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A machine learning approach 
for thermodynamic modeling 
of the statically measured 
solubility of nilotinib hydrochloride 
monohydrate (anti‑cancer drug) 
in supercritical CO2
Hassan Nateghi 1,2,3, Gholamhossein Sodeifian 1,2,3*, Fariba Razmimanesh 1,2,3 & 
Javad Mohebbi Najm Abad 4

Nilotinib hydrochloride monohydrate (NHM) is an anti-cancer drug whose solubility was statically 
determined in supercritical carbon dioxide (SC-CO2) for the first time at various temperatures 
(308–338 K) and pressures (120–270 bar). The mole fraction of the drug dissolved in SC-CO2 ranged 
from 0.1 × 10–5 to 0.59 × 10–5, corresponding to the solubility range of 0.016–0.094 g/L. Four sets 
of models were employed to evaluate the correlation of experimental data; (1) ten empirical and 
semi-empirical models with three to six adjustable parameters, such as Chrastil, Bartle, Sparks, 
Sodeifian, Mendez-Santiago and Teja (MST), Bian, Jouyban, Garlapati-Madras, Gordillo, and Jafari-
Nejad; (2) Peng-Robinson equation of state (Van der Waals mixing rule, had an AARD% of 10.73); (3) 
expanded liquid theory (modified Wilson model, on average, the AARD of this model was 11.28%); 
and (4) machine learning (ML) algorithms (random forest, decision trees, multilayer perceptron, and 
deep neural network with respective R2 values of 0.9933, 0.9799, 0.9724 and 0.9701). All the models 
showed an acceptable agreement with the experimental data, among them, the Bian model exhibited 
excellent performance with an AARD% of 8.11. Finally, the vaporization (73.49 kJ/mol) and solvation 
(− 21.14 kJ/mol) enthalpies were also calculated for the first time.

List of symbols
AARD	� Absolute average relative deviation
Radj	� Adjusted R
Mw	� Molecular weight
Tm	� Melting point
Psub	� Pressure of sublimation
ELT	� Expanded liquid theory
SC-CO2	� Supercritical carbon dioxide
EoS	� Equation of state
SSE	� Error sum of squares
Pc	� Critical pressure
Pr	� Reduced pressure
Tc	� Critical temperature
ADF	� Augmented Dickey–Fuller
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ΔHsol	� Solvation enthalpy
ΔHvap	� Vaporization enthalpy
y2	� Solubility in mole fractions
a0–a5	� Adjustable parameters
R	� Gas constant, J/(mol K)
PR	� Peng–Robinson
vdW	� Van der Waals
ANN	� Artificial neural network
NIST	� National institute of standards and technology

Greek symbols
Δ	� Difference
μm	� Micrometer
ρ	� Density
ρr	� Reduced density
λmax	� Wavelength with strongest photon absorption
ω	� Acentric factor
kij	� EoS mixing rule parameter
lij	� EoS mixing rule parameter
λ12, λ21	� Wilson model parameters

Sub and superscripts
exp	� Experimental
cal	� Calculated
c	� Critical
m	� Melting
r	� Reduced
sub	� Sublimation
ref	� Reference state

Nilotinib hydrochloride monohydrate (NHM) lacks a chiral center, making it incapable of tautomerism. NHM is 
a chemical compound with the following name: 4-methyl-N-[3-(4-methyl-1H-imidazol1-yl)-5-(trifluoromethyl) 
phenyl]-3-[(4-pyridin-3-ylpyrimidin-2-yl) amino] benzamide hydrochloride monohydrate. It is a white powder 
with a slight yellowish or greenish-yellowish shade. At 25 °C, the aqueous solubility of NHM markedly decreases 
with pH. Moreover, it is almost insoluble in buffer solutions with pH values higher than 4.5. NHM shows slight 
solubility in ethanol and methanol. Further information can be found in Supplementary information.

According to scientific studies, a genetic mutation with unclear reasons in bone marrow hematopoietic 
(myeloid) cells leads to the formation of a malfunctioning chromosome known as the Philadelphia chromosome1. 
This defective chromosome is present in over 90% of individuals diagnosed with chronic myeloid leukemia 
(CML). The mentioned genetic abnormality sets in a chain of activities that eventually triggers the growth and 
reproduction of these cells and their carcinomic progression2.

The solubility rate is a critical factor affecting the bioavailability of the active components in orally adminis-
tered drugs. The poor bioavailability of NHM can be due to its low water solubility, which influences its efficiency 
in the body. Chemotherapy is a conservative treatment in medical science which involves the use of low doses of 
drug due to its potential harm to the tumor-adjacent organs. Solubility enhancement avoids the long-term side 
effects of the drug while considerably reducing the required dosage. Bioavailability increment generally improves 
the efficacy of the drug in the body3. To this end, various techniques such as the utilization of amorphous solid 
dispersions and RESS can be employed to enhance the bioavailability of the drug. Among these strategies, the 
reduction of particle size is a prevalent and pragmatic approach.

