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Comparing predictions 
among competing risks models 
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to KNOW‑CKD study—a 
multicentre cohort study of chronic 
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A prognostic model to determine an association between survival outcomes and clinical risk factors, 
such as the Cox model, has been developed over the past decades in the medical field. Although the 
data size containing subjects’ information gradually increases, the number of events is often relatively 
low as medical technology develops. Accordingly, poor discrimination and low predicted ability may 
occur between low‑ and high‑risk groups. The main goal of this study was to evaluate the predicted 
probabilities with three existing competing risks models in variation with censoring rates. Three 
methods were illustrated and compared in a longitudinal study of a nationwide prospective cohort of 
patients with chronic kidney disease in Korea. The prediction accuracy and discrimination ability of the 
three methods were compared in terms of the Concordance index (C‑index), Integrated Brier Score 
(IBS), and Calibration slope. In addition, we find that these methods have different performances 
when the effects are linear or nonlinear under various censoring rates.

Survival analysis has been widely used in biomedical research to investigate the effects of clinical risk factors 
on survival outcomes. The Cox proportional hazards  model1,2 is a widely applied method for assessing survival 
outcomes during the follow-up period. Although one of the key benefits of the Cox model is that it does not 
assume the shape of the baseline hazard, it only considers single or first events. Meanwhile, we often encounter 
some cases in which patients experience multiple events over time. If the events preclude the occurrence of the 
event of interest, then they can be competing risks. For example, when the event of interest is a death caused 
by cardiovascular disease, another occurrence of death due to non-cardiovascular disease can be a competing 
 risk3–5. Considering this situation, more extended statistical methods are needed to investigate the presence of 
competing risks.

The first approach to adapting competing risks data is the Cause-specific hazard (CS) model, which estimates 
the hazard of each event  separately6. The second approach is the Fine and Gray (FG)  model7, also known as the 
sub-distribution hazard model to estimate the hazards of the cumulative incidence function. Because the main 
difference between these two approaches is the presence or absence of competing risks in the risk set, they can 
yield different  results4. Recently, Ishwaran et al.8 introduced the Random survival forests (RSF) which is a nota-
ble approach for application to competing risks data in a machine learning framework. The RSF is a tree-based 
estimation and prediction method for estimating event-specific risk factors and cumulative incidence functions 
non-parametrically.

Meanwhile, there may be cases in which events of interest or diseases are relatively rare as bio-medical sci-
ence advances over the past decades. For instance, penile cancer is a rare disease with an incidence of only 0.1 to 
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0.9 per 100,000  males9. Because accurate and reliable results may not be obtained in the presence of rare events, 
more caution should be taken when considering the complexity of the data structure.

The remainder of this paper focuses on the predictive performance of three existing competing risks models 
with rare events. We conducted a nationwide prospective cohort study to investigate the association between 
clinical risk factors and adverse renal outcomes. Subsequently, we compared the predictive performance using 
three existing methods with real-world data. Additionally, we consider situations that exist only in linear or non-
linear effects in time-to-event outcomes and covariate terms. Subsequently, discrimination, predictive accuracy, 
and model calibration were evaluated using the C-index, IBS, and Calibration slope, respectively.

Materials and methods
Patients information and data collection. The KoreanN Cohort Study for Outcomes in Patients With 
Chronic Kidney Disease (KNOW-CKD) is a multi-center, patient-based cohort study launched in 2011. The 
objective of the KNOW-CKD is to explore the etiologic risk factors associated with the clinical course progres-
sion of CKD. A total of 2,238 eligible patients were all Koreans, aged between 20 and 75 years, with non-dialyzed 
CKD stages 1 from 5 based on the estimated glomerular filtration rate from serum creatinine.

Demographic characteristics and medical histories, such as smoking status, comorbidities, and cause of 
CKD, were obtained at baseline. Laboratory data were also collected, including hemoglobin, fasting blood sugar, 
uric acid, calcium, phosphorous, albumin, total cholesterol, low-density lipoprotein cholesterol, high-density 
lipoprotein cholesterol, and high-sensitivity C-reactive protein. The major outcomes of CKD can be progression 
to end-stage kidney disease (ESKD), kidney failure, death, and complications of kidney dysfunction, including 
cardiovascular disease (CV), anemia, and bone disease. More detailed information regarding the KNOW-CKD 
cohort study has been published  elsewhere10,11.

