients and the area under the receiver operator 
curve (AUROC, generally abbreviated as AUC). The AUC value is the area of ROC and the X-axis under the 
ROC curve; the larger the area, the higher the relationship, and the greater the creditability. When the AUC value 
is greater than 0.7, the result is fair, and when the AUC is higher than 0.9, the result is  excellent82. We applied this 
measure to evaluate the SDMs.

In this framework, an algorithm is supposed to predict “positive” or “negative”. However, some concepts are 
confusing, as summarized in Table 2.

Suitable habitat index (SHI). The probability of species occurrence was extracted using ArcGIS. The lowest 
probability value was selected to distinguish the suitable zone from the non-suitable  zone83. The habitats of the 
entire study area were divided into three categories using the frequency statistical  method84: unsuitable habitat 
(SHI ≤ 0.3), low suitable habitat (0.3 < SHI ≤ 0.5), and suitable habitat (SHI > 0.5).

(7)g(µ) = s0 + s1(X1)+ s2(X2)+ · · ·sP(XP)n = s0 +
∑P

i=1
si(Xi)

(8)ŷ = {
+1,

∑m
i=1�

∗
i yiK(x,xi)≥+1

−1,
∑m

i=1�
∗
i yiK(x,xi)≤−1



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13673  | https://doi.org/10.1038/s41598-023-40678-5

www.nature.com/scientificreports/

Conclusion
This is the first attempt at modelling the relationships between the spatial distribution of desert plant species and 
topographical factors extracted from the LiDAR data. The results indicated a general relationship between model 
performance and modelled species distribution on a small scale. Topographical factors should be contingent on 
the modelled species distribution. The LiDAR technique has certain applications in species distribution simula-
tions. The RF produced the highest AUC when AUC was integrated into TNR + TPR (false positive rate plus true 
positive rate); Manhalanobis showed the best SDMs to predict the distribution of Nitraria tangutorum Bobr. in 
the desert on a small scale. The suitable habitat distribution area of Nitraria tangutorum Bobr. predicted in the 
study was larger than the actual area. A flat land with an aspect of the south at an altitude near 1010 m was found 
to be the driving topography of the Nitraria tangutorum Bobr. distribution. Thus, this study provides a reliable 
reference for the restoration and management of desert vegetation.

Data availability
Data used in this study are available from the National Forestry and Grassland Science Data Center (http:// www. 
fores tdata. cn/). Data is available when needed, and Huoyan Zhou should be contacted.
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