Particle size reduction is a unique technique in the enhancement of drug solubility. Conventional processes 
such as sublimation and crystallization have been utilized in the pharmaceutical industry for this purpose. 
SC-CO2 technology is also a promising approach for producing nano-sized and micro-sized particles4–6. The 
use of SC-CO2 solvent in industrial plants has been increasing due to its non-toxicity and high effectiveness in 
extracting compounds. Additionally, it exhibits greater stability in various process and requires lower tempera-
tures compared to alternative solvents. Supercritical fluids (SCFs) are similar to liquids in dissolving power and 
resemble gases in transfer characteristics (high permeability and low viscosity). The supercritical extraction also 
enjoys other advantages such as shorter processing time, high selectivity, sensitivity to temperature and pressure 
variations, and concentration of the solvent to achieve the ideal degrees of freedom for sorting or monitoring 
the strength of solubility, the sensitivity of the solvent to reach the desired degrees of freedom, better output 
quality, lower solvent usage, and temperature tolerance for components sensitive to high temperatures7–9. SCFs 
are characterized by their temperature and pressure exceeding the critical temperature (Tc) and critical pressure 
(Pc), respectively, enabling them to exhibit the properties of both a liquid and a gas. In the proximity of critical 
temperatures, SCFs demonstrate substantial compressibility, which facilitates moderate variations in pressure 
density and mass transport features that significantly influence their solvent capacity. Furthermore, the environ-
mental concerns of toxic solvents can be resolved by the use of CO2 gas as a solvent in supercritical procedures 
due to its neutrality. As an example, organic solvents, particularly chlorinated solvents, are highly hazardous to 
the environment. Chlorinated solvents and several other industrial solvents, such as chlorofluorocarbons, have 
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been shown to be harmful for the ozone layer. The substitution of chlorofluorocarbon with CO2 is an instance of 
resolving the issue of toxic and polluting solvents through the use of CO2 solvent. Other advantages of SC-CO2 
process include its cost-effectiveness and availability at high purity and low critical pressure and temperature 
(PC = 73.8 bar and TC = 304.18 K), chemical neutrality desirable for use in food and pharmaceutical industries, 
suitability in critical conditions, and non-toxicity and non-flammability10. The researchers select the temperature 
and pressure based on previous studies and the constraints of the laboratory equipment8,11,12.

The solubility data presented in this study are valuable for evaluating the applicability of SCFs in a specific 
industrial process. Additionally, these data can aid in identifying the optimal conditions, in terms of tempera-
ture, pressure, and experimental measurement technique, for effective use of these fluids. Knowledge regarding 
the solubility of medicinal substances and their correlation with thermodynamic models in SC-CO2 can help in 
the development of pharmaceutical processes. This is due to the fact that the determination of solubility under 
various temperature conditions and high pressures can be monetarily costly and time-intensive.

As mentioned before, the experimental measurement of solubility in SC-CO2 is a valuable but time-con-
suming, complex, and costly task. Therefore, there is a need for alternative approaches, such as computational 
techniques, to replace experimental assessments. To this end, several theoretical methods have been proposed 
and developed for predicting the solubility of drugs in SC-CO2. Several situations influence molecular charac-
teristics in liquid systems, which are connected to all nearby molecules in motion. Describing these specifica-
tions needs an efficient experiment and thermodynamic modeling of all potential solvent and soluble molecule 
configurations7,13. Empirical and semi-empirical, equations of state (EoSs), solid–liquid equilibrium models, and 
machine learning algorithms are the four most popular forms of thermodynamic models, each with a unique vari-
ety of ranges and notable scopes. Modeling with experimental and semi-empirical approaches requires no defi-
nition of the critical characteristics. These models rely on the SCF temperature, pressure, and volumetric mass. 
Models with three to six adjustable parameters, such as Bian14, Chrastil15, Jafari-Nejad16, Jouyban17, Sparks18, 
Sodeifian12, Mendez-Santiago and Teja19, Garlapati-Madras20, Bartle21, and Gordillo22 offer proper analysis for 
evaluating the reliability of experimental data. Different mixing rules are also employed in EoS models which 
enjoy applicability across a wide range of temperatures and pressures for fluids with various densities, from 
low-density gases to dense liquids. These equations are also applicable to gases, liquids, and SCFs. In addition, 
activity coefficient models, such as ELT, are commonly used to model solubility in SCFs. This approach assumes 
that the fugacity of the solid phase is equivalent to the SCF23.

Machine learning refers to a constantly developing group of computing instructions to simulate intelligence 
by learning from the surroundings. This strategy is now regarded as a means of communication with big data 
in the modern era. Machine learning-based algorithms have been successful in diverse fields, including pattern 
recognition, biomedical and medical applications, spacecraft engineering, computational biology, financial sec-
tors, and entertainment24. Ionizing radiation (radiotherapy) is used to treat more than half of cancer cases; it is 
also the primary method in the treatment of advanced stages of localized diseases. Radiation therapy involves 
a variety of steps that extend not just from consultation through treatment but even beyond. Machine learning 
should be used to guarantee that patients receive the appropriate quantity of radiation and respond properly to 
the therapy. These instructions are easily programmable as they naturally modify their structure via repetitions 
(i.e., experience) for better production of the desired output. An effective approach presents two primary ben-
efits: the ability to supplant laborious and repetitive human duties, and more importantly, capability of detecting 
complex patterns of incoming data which exceeds the ability of an average human observer. The significance 
of these benefits is particularly in radiation therapy. However, given the limitations of this approach, the final 
results are prone to uncertainty and observer variability. An imaging guide can identify microscopic features of 
an organ, immediately synthesizing information from several sources, or combining the knowledge of multiple 
observers to achieve low imaging error.

This research presents the first reports on the solubility of NHM in SC-CO2 within the temperature and 
pressure ranges of 308–338 K and 120–270 bar, respectively. Besides, four types of models were used to evaluate 
the correlation of the empirical findings of NHM: (1) ten empirical and semi-empirical density-based models 
(Chrastil, Bartle, Sparks, Sodeifian, MST, Bian, Jouyban, Garlapati-Madras, Gordillo, and Jafari-Nejad), (2) PR 
EoS model with vdW mixing rule, (3) ELT model (modified-Wilson model) for correlating fugacity, (4) ML 
algorithms (RF, DTs, MLP, and DNN) with 17 solubility datasets available in the previously published papers. 
The validity assessment of multiple models involved the evaluation of deviations of computed outcomes from 
empirical solubility data, utilizing three actual measures: average absolute relative deviation (AARD%), adjusted 
correlation coefficient (Radj), and F-value.

Experimental
Materials.  NHM was supplied from Parsian Pharmaceutical Company with a guaranteed purity of 99% 
(Tehran-Iran) while CO2 (purity > 99.99%) was provided by Fadak Company (Kashan, Iran). Analytical grade 
dimethyl sulfoxide (DMSO) was also purchased from Merck (Darmstadt, Germany). Table 1 lists the physical 
and chemical characteristics of NHM.