Risk factors. To identify possible risk factors for renal dysfunction with a competing risks model, we 
selected 12 covariates according to clinical consideration: age at enrollment (age), gender, baseline comorbid 
diseases such as coronary artery disease (CAD), diabetes mellitus (DM), cardiovascular disease (CVD), smoking 
status (smoking), CKD stage at the study entry (CKD_stage), body mass index (BMI), hemoglobin (HG), high-
sensitivity C-reactive protein (CRP), mean arterial pressure (MAP), and low-density lipoprotein cholesterol 
(LDL) at baseline.

Outcomes. In the CKD study, a CV event was defined as any first event of the following: acute myocar-
dial infarction, unstable angina, ischemic or hemorrhagic cerebral stroke, congestive heart failure, symptomatic 
arrhythmia, aggravated valvular heart, pericardial disease, abdominal aortic aneurysm, and severe peripheral 
arterial disease. In addition, an end-stage kidney disease (ESKD) can be defined as the initiation of renal replace-
ment therapy, such as dialysis or renal  transplantation12.

Methods for analyzing survival data with competing risks. Cause‑specific hazard model. The CS 
model is an adaptation of the Cox model, with cause-specific hazard functions from different types of events. It 
treats failure from the cause of interest as events and failures from other causes as  censored13. Let T and C denote 
failure and censoring times, respectively. The cause-specific hazard function at time t for cause k(k = 1, · · · ,K) 
is

Similar to the Cox model, a separate proportional hazards model with p-dimensional covariates for cause k can 
be defined as

where hCSk0 (t) is the baseline of the cause-specific hazard function, and the exponential term illustrates the covari-
ate effects on cause k. The regression coefficients βk for cause k can be calculated using the maximum partial 
likelihood estimation method as follows:

where RCS
i  represents the i-th risk set which contains subjects who have not experienced any event and are not 

censored yet.

Fine and Gray model. The FG  method7 is another extension of the Cox model that estimates the incidence of 
outcomes in a follow-up period with competing risks. Unlike the CS model, the FG model can be defined as the 
instantaneous rate of occurrence of each event type in subjects who are still under observation and those who 
have already experienced competing risks. The FG model describes the hazard function,

Analogous to the CS model, the FG model with covariates can be defined as follows:
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where hFGk0 (t) is the baseline of the subdistribution hazard of cause k. The regression coefficient βk for cause k can 
also be calculated using the maximum partial likelihood estimation:

where RFG
i  represents the i-th risk set, which contains subjects who have experienced competing risks ahead and 

are still event-free. wij are subject-specific weights that reflect the incidence of competing risks.

Random survival forests. The RSF, first introduced by Ishwaran et al.14, is an extension of the machine-learning 
tree-based Random  forests15. Subsequently, Ishwaran et al.8 proposed a fully nonparametric method for compet-
ing risks in the presence of right-censored data. As mentioned in Ishwaran et al.8, RSF has many useful proper-
ties. It calculates the cumulative incidence function directly in each node and provides an accurate prediction 
performance by aggregating individual trees in the ensemble. This allows the model to include not only linear 
effects but also nonlinear and interaction effects. Permutation importance was used as a measure of variable 
importance to identify the event-specific risk factors. A more detailed description of RSF is presented in Ish-
waran et al.8.

RSF constructs each tree using a bootstrap sample of the original training data. We extracted .632 samples 
without replacement as training data in the bootstrapped sample and excluded the rest of them for out-of-bag 
data. Random feature selection can be applied to evaluate the split tree nodes at each node. For each tree, a 
cumulative hazard function was estimated using the Nelson-Aalen estimator. The survival forest is calculated 
by averaging the terminal node statistics in the ensemble.

Since identifying the most influential risk factors is the main interest in the medical field, it can be interesting 
to use Variable Importance as a means of finding a ranking of important risk factors. The RSF approach ranks 
covariates based on their predicted values and determines the important factors through the predicted accuracy. 
That is, the prediction accuracy of the test data in the current model was first calculated for each tree. Then, the 
prediction accuracy was also calculated on shuffled data using the same method. The differences between the 
original prediction accuracy and randomly permuted prediction accuracy were averaged over all trees, and they 
were normalized by the standard error. If a current model without the original values of a variable can provide 
a worse prediction, then the variables with large values are ranked as more important.

In addition to identifying important risk factors, there is one way to explain how each covariate affects the 
output of the model. The SHAP value is used to address each variable’s contribution to the model. The SHAP value 
is closely related to “Shapley values” which were first developed for the game theory  method16. It has been widely 
adopted since the study by Lundberg and  Lee17 was first published. The SHAP value translates to assigning an 
importance value to features, depending on their contribution to the prediction. In other words, it is calculated 
as the average marginal contribution of a variable value across all possible  combinations18. Thus, the SHAP value 
can be the relative risk of the outcomes, meaning that high values contribute more to the predicted probability.

Performance measures. Concordance index. The C-index is commonly used to identify predicted prob-
ability in a prognostic model. This is a generalization of the area under the ROC curve that considers censored 
 data19,20. In randomly selected patients, those with shorter time-to-event would have higher risk scores and 
lower predicted time-to-event outcomes. As presented in Brentnall and  Cuzick21, the C-index is calculated from 
the Wilcoxon rank-sum statistic by

where T1 and T2 are survival time of the two different subjects, T̂1 and T̂2 are their predictions from a fitting 
method, and I(·) denotes the indicator function. Then, the C-index can be estimated by

where Ŝ(t|Xi) is the predicted survival function with covariate Xi and m =
∑

i,j I(Ti ≤ Tj).
The C-index value is a proportion between 0 and 1. Values near 1 indicate high model discrimination per-

formance, whereas values near 0.5 show similarity to random  prediction20. Note that there are various methods 
for calculating C-index for right-censored data. Harrell’s C-index depends on censoring distribution because 
they provided C-index censored information largely  excluded22. Otherwise,  Uno23 and  Efron21’s approaches are 
censoring-independent.

Integrated brier score. Another criterion used to compute risk prediction is the time-dependent Brier Score 
(BS)24,25. The BS can be defined by the mean squared error between the predicted survival function Ŝ(t|Xi) and 
the predictor variable Xi and the true status Yi(t) at a specified time-point t26. In the presence of right censored 
data, the BS can be estimated by
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where Ỹi(t) represents the observed status at time t. D̃M is the test dataset with sample size M and Ŵi(t) is the 
inverse probability of censoring  weights24 defined by

Here, δi is the event indicator, Ĝ(t|x) ≈ P(Ci > t|Xi = x) is an estimate of the conditional survival function of 
censoring time C and Ĝ(Ti − |Xi) denotes the estimated survival function prior to Ti for the censoring time C. 
The estimated IBS is calculated by integration:

Because IBS is based on the mean squared error, lower values are considered a better predictor.

Calibration slope. Calibration refers to the agreement between the predicted probabilities and observed num-
ber of  events27. As described by Ambler et al.28, the calibration was assessed using a linear regression model to 
show the association between the observed and predicted values at time t. Thus, the regression model is defined 
as:

where Si(t|Xi) and Ŝi(t|Xi) are the true and estimated survival functions for the subject i at time t, respectively. 
When the model is perfectly calibrated, the estimated Calibration slope is 1. If the slope is higher than 1, the 
model is under-fitted. In contrast, overfitted models show a Calibration slope lower than 1, meaning that the 
model underestimates the probability of an event in the low-risk group and overestimates it in the high-risk 
group.