Experimental apparatus.  This work aimed to determine the equilibrium solubility of NHM using a static 
approach. To this end, a UV–Vis spectrophotometer was utilized along with the equipment described in our 
previous research13,25–27. The experimental setup comprised various components, including gas cylinders, filters, 
sampler, refrigeration, heating elements, flow meter, 6-way valve, and a micrometer valve. All valves, connec-
tions, and piping were 1/8″ in size. The process is fully described in the previous work of the authors; however, a 
quick review is also provided here. Figure 1 depicts the experimental setup.
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Table 1.   Molecular structure and physicochemical specifications of NHM.

Compound Formula Structure

Mw 
(g/
mol) Tm (K)

λmax 
(nm)

CAS 
number

Minimum 
purity Producer

Nilotinib 
hydrochloride 
monohydrate

C28H25ClF3N7O2

 

584 480.15 ± 7 270 923288-
90-8 99%(HPLC) Parsian Pharmapeutical 

Co (Tehran, Iran)

Carbon Dioxide CO2

 

44.01 – – 124-38-9 99.99%(GC) Fadak Co (Kashan, 
Iran)

Dimethyl sul-
foxide C2H6OS

 

78.13 – – 67-68-5 99%(GC) Merck Group (Darm-
stadt, Germany)

Figure 1.   Schematic of the used laboratory equipment for measuring solubility.
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The operation began with liquefying CO2 (the required temperature for CO2 liquefication ranges between − 15 
to – 20 °C), which is an important section in CO2 preparation for pumping. A pressure gauge was employed to 
monitor pressure with an accuracy of ± 1 bar (EN 837-1, WIKA, Germany), while an oven was used to maintain 
the temperature of CO2 around the desired temperature within a tolerance of ± 0.1 K. Then, NHM (1 g) was placed 
inside a 70-mL equilibrium tube with 2 mm glass beads and sintering filters (1 µm, keeps undissolved drugs in 
the container) on both surfaces. The glass beads were used to homogeneously mix the drug and reduce chan-
neling to enhance the interaction areas between the sample and SCF, following this, the container was exposed 
to SC-CO2. Based on previous publications, the present study achieved the equilibrium state within 60 min of 
equilibration11,13,25,28. Afterward, 600 µL of SC-CO2 (at saturation level) was introduced to the injection cycle 
through a 6-port, 2-position valve. Upon releasing the injection valve, the aforementioned substance moved 
toward the gathering vial, which had been already filled with a specific quantity of DMSO. Subsequently, the 
gathered DMSO (1 mL) in the vial was employed to clean the cycle. The total volume of the solution was 5 mL. 
The solubility of NHM in SC-CO2 was determined through maximum absorption observations, using a double-
beam UV–Vis spectrophotometer (Unico, SQ-4802, USA) and 1-cm route silica cells. The solid pharmaceuti-
cal was dissolved in DMSO to achieve a final concentration of 100 μg L−1. Various dilutions were obtained by 
utilizing the standard solution within acceptable limits. The condensation of the drug in the collecting vial was 
determined using a standard curve with a regression ratio of 0.99. The UV spectral data were collected at 270 nm 
on a UV–Vis spectrophotometer to investigate NHM29. The equilibrium values of mole fraction (y2) and solubil-
ity (S (g/L)) in SC-CO2 were computed for various pressures and temperatures, using the following equations:

where:

In which, nsolute and nCO2 show the moles of solute (NHM) and CO2 in the measurement cycle, respectively. 
Cs is the solute content (g/L) in the gathering vial according to the standard curve; while Vs(L) = 5 × 10–3 and 
Vl(L) = 600 × 10–6 denote the volume of the gathering vial and measuring cycle, respectively. Ms and MCO2 also 
represent the molecular weights of the solute and CO2. Equation (4) was used to estimate the equilibrium solu-
bility of the solute, S (g/L), in SC-CO2

30.

Theoretical background
In this work, the solubility of NHM was correlated with four types of models: (1) Empirical and semi-empirical 
models such as Chrastil, Bian, Sodeifian, etc. with 3–6 adjustable parameters; (2) EoS based model like Peng-
Robinson with vdW mixing rule; (3) ELT (modified Wilson model) and (4) ML algorithms such as random 
forests, decision trees, MLP, and DNN. Details of the mentioned models can be found in the continue.

EoS‑based model.  The solubility of a solid solute in a SC-CO2 can be expressed as follows:

where P shows the pressure at the system temperature, Ps2 denotes the pressure required for the sublimation of the 
pure solute. The molar volume of the solute is also represented by υ2 , while the universal gas constant is denoted 
by R. Furthermore, the pure solute fugacity coefficient, denoted by φs

2 , is assumed to be 1.
In the present research, PR-EoS13,25,28,31 can be described as follows32,33:

vdW2 is represented as:

In addition, Table 1S (supplementary information) presents a summary of the EoS-based model.
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k12 and l12 are interaction parameters whose values were determined by an objective function (OF) aimed at 
minimizing the resulting output. Thus, k12 and l12 can be obtained through the minimization of the mentioned 
objective function.

ELT model.  The ELT takes SCFs as expanded liquids since their density is closer to that of a liquid rather 
than a gas. Therefore, this theory establishes thermodynamic phase equilibrium between solute and SCF as the 
solid–liquid equilibrium relevance and contractual activity coefficients. Accurate estimation of solid solubility in 
the supercritical (SC) phase relies on proper knowledge on these activity coefficients, which can be determined 
by understanding the fugacity of the composites. When the equilibrium and the fugacity are equivalent in two 
steps, the coefficients can be obtained by34:

Here, the Modified Wilson model was employed to determine the activity coefficient of the solid solute.
Furthermore, the dimensionless energies of interaction can be determined by:

An empirical expression was introduced to modify the Wilson model, considering the impact of high pres-
sures. The modified model facilitates the prediction by establishing a linear correlation between the molar volume 
and density reduction.

The regressed parameters of the model are given by α, β, �′12, and �′21 . Detailed information is available in 
supplementary information. Genetic algorithm (GA), nonlinear regression35 and simulated annealing (SA) algo-
rithms were utilized to obtain optimum double interaction and regressed parameters of the ELT.