Simulation study. To compare the performances of the three methods, we consider the following simula-
tion study. We first generated time-to-event, Ti , based on the Cox-exponential hazards model with one event of 
interest and one competing risk (i = 1,2), considering the following form:

where Ui is generated from a uniform distribution and the baseline hazards are �1 = 1 and �2 = 2 , respectively. 
For the ith state of events, five independent predictors Xij(i = 1, 2; j = 1, ..., 5) are generated from the standard 
normal distribution. For the parametric function g(Xi ,β)) , we consider linear and nonlinear terms (Table 1). 
The true regression coefficients are set as follows:

To investigate the performance of each method when the parametric function is correct or misspecified, 
we fitted two CS models when g(Xi;β) is linear (CS_l) and nonlinear (CS_nl). Similarly, the FG model when 
g(Xi;β) is linear (FG_l) and nonlinear (FG_nl), respectively. Note that RSF does not require the selection of 
the parametric function g(Xi;β) . We implemented 500 and 1000 sample sizes and split the training and test 
sets with a 7:3 ratio in each simulation, which was repeated with 1000 independent observations. In addition, to 
examine the effect of censoring rates, we consider different censoring rates (30%, 60%, 80%) for each simulation.

Results
Baseline characteristics. Baseline characteristics of a total of 2238 patients are shown in Table 2. Here, we 
considered a CV event as the event of interest. Since a CV event that occurred after the development of ESKD 
was not followed for practical reasons, an ESKD event can be regarded as a competing risk. We focused on the 
4-year incidence rate with clinical considerations, and the incidence rates of CV and ESKD events were 117 
(5.23%) and 360 (16.09%) as shown in Fig. 1. The cumulative incidence function can be defined as the expected 
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1
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,

(β11, · · · ,β110) = (1, 0, 1,−1, 1.5, 0.6, 0.6, 0.6, 0.6, 0.6),

(β21, · · · ,β210) = (0, 2, 1.5, 1, 1, 0.3, 0.3, 0.3, 0.3, 0.3).

Table 1.  Summary of simulation settings.

Parametric function for generating survival time

Scenario 1 Linear : g(Xi;β) =
∑

5

j=1
Xijβij

Scenario 2 Nonlinear : g(Xi;β) =
∑

5

j=1
Xijβij + (Xi1 · Xi2)βi6 + X2

i1βi7 + (Xi4 · Xi5)βi8 + X3
i3βi9 + (Xi1 · Xi4)βi10
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proportion of subjects with a specific event over  time29 alongside with Kaplan-Meier estimator without any 
competing risks. The 4-year cumulative incidence of CV and ESKD events in all subjects is described in Fig. 2 
showing that the cumulative incidence of ESKD events exceeded that of the CV events.

Analysis of CKD data. The results of the two competing risk models are similar (Table 3). According to 
the CS model, age, gender, DM, and CVD were significantly associated with CV events; HRs were 1.04 (95% CI 
1.02,1.07), 0.44 (95% CI 0.20,0.97), 2.15 (95% CI 1.28, 3.60), and 3.15 (95% CI 1.73, 5.72) respectively. Likewise, 
age, DM, and CVD were significantly associated with CV events in the FG model; HRs were 1.05 (95% CI 1.02, 
1.07), 2.11 (95% CI 1.21, 3.66), and 3.03 (95% CI 1.68, 5.48), respectively. In addition, we evaluated the model 
performance by calculating the predicted probabilities and compared the results. All three results are similar, 
except for the Calibration slope, which is 1.167, 0.928, and 0.971, respectively (Table 4).

Lastly, we calculated SHapley Additive exPlanations (SHAP) values and Variable Importance to identify the 
contribution of the risk factors. As shown in Fig. 3, the left panel displays SHAP values meaning that the first 
variable on the top is the most important and the last variable on the bottom is the least important. High values 

Table 2.  Baseline covariates summary in KNOW-CKD data. * SD: standard deviation; CAD: baseline 
coronary artery disease; DM: baseline diabetes mellitus; CVD: baseline cardiovascular disease; BMI: body 
mass index; HG: baseline hemoglobin; CRP: baseline high sensitivity C-reactive protein; MAP: baseline mean 
arterial pressure; LDL: baseline low-density lipoprotein cholesterol.