Semi‑empirical models.  The solubility data of NHM in SC-CO2 were compared with ten semi-empiri-
cal models. Researchers such as Garlapati-Madras, Chrastil, Bartle, MST, Sparks, Jouyban, Bian, and Sodeifian 
worked in this field and presented different models, as listed in Table 2.

The discussion is focused on evaluating several models based on their AARD%, Radj, and F-value to identify 
the models with acceptable accuracy. The least squares method (LSM) was utilized for calculating curve-fitting 
variables. AARD% was utilized as a criterion to ensure comparable analyses, since the number of curve-fitting 

(9)a12 = (1− k12)
√
a11a22,

(10)b12 = (1− l12)
(b11 + b22)

2
.

(11)OF =
N
∑

i=1

∣

∣

∣
y
exp
2,i − ycalc2,i

∣

∣

∣

y
exp
2,i

.

(12)f s2 = f L2 .

(13)�
′
12 =

�12

RTc
,

(14)�
′
21 =

�21

RTc
.

(15)υ2 = αρr + β .

Table 2.   Summary of empirical models applied in present work.

Model Formula References

Chrastil c = ρa0 exp( a1T + a2)
15

Bian y2 = ρ(a0+a1ρ)exp( a2T + a3ρ
T + a4)

14

Gordillo lny = a0 + a1P + a2P
2 + a3PT + a4T + a5T

2 22

Jafari-nejad lny = a0 + a1P
2 + a2T

2 + a3lnρ
16

Garlapati-Madras lny2 = a0 + (a1 + a2ρ)lnρ + a3
T + a4ln(ρT)

20

MST Tln
(

y2P
)

= a0 + a1ρ + a2T
19

Jouyban lny2 = a0 + a1ρ + a2P
2 + a3PT + a4T

P + a5
lnρ
T

17

Sparks c∗2 = ρ
a0+a1ρr,1
r,1 exp(a2 + a3

T )
18

Bartle ln
(

y2P
Pref

)

= a0 + a1
T + a2(ρ − ρref )

21

Sodeifian lny2 = a0 + a1
P2

T + a2ln(ρT)+ a3(ρlnρ)+ a4PlnT + a5
lnρ
T )

12
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parameters is closely related to correlation precision. The value of AARD% was determined by the following 
equation, where Z represents the number of curve-fitting variables for the given model36,37:

The models were further evaluated by a criterion known as Radj with the following definition:

In the above equation, "N" denotes the number of sample points within each set. "Q" refers to the number of 
self-determining changeable elements in each equation and "R2" represents the correlation analysis36,38. F-value is 
another criterion in the assessment of the capacity of the models to match solubility data, which can be described 
as follows39.

As seen, SST indicates the total of square summation, SSR represents the sum of squares of the regression, while 
MSR pertains to the average square of regression. Furthermore, MSE concerns with the average square of residuals. 
The F-value operates similar to the distribution and is characterized by Q and N-Q-1 grades of independence.

ML algorithms.  Four ML algorithms were employed in this work to examine and evaluate the solubility of 
NHM. To this end, 432 data samples were used including data of 17 other drugs (published in the literature). 
These 17 drugs are described in Table 3.

Seventy-five percent of the samples were used for training (324), while 25% of them (108) were used for test-
ing. Six basic parameters, including operating temperature and pressure, CO2 density, fusion enthalpy, fusion 
temperature, and sublimation pressure, were taken as effective factors of solubility. Drug solubility is influenced 
by various factors, among which, temperature, pressure, and CO2 density have been identified as key factors 
in numerous experimental and semi-experimental relationships. Solubility decreases by enhancing molecular 
weight due to the higher fusion enthalpy and temperature. Additionally, an increase in sublimation pressure 
results in greater solubility. This data set was evaluated by four algorithms: random forest, decision trees, multi-
layer perceptron, and deep neural networks. A summary of the applied algorithms can be found below:

Decision trees (DTs).  Data mining refers to a vast field of research dealing with pattern identification and cat-
egorization of massive and unclear data, in various formats such as text, audio, and video. Sometimes the pre-
sented data are insufficient, noisy, or destroyed. One strategy for dealing with this sort of data is classification. 
Decision trees are employed in data discovery and machine learning to provide an approximate answer. The DT 
algorithm is a highly effective and powerful tool for data mining capable of handling diverse input data, includ-
ing nominal, numerical, and alphabetical which is one of the strengths of this algorithm.
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100
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exp
2

∣
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Q

SSE
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=
MSR
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.

Table 3.   Solubility data sets used in this work.

Drug name Structure Data points Temperature range (K) Pressure range (bar) References

Amlodipine besylate C26H31ClN2O8S 24 308–338 120–270 36

Azathioprine C9H7N7O2S 24 308–338 120–270 31

Clemastine fumarate C25H30ClNO5 24 308–338 120–270 10

Dasatinib monohydrate C22H28ClN7O3S 24 308–338 120–270 25

Empagliflozin C23H27ClO7 24 308–338 120–270 39

Imatinib mesylate C30H35N7O4S 24 308–338 120–270 12

Losartan potassium C22H22ClKN6O 24 308–338 120–270 13

Metochloropramide HCl C14H23Cl2N3O2 24 308–338 120–270 28

Pantoprazole sodium sesquihy-
drate C32H34F4N6Na2O11S2 24 308–338 120–270 40

Pholcodine C23H30N2O4 24 308–338 120–270 7

Prazosin HCl C19H22ClN5O4 24 308–338 120–270 8

Quetiapine hemifumarate C21H25N3O2S 24 308–338 120–270 9

Sorafenib tosylate C28H24ClF3N4O6S 24 308–338 120–270 41

Sulfabenzamide C13H12N2O3S 24 308–338 120–270 42

Sunitinib malate C26H33FN4O7 24 308–338 120–270 43

Triflunomide C12H9F3N2O2 24 308–338 120–270 44

Palbociclib C24H29N7O2 24 308–338 120–270 45
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This method is capable of processing incomplete data which encompass errors through various platforms 
and available data packages. DTs extract data from a huge deal of accessible information using decision rules. A 
DT merely categorizes data to be readily saved and classed again46,47.