Age
Mean (SD) 53.68 (12.24)

Median (range) 55.00 (20.00–75.00)

Gender Female 871 (38.92)

CAD Yes 135 (6.03)

DM Yes 754 (33.69)

CVD Yes 348 (15.55)

Smoking Current/former 1027 (45.89)

CKD_stage

Stage2 425 (18.99)

Stage3a 369 (16.49)

Stage3b 466 (20.82)

Stage4 479 (21.40)

Stage5 139 (6.21)

BMI
Mean (SD) 24.58 (3.40)

Median (range) 24.40 (14.9–45.40)

HG
Mean (SD) 12.83 (2.02)

Median (range) 12.80 (7.30–18.80)

CRP
Mean (SD) 2.05 (5.34)

Median (range) 0.60 (0.02–68.00)

MAP
Mean (SD) 93.95 (11.68)

Median (range) 93.33 (54.67–149.00)

LDL
Mean (SD) 96.95 (31.89)

Median (range) 93.00 (21.00–273.00)

Figure 1.  The 4-year incidence rates for CV and ESKD events in CKD subjects.
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of CKD_stage, MAP, and LDL positively contributed to predicting a CV event. DM and CAD were also posi-
tively associated with the prediction of CV events. On the other hand, HG and BMI have a negative relationship 
with predicting a CV event, and males are associated with a higher incidence of a CV event than females. The 
variable Importance from RSF result is also represented in the right side of Fig. 3 showing that CVD is the most 
influential predictive factor for the incidence of a CV event. Then, age, DM, CAD, and HG were assessed. CVD, 
age, and DM were important clinical factors for predicting CV events when ESKD was considered a competing 
risk in three results. In the case of SHapley values, the CKD stage is the most important factor in predicting CV 
events. Age, DM, male sex, and advanced CKD stage have been reported as risk factors for adverse CV events 
in previous studies.30–32

Figure 2.  Cumulative incidence function curves for each event.

Table 3.  Hazard ratios (HR) with their confidence intervals, and p-values in the CS and FG results. * The bold 
numbers represent statistically significant with 5% significance. The age is included as a square term. CAD: 
baseline coronary artery disease; DM: baseline diabetes mellitus; CVD: baseline cardiovascular disease; BMI: 
body mass index; HG: baseline hemoglobin; CRP: baseline high sensitivity C-reactive protein; MAP: baseline 
mean arterial pressure; LDL: baseline low-density lipoprotein cholesterol.