Random forest (RF).  The RF algorithm is a sort of ensemble learning that can be utilized for both assortment 
and regression test. RF was first developed by Breiman to combine his bagged sampling methodology with the 
random selection of features48 originally described by Ho49, Amit and Garden50. This approach results in a set 
of decision trees with controlled variance. Bagging is used to randomly select training data with replacement to 
construct each tree. Studies have shown that approximately 64% of all occurrences will be represented within 
this selection. The residual samples (near 36%) are considered out-of-bag samples. In the RF model, each tree 
operates as a classification algorithm and specifies the class tag of an untagged sample using majority verdict51. 
Each classifier generates a model of its vote for the class tag it expects, and the tag with the maximum votes will 
be chosen as the category of the sample. Further information is available in supplementary section.

Multilayer perceptron (MLP).  The MLP can be classified as a feedforward and fully connected artificial neural 
network (ANN). It commonly refers to any feedforward ANN and sometimes a network consisting of multiple 
perceptron layers which may raise the confusion. In cases with only one hidden layer, the multilayer perceptron 
is often referred to as a "vanilla" neural network. The MLP includes at least three node substrates: entry, under-
cover, and output substrates. Apart from the input nodes, each node represents a neuron with a nonlinear activa-
tion duty. A supervised learning approach labeled as backpropagation is utilized to train the MLP. The MLP dif-
fers from the linear perceptron in its use of multiple layers and nonlinear activation, enabling the identification 
of data which cannot be separated linearly52.

If all neurons in a MLP utilize a linear activation function to connect the weighted inputs to the output of 
every neuron, any number of layers can be reduced to a two-layer input–output model using linear algebra. 
However, some neurons in MLPs utilize a nonlinear activation function that imitates the modulation of action 
possibilities or firing in actual neurons53.

Deep neural network (DNN).  The deep neural network (DNN) is a neural network with a significant number 
of layers, known as "deep" layers. Utilizing advanced algorithms and structures, the DNN model can be con-
sidered a variant of the multilayer perceptron neural network (MLP). Comprising many layers of nodes, DNN 
is arranged using algorithms to extract deputations from datasets with no need for manual design of feature 
extractors. As its name implies, deep learning has a larger or deeper number of processing layers compared to 
the shallow learning with less units. The transition from surface to deep learning enables the planning of more 
complicated and nonlinear functions, which could not be efficiently mapped using external architectures. Vari-
ous designs have addressed the difficulties in multiple fields or applied cases54,55.

Results and discussion
Experimental data.  The reliability and validity of the solubility system and experimental outcomes were 
assessed in a recent article which evaluated the solubility of Riluzole in SC-CO2

56–58. Examination of the methods 
and equipment utilized in the experiments requires evaluation of the solubility of a "prototype solute"59. Our 
prior research involved measuring the solubility of naphthalene and α-tocopherol, which was then compared 
to previously reported data to confirm the dependability of both the apparatus and experimental findings31,57,60. 
Furthermore, the apparatus underwent a secondary validation process utilizing α-tocopherol in a CO2 environ-
ment prior to drug solubility measurements whose validation outcomes are illustrated in Fig. 2. The current 
investigation exhibits a satisfactory consistency with other references61,62. In this work, the equilibrium solu-
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are shown by symbols.
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Table 4.   Solubility of NHM in SC-CO2 at different temperatures and pressures. The experimental standard 

deviation was calculated by ucombined/y =

√

∑N
i=1

(Piu(xi)/xi)
2.Expanded uncertainty (U) and the relative 

combined standard uncertainty (ucombined/y) are determined, respectively, as follows: (U) = k*ucombined(k = 2) 

and ucombined/y =

√

∑N
i=1

(Piu(xi)/xi)
2 . In this work, u(xi) was considered as standard uncertainties of 

temperature, pressure, mole fraction, volumes and absorption. Pi, sensitivity coefficients, are equivalent to 
the partial derivatives of y equation (Eq. 1) with respect to the xi. a Standard uncertainty u are u(T) =  ± 0.1 K; 
u(p) =  ± 1 bar. The value of the coverage factor k = 2 was selected according to the level of confidence of almost 
95 percent for computing the expanded uncertainty. b CO2 density, is taken from NIST chemistry web-book 
(http://​webbo​ok.​nist.​gov/​chemi​stry/).

Temperature (K)a Pressure (bar)a Density (kg/m3)b y2 × 105 (mole fraction) S (g/L)
Standard deviation of the mean, SD 
(ȳ) ×  105

Expanded uncertainty of mole 
fraction (105 U)

308 120 769 0.104 0.016 0.002 0.006

308 150 817 0.125 0.02 0.001 0.006

308 180 849 0.151 0.025 0.002 0.007

308 210 875 0.195 0.034 0.001 0.009

308 240 896 0.219 0.039 0.003 0.011

308 270 914 0.27 0.049 0.002 0.012

318 120 661 0.071 0.009 0.002 0.005

318 150 744 0.141 0.021 0.002 0.007

318 180 791 0.199 0.031 0.002 0.009

318 210 824 0.228 0.037 0.003 0.011

318 240 851 0.269 0.046 0.003 0.013

318 270 872 0.313 0.054 0.004 0.016

328 120 509 0.051 0.005 0.002 0.004

328 150 656 0.191 0.025 0.001 0.008

328 180 725 0.239 0.034 0.002 0.011

328 210 769 0.313 0.048 0.003 0.015

328 240 802 0.433 0.069 0.004 0.02

328 270 829 0.514 0.085 0.004 0.024

338 120 388 0.032 0.002 0.001 0.002

338 150 557 0.252 0.028 0.001 0.011

338 180 652 0.355 0.046 0.003 0.017

338 210 710 0.424 0.06 0.004 0.021

338 240 751 0.563 0.084 0.004 0.026

338 270 783 0.599 0.094 0.006 0.029

Table 5.   AARD% and correlation parameters of empirical and semi-empirical models for NHM solubility in 
SC-CO2.