 Covariate

CS method FG method

HR (95% CI) p-value HR (95% CI) p-value

Age2 1.04 (1.02, 1.07) 0.002 1.05 (1.02, 1.07) <.001

Gender (ref.male) 0.44 (0.20, 0.97) 0.041 0.48 (0.22, 1.03) 0.061

CAD 1.34 (0.71, 2.55) 0.373 1.38 (0.72, 2.63) 0.330

DM 2.15 (1.28, 3.60) 0.004 2.11 (1.21, 3.66) 0.008

CVD 3.15 (1.73, 5.72) <.001 3.03 (1.68, 5.48) <.001

Smoking 0.98 (0.54, 1.77) 0.947 1.00 (0.55, 1.83) 1.000

CKD_stage 1.03 (0.83, 1.28) 0.766 0.95 (0.75, 1.19) 0.630

BMI 0.95 (0.88, 1.03) 0.195 0.95 (0.89, 1.02) 0.160

HG 0.95 (0.82, 1.11) 0.511 0.99 (0.82, 1.02) 0.920

CRP 1.01 (0.98, 1.04) 0.700 1.01 (0.98, 1.04) 0.540

LDL 1.00 (1.00, 1.01) 0.589 1.00 (0.99, 1.01) 0.770

MAP 1.00 (0.98, 1.02) 0.946 1.00 (0.98, 1.02) 0.670
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Simulation results. The prediction performances were estimated using box plots through the C-index, IBS, 
and Calibration slope. Detailed descriptions of the three measures are provided in Methods section. Figures 4, 5, 
6, 7 show the results of the prediction performance by varying the sample size ( n = 500 and 1000) and scenarios 
(1 and 2). In Figs. 4 and 6 (when the true g(Xi;β) is linear), as the censoring rates increase, the three prediction 
measures have similar performance on average but become highly volatile. In particular, the Calibration slope 
revealed increased overfitting and underfitting. Because the true g(Xi;β) is linear, the correct models CS_l and 
FG_l perform similarly to the models CS_nl and FG_nl models. Interestingly, RSF was slightly worse than the 
correct models in terms of the C-index and IBS, and its Calibration slope is lower than 1 (overfitted) in all cases. 
Figures 5 and 7 (when the true g(Xi;β) is nonlinear), the misspecified models CS_l and FG_l are poorer than 
their correct models. Among the methods, the performance of the CS method was poorer than that of the other 
methods. Their C-index was much lower, the IBS was much larger, and the range of the estimated Calibration 
slope was too wide, indicating overfitting and underfitting. This showed that the CS model with linear and non-
linear effects in time-to-event was more susceptible as the censoring rates increased. In summary, the perfor-
mance of each method deteriorated as the censoring rate increased. However, if the conditions are the same, the 
results with larger sample sizes show a better and more stable performance. The CS approach is more sensitive 
to censoring rates than the FG and RSF methods.

Discussion
In this study, we analyzed a multicentre cohort study of chronic kidney disease (KNOW-CKD) data based on the 
competing risks framework. We investigated the association between clinical risk factors and renal dysfunction 
and compared their estimates, predicted abilities, and feature importance. As the previous studies have shown 
that age, male sex, diabetes, and known vascular disease are risk factors for the 10-year development of CV 
diseases in the general  population33, our results from the CKD population were also similar. In the CS result, 
age, gender, DM, and CVD variables were significant. In the FG result, age, DM, and CVD were significant 
but gender was marginally significant. Although RSF cannot directly provide the p-values for significance, the 
variable importance was calculated. Analysis from Chronic Renal Insufficiency Cohort (CRIC) with advanced 
CKD showed increased age, diabetes, elevated blood pressure, and any CVD history are significant risk factors 
for CV  events34. Other studies with KNOW-CKD subjects also reported that male sex, diabetes, and increased 
CKD stage are risk factors for CV  events31,35.

Figure 3.  SHAP value (left) and Variable Importance (right) in RSF result.

Table 4.  Prediction performance.

Model C-index IBS Calibration slope

CS 0.776 0.031 1.167

FG 0.776 0.031 0.928

RSF 0.768 0.032 0.971
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In real data analysis, two conventional methods (CS, FG) and the RSF method showed similar results in terms 
of the significance of risk factors and prediction. Although all methods select similar variables as the relevant 
features and have similar prediction performances, they all have good predictive power. Therefore, we believe 
that the current model with linear terms is reasonable to fit our data. Thus, we have conducted simulation studies 
by considering linear and non-linear terms. The performance of each method decreases as the censoring rate 
increase. These results show that more sophisticated methods must be considered when developing prediction 
models with few events. Based on the simulation results when the non-linear model is true, the RSF method 
was more robust. Therefore, the RSF method is recommended when the prediction performances are similar.

Figure 4.  Boxplots of predicted probabilities by each method with the existence of linear effects in time-to-
event with sample size n = 500 . The top, middle and bottom results represent 30%, 60%, and 80% censoring 
rates, respectively. The horizontal dashed line represents the optimal value in each plot.
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We only used the baseline covariates as the feature variables to analyze the competing risks data. Our current 
analysis provided ease of computation and straightforward prediction of survival time. Because the KNOW-CKD 
study is longitudinal, some relevant covariates related to CKD patients can be time-dependent. Extension to a 
model where the time-dependent covariates or time-varying coefficients are considered would be interesting 
future work.

Figure 5.  Boxplots of predicted probabilities by each method with the existence of nonlinear effects in time-
to-event with sample size n = 500 . The top, middle and bottom results represent 30%, 60%, and 80% censoring 
rates, respectively. The horizontal dashed line represents the optimal value in each plot.
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Figure 6.  Boxplots of predicted probabilities by each method with the existence of linear effects in time-to-
event with sample size n = 1000 . The top, middle and bottom results represent 30%, 60%, and 80% censoring 
rates, respectively. The horizontal dashed line represents the optimal value in each plot.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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