Model a0 a1 a2 a3 a4 a5 AARD% Radj F-value

Chrastil 5.2519 − 6296.2307 − 19.0748 – – – 12.29 0.9688 118.37

Bian 4.3527 − 0.0077 − 21,319.037 19.0798 18.1565 8.11 0.9763 235.17

Gordillo − 28.9404 − 0.7702 − 0.0084 0.0038 0.1243 − 0.0003 20.92 0.9321 51.79

Jafarinejad − 20.936 0.000005 0.000084 3.9564 – – 11.6 0.9581 86.82

Garlapati-Madras − 19.963 1.1013 0.0044 − 5933.1954 1.2715 – 12.28 0.9607 138.75

Sparks 4.2903 0.7552 8.4564 − 22.328 – – 11.67 0.9635 150.25

MST − 11,606.114 144,574.41 20.4106 – – – 11.38 0.9608 93.3

Jouyban 8.7283 − 21.1732 − 0.000001 0.000008 − 1.5291 12.1285 14.7 0.9789 177.44

Sodeifian − 22.5789 − 0.1889 1.9462 0.0014 0.0009 − 1050.0384 14.38 0.9472 68.04

Bartle 19.0268 − 8839.0557 0.0097 – – – 12.57 0.9575 85.56

http://webbook.nist.gov/chemistry/
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bility S (g/L) and related mole fraction values of NHM were calculated at several pressures and temperatures 
(120–270 bar and 308–338 K, respectively) as summarized in Table 4.

Noteworthy, the data points were measured three times to ensure the reliability and maintain the relative 
standard uncertainties below 5%. Further information on the mole fractions uncertainties can be found in Table 5. 
The Span-Wagner equation (a CO2-specific EoS) was also employed to define the density of SC-CO2

63. The mole 
fraction (y) and solubility (S (g/L)) values of NHM ranged from 0.1 × 10–5 to 0.59 × 10–5 and 0.016–0.094, respec-
tively. The highest and lowest values for the solubility of the solid medicine were detected at 338 and 338 K and 
pressures of 270 and 120 bar, respectively. The fundamental mechanism of drug solubility entails the disruption of 
intermolecular or inters ionic bonds among solute molecules. This provides enough room for solvent molecules to 
penetrate the solute molecules and facilitates particle wetting, which enables the required solvent–solute interac-
tions for dissolution. As illustrated by the isotherms in Fig. 3, the solubility of NHM increased by enhancing the 
pressure at fixed temperatures. At a specific temperature, an increase in pressure leads to greater gas dissolution 
in a solvent, whereas a decrease in pressure reduces the gas solubility in a liquid. For example, when producing 
carbonated drinks, additional pressure is applied to the solute to enhance the solubility of CO2 in the liquid. 
The pressure enhancement compresses gas molecules within the solute, which creates more space for extra gas 
molecules, increasing the solubility of CO2 in the liquid. Therefore, the solubility of gases in liquids increases with 
pressure increment. From another point of view, when a gas molecule in the vapor phase makes contact with a 
liquid surface, it can either be repelled back into the gas or dissolved into the liquid to become a solute particle. 
Upon reaching the liquid surface, dissolved molecules will gain enough kinetic energy to escape into the gas 
phase. Therefore, there will be a constant exchange of particles across the gas–liquid boundary. Equilibrium is 
achieved at equal entry and exit rates of the gas phase, resulting in constant concentrations in each phase. Solu-
bility is a measure of the concentration of dissolved gas particles in the liquid and is dependent on gas pressure. 
An increase in pressure leads to an increment in the collision frequency, increasing the solubility. Conversely, 
a decrease in pressure decrements the solubility. Such an increase in solubility can be assigned to the enhanced 
density and improved solvating power of SC-CO2 at higher pressures. The temperature has a dual impact on the 
solubility in SC-CO2 depending on the variations of vapor pressure of the solute and solvent density. The effect 
of temperature on solubility is contingent upon the characteristics of both the solute and solvent, including 
their interactions; while the behavior of solid and gaseous solutes differs. Solid solutes show solubility incre-
ment with raising the temperature, whereas gas solutes tend to become less soluble. This effect can be attributed 
to the heightened kinetic energy that is accompanied by an increase in temperature. Specifically, gas molecules 
possess greater kinetic energy at higher temperatures, which promotes the dissociation of intermolecular bonds 
between the gas solute and solvent. An increment in the solution temperature can augment the vapor pressure 
of the solute, further enhancing the solvation ability of SCF60,64,65.

Conversely, elevated temperatures may decrease the density of SC-CO2, reducing its overall solvating capac-
ity. Based on Fig. 3, the pressure range of 120–150 bar corresponds to the crossover pressure zone for NHM. 
Density and solute vapor pressure are the dominant variables at pressures above and below the crossover pres-
sure. At pressures under (beyond) the crossover pressure area, solubility drops (rises) with temperature. Other 
individuals have also reported similar findings regarding the dual effect of temperature on SC-CO2 solubility60.

Regarding the challenges in fully guaranteeing the accuracy of experimental data, their agreement with 
specific thermodynamic relationships can be checked to confirm their thermodynamic consistency or incon-
sistency. The MST model is a commonly employed thermodynamic relationship for analyzing the consistency 
of experimental phase equilibrium data. In addition to its correlational capacity, the potential for extrapolation 
is a crucial advantage of any model or correlation. As such, the Mendez-Santiago and Teja model (MST), also 
known as the self-consistency test (Fig. 4), was conducted to assess the extrapolative capabilities of the models 
under examination. The findings indicated the linear behavior of all the isotherms and isobars in this study, 
thus enabling the solubility results to be estimated beyond their currently calculated range66,67. Therefore, NHM 
solubility can be predicted in temperatures and pressures beyond the current range due to their simple linear 
behavior. The experimental data, represented by a solid line for all temperatures, were internally consistent when 
considering solubility.

Figure 4 demonstrates the stability of the experimental data obtained via the MST model.
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Figure 3.   NHM solubility in SC-CO2 vs. pressure.
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Solubility correlation.  Four commonly utilized models were applied to define the correlation between the 
solubility data of NHM in SC-CO2. These models include EoS-based, modified Wilson (ELT), and density-based 
semi-empirical models as well as machine learning algorithms. The results were compared based on AARD%, 
Radj, and F-value.

Empirical and semi‑empirical models.  Table  5 lists the outputs of the semi-empirical models used in this 
research. As shown, the mean values of AARD% for Chrastil, Gordillo, Sparks, Garlapati-Madras, Jafari-Nejad, 
Bian, Bartle, MST, Jouyban, and Sodeifian models were 12.29%, 11.67%, 12.28%, 8.11%, 12.57%, 11.38%, 
14.70%, 20.92%, 11.60%, and 14.38%, respectively. Consequently, MST (Radj = 0.9608, F-value = 150.25) and Bian 
(Radj = 0.9763, F-value = 235.17) models are the best in characterizing the solubility data of NHM (some of results 
are summarized below in Fig. 5 at 338 K).

The models with six adjustable parameters had the lowest correlation with the experimental data, while the 
models with 3, 4, and 5 parameters exhibited almost the same performance in terms of correlation with the solu-
bility data. In addition, all the models in this study demonstrated satisfactory accuracy in fitting the solubility 
data. Further information is available in supplementary section (Figs. 1S–10).

PR EoS vdW2 model.  The PR EoS was utilized along with the vdW mixing rule to evaluate the correlation of 
solubility data at four distinct temperatures of 308, 318, 328, and 338 K. Additionally, the sublimation pressure 
corresponding to each temperature was modified to facilitate the comparison. For modeling the solubility data, 
the use of equations of state requires an initial determination of the thermodynamic characteristics of the solid 
substance via various methods. These characteristics entail sublimation pressure, volume at critical tempera-
ture, acentric factor, and boiling temperature. The solubility of drugs is under the direct or indirect influence 
of various properties. As an illustration, the solubility of a drug can be increased by elevating the sublimation 
pressure, which in turn raises the vapor pressure. The sublimation pressure is contingent upon the acentric fac-
tor; on the other hand, the acentric factor is highly dependent on the boiling temperature. All these factors are 
interdependent with a remarkable impact on the drug solubility. The Marrero-Gani and Stein Brown methods 
were employed to estimate the boiling temperature, while Fedors method was utilized to assess volume at critical 
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Figure 4.   Self-consistency trend obtained by MST model, dotted line presents prediction made by MST model 
and symbols refer to solubility data of NHM.
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temperature. The Ambrose-Walton method was also applied for estimation of the sublimation pressure as listed 
in Table 6.

According to the results in Table 7 and Fig. 6 (F-value = 119.41, Radj = 0.9896), the best performance was 
achieved at 308 K. The correlation with the solubility data decrements with temperature enhancement and 
changes in the sublimation pressure. Therefore, the PR model had the lowest correlation with NHM solubility 
data at 338 K.

The thermodynamic properties of NHM were estimated using both the Chrastil and Bartle models and the 
Chrastil and EoS. In this regard, vaporization (ΔHvap), total (ΔHtotal), and solvation (ΔHsol) enthalpies were cal-
culated through the following method:

The Chrastil model (a1 = ΔHtotal/R = − 6296.2307) results in ΔHtotal of 52.35 kJ/mol (endothermic) while Bartle 
model (a1 = ΔHvap/R = − 8839.0557) leads to ΔHvap of 73.49 kJ/mol (endothermic). These computations can be 
expanded to estimate the solvation heat as ΔHsol =|ΔHtotal − ΔHvap|= 21.14 kJ/mol. Thereupon, the combination 
of Bartle and Chrastil models, results in the solvation enthalpy of (ΔHsol) − 21.14 kJ mol−1. Also, Table 2S (sup-
plementary section) reports the enthalpies obtained in this work.

ELT model (modified Wilson model).  The correlation of modified Wilson-predicted solid–liquid equilibrium 
was compared with the solubility data of NHM. The results indicated that the ELT model outperformed the 
empirical and semi-empirical models of this work (see Table 8 and Fig. 7).

Machine learning algorithms.  In the present investigation, the solubility of NHM was studied and evaluated via 
different models, for the first time. Four machine-learning algorithms were also used to compare the experimen-
tal data of various drugs including 17 previously published drugs. Among these algorithms, the RF algorithm 
showed the highest correlation with the solubility data. According to the initial results in Table 9, the RF algo-
rithm provided the best performance (R2 = 0.9933) among all tested algorithms. Figure 8 and 9 also offer more 

Table 6.   Evaluated critical values and physicochemical properties of NHM. a Estimated by Stein Brown 
method68. b Estimated by Marrero and Gani method69. c Estimated by Ambrose–Walton corresponding states 
method70. d Estimated by Fedors method71.

Component Tb (K) Tc (K) Pc (bar) ω Vs (cm3/mol)

T (k)

308 318 328 338

Psub
c (Pa)

Nilotinib.HCl.H2O 725.640a 936.444b 11.77822b 0.5913a 376.8d 0.00040739 0.0014 0.0043 0.0125

CO2 – 304.18 73.8 0.274 – – – – –

Table 7.   Correlation outcomes for solubility of NHM in SC-CO2 by PR-EoS -vdW model.

Model Parameters T = 308 K T = 318 K T = 328 K T = 338 K

PR-vdW

K12 0.559 0.565 0.622 0.65

l12 0.568 0.561 0.649 0.687

AARD (%) 3.39 6.14 9.42 26.20

F-value 119.41 89.81 32.34 3.63

Radj 0.9896 0.9862 0.9623 0.7162
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Figure 6.   NHM solubility vs. SC-CO2 density. Solid lines are calculated solubilities with PR EoS model, 
symbols are experimental data.
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perspectives about RF model results. Figure 10 also presents the results of all models in one figure. It should be 
noted that supplementary figures on some algorithms can be found in supplementary section (Figs. 11S–16S).

To ensure the validity of the machine learning algorithms, two non-parametric tests were employed by 
Eviews13 software: (1) Augmented Dickey–Fuller (ADF) and (2) Phillips–Perron. The results indicate that the 
probe value is less than 1%, thereby, confirming the reliability of the models. Furthermore, as the absolute static 
value is higher than 1%, 5%, and 10%, the models with an error coefficient of 1% provide a sufficient degree of 
accuracy and precision.

1.	 In statistics, the ADF test is employed to evaluate the presence of unit root in a given statistical sample. The 
null hypothesis is tested against alternative explanations, which can include stationarity or trend-stationarity 
depending on the applied specific test. This test has been developed as an advanced prescription of the 
Dickey–Fuller test, allowing the analysis of a wider range of time-series models. The ADF statistic produced 

Table 8.   Correlation outcomes for solubility of NHM in SC-CO2, by ELT, Modified Wilson model.

Model α12 (α) β12 (β) α21 (λ´12) β21 (λ´21) AARD (%) F-value Radj

Modified Wilson − 0.142 8.536 3.305 3.454 10.73 100.57 0.9468
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Figure 7.   NHM solubility vs. SC-CO2 density. Solid lines are calculated solubilities with ELT model, symbols 
are experimental data.
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Figure 8.   Regression line of NHM solubility (with 17 other drugs shown by symbols) vs. RF outputs.

Table 9.   Initial results of machine learning algorithms used in this work.

Algorithm MAE MSE R2

RF 4.33E−06 8.00E−11 0.9933

DTs 6.78E−06 2.47E−10 0.9799

MLP 1.18E−05 3.32E−10 0.9724

DNN 1.29E−05 4.44E−10 0.9701
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by this test is negative, and the strength of rejection for the unit root hypothesis increases as the value 
becomes more negative with a certain level of confidence72.

2.	 Similar to the enhanced Dickey–Fuller test, the Phillips–Perron test addresses the concern that the data 
producing process for a variable may exhibit a greater level of autocorrelation than that of the test equation, 
leading to increased endogeneity and rejection of the Dickey–Fuller t-test. The ADF test resolves this issue 
through including lagged variables as regressors in the test equation. In contrast, the Phillips–Perron test 
introduces a non-parametric alteration to the t-test statistic. This approach has shown proper robustness 
against nonspecific autocorrelation and heteroscedasticity within the disorder process of the test equation. 
Davidson and MacKinnon demonstrated that the Phillips-Perron test outperformed the augmented Dickey–
Fuller test in the case of finite samples73,74. The ADF and Philips–Perron results are shown in Table 10.
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Figure 9.   NHM solubility (with 17 other drugs shown as a solid line) vs. RF outputs shown as dots.
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Figure 10.   All models in one frame, lines and dots are results of models.

Table 10.   Non-parametric tests results.

Test (RF) Adj t-stat

Test critical value

Prob R2 Adj R21% level 5% level 10% level

ADF − 8.590281 − 3.498439 − 2.891234 − 2.582678 0 0.9351 0.9293

Philips–Perron − 45.54484 − 3.493747 − 2.8892 − 2.581596 0.0001 0.8147 0.813

Test (DTs) Adj t-stat

Test critical value

Prob R2 Adj R21% level 5% level 10% level

ADF − 8.702216 − 3.498439 − 2.891234 − 2.582678 0 0.9379 0.9323

Philips–Perron − 47.32203 − 3.493747 − 2.8892 − 2.581596 0.0001 0.8165 0.8148

Test (MLP) Adj t-stat

Test critical value

Prob R2 Adj R21% level 5% level 10% level

ADF − 8.588913 − 3.498439 − 2.891234 − 2.582678 0 0.937 0.9314

Philips–Perron − 49.37702 − 3.493747 − 2.8892 − 2.581596 0.0001 0.8215 0.8198

Test (DNN) Adj t-stat

Test critical value

Prob R2 Adj R21% level 5% level 10% level

ADF − 8.539113 − 3.498439 − 2.891234 − 2.582678 0 0.9336 0.9277

Philips–Perron − 45.26102 − 3.493747 − 2.8892 − 2.581596 0.0001 0.8163 0.8145
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Conclusion
Enhancing the solubility of poorly water-soluble pharmaceuticals has long been an efficient approach for pro-
ducing more effective nanoparticles. Information on the solubility of drugs in supercritical conditions is highly 
essential to achieve this goal. This study thus explored the solubility of nilotinib hydrochloride monohydrate 
(NHM) in SC-CO2 at 308–338 K and pressure range of 120–270 bar, for the first time. The mole fraction of 
the drug dissolved in SC-CO2 ranges from 0.1 × 10–5 to 0.59 × 10–5 corresponding to the solubility range of 
0.016–0.094 g/L. The maximum solubility of NHM (0.59 × 10–5) was achieved at 338 K and a pressure of 270 bar. 
The experimental data were correlated by four groups of models: (1) empirical and semi-empirical models, 
including Bartle (12.57%), Sodeifian (14.38%), Chrastil (12.29%), Sparks (11.67%), Galapati-Madras (12.28%), 
Bian (best among others with an AARD% of 8.11), Jouyban (14.70%), Jafari-Nejad (11.60%), MST (11.38%), and 
Gordillo (20.92%); (2) Peng-Robinson EoS model with vdW mixing rule (best AARD% in temperature of 308 K 
with the value of 3.39); (3) ELT (Modified Wilson model, with an AARD% of 10.73); and (4) machine learning 
techniques such as RF, DTs, MLP, and DNN (RF showed the best performance with the R2 value of 0.9933). The 
Bian and modified Wilson models exhibited the highest correlation with the experimental data. The MST model 
was also utilized to evaluate the self-consistency of the experimental results. Based on the correlation results 
proposed by Chrastil and Bartle, the NHM-CO2 solvation and vaporization enthalpies were estimated to be 
− 21.14 and 73.49 kJ/mol, respectively, that allows us to determine the thermodynamic characteristics of NHM.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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