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Breast cancer histopathology 
image‑based gene expression 
prediction using spatial 
transcriptomics data and deep 
learning
Md Mamunur Rahaman 1, Ewan K. A. Millar 2,3,4 & Erik Meijering 1*

Tumour heterogeneity in breast cancer poses challenges in predicting outcome and response to 
therapy. Spatial transcriptomics technologies may address these challenges, as they provide a wealth 
of information about gene expression at the cell level, but they are expensive, hindering their use in 
large‑scale clinical oncology studies. Predicting gene expression from hematoxylin and eosin stained 
histology images provides a more affordable alternative for such studies. Here we present BrST‑Net, 
a deep learning framework for predicting gene expression from histopathology images using spatial 
transcriptomics data. Using this framework, we trained and evaluated four distinct state‑of‑the‑art 
deep learning architectures, which include ResNet101, Inception‑v3, EfficientNet (with six different 
variants), and vision transformer (with two different variants), all without utilizing pretrained weights 
for the prediction of 250 genes. To enhance the generalisation performance of the main network, we 
introduce an auxiliary network into the framework. Our methodology outperforms previous studies, 
with 237 genes identified with positive correlation, including 24 genes with a median correlation 
coefficient greater than 0.50. This is a notable improvement over previous studies, which could predict 
only 102 genes with positive correlation, with the highest correlation values ranging from 0.29 to 0.34.

Breast cancer is the most prevalent malignancy in women and is a molecularly diverse disease. In 2018, 2.1 mil-
lion women were diagnosed with breast cancer, one every 18 seconds, and 626,679 women died, a 3.1% yearly 
 rise1. Early breast cancer, where the disease is limited to the breast with or without the involvement of the axil-
lary lymph nodes, has a good prognosis with a 5-year survival of close to 90%. However, advanced metastatic 
disease is often incurable with existing therapies, which aim to delay progression and treat symptoms. According 
to the World Health Organization (WHO), early identification of cancer significantly improves the likelihood of 
appropriate decision making and successful  treatment2,3.

Pathological analysis of a tissue biopsy removed from the breast tumour is acknowledged as the gold standard 
method for the diagnosis, subtype classification and  staging4. Heterogeneity is evident at the morphological and 
molecular levels of breast cancer, where divergent patterns of gene expression and interaction with host immune 
and stromal populations can vary widely within and between similar tumour types. A better understanding of 
spatial gene expression is a current area of very active cancer research to better capture spatial differences in 
gene expression which may more accurately reflect patient outcome and response to treatment, which are cur-
rently difficult to gauge.

Emerging spatial transcriptomics (ST) technologies enable profiling gene expression at a single-cell resolu-
tion while preserving spatial orientation and cellular composition within a  tissue5,6. ST is quickly becoming an 
extension of single-cell RNA sequencing (scRNAseq). To understand the complex transcriptional architecture of 
biological systems, it is necessary to determine how cells are arranged in space and how gene expression changes 
in different foci of a targeted tumour or tissue. ST methods based on next generation sequencing (NGS), such as 
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10× Genomics’ Visium, Slide-Seq7, Slide-Seq28, and  HDST9, barcode whole transcriptomes but have restricted 
capture rates and resolutions greater than a single cell (around 100 µm for Visium and 10 µm for Slide-Seq). 
Moreover, NGS-based approaches offer unbiased profiling of large tissue sections without requiring a list of target 
genes, unlike image-based technologies such as in-situ hybridization (ISH) and in-situ sequencing (ISS)10–12. 
In order to accurately and robustly analyse the data produced by ST technologies, specialised computational 
methods are required because of the data’s intrinsic noise, high dimensionality, sparseness, and multimodality 
(containing histology pictures, count matrices, etc.).

Although ST provides a plethora of data, its generation is prohibitively costly, precluding its large-scale appli-
cation. In addition, with commercial equipment like the 10× Genomics Visium system, significant expertise is 
required to create high-quality expression patterns for whole tissue  samples13. On the other hand, compared to 
ST, hematoxylin & eosin (H &E)-stained histology images are not only easier and less expensive to acquire, but 
they are also routinely used in clinical practice. Therefore, the recent development of predicting spatial gene 
expression data from routine histology images offers advantages in cost, speed, and availability of such data. 
These projections have the potential to provide virtual ST data, which will make it possible to investigate the 
regional differences in gene expression on a large scale.

While existing analysis pipelines mostly use gene expression profiles, not image pixel values, the integration 
of imaging data with gene expression data is a new area of  research14. Moreover, whole-slide images (WSIs) have 
been utilised to predict global gene expression patterns via  HE2RNA15, demonstrating their strong correlation 
with transcription. HE2RNA is trained to predict gene expression patterns from The Cancer Genome Atlas 
(TCGA) WSIs without specialist interpretation. Similarly, ST-Net uses ST data in conjunction with DenseNet 
to make predictions on the spatially varying gene expression of each spot over  WSIs16. Prediction of the spatially 
resolved transcriptome makes it possible to use images to look for biomarkers that change in various tumour 
location spots.

Although these techniques have performed well, they do have certain drawbacks. HE2RNA lacks the capacity 
to learn from ST data since it was designed for bulk RNA sequencing. Despite the fact that ST-Net is purpose-built 
for ST, its convolutional neural network (CNN) model is pretrained on the ImageNet dataset, which fails to take 
into account the observed individual spatial locations of spots. Expression of genes generally has local patterns, 
thus it is vital to consider spatial location when training networks to make accurate predictions.

To overcome these challenges, we have developed BrST-Net (short for Breast ST-Net), a framework based on 
deep learning that uses spatial transcriptomics data to predict gene expression directly from breast histopathology 
images (Fig. 1). This framework includes stain normalisation of tissue sections, filtering of gene and ST spots, 
and the generation of image patches depending on the locations of the spots. The image patches are then utilised 
to train CNN and transformer models, with the primary network devoted to predicting 250 highly expressed 
genes. We introduce an auxiliary network before the end of the main network to forecast the remaining genes, 
which ultimately enhances the generalisation performance of the main network by functioning as an alternative 

Figure 1.  Overview of the proposed BrST-Net framework. (a) Original whole slide image. (b) Stain normalised 
image. (c) Mask image and filtered ST spot location information. (d) Extracted image patches using the spot 
location information. (e) Main network with an auxiliary network for gene expression prediction. (f) Prediction 
of an individual gene on the tissue sample, showing (i) test sample, (ii) ACTB gene prediction, (iii) ground-truth 
expression of gene ACTB, and (iv) gene ACTB overlayed on the tissue sample. (g) Performance evaluation.
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kind of  regularisation17. We have thoroughly trained and evaluated four distinct state-of-the-art deep learn-
ing architectures, which include ResNet101, Inception-v3, EfficientNet (with six different variants), and vision 
transformer (with two different variants), to assess their prediction capabilities on the ST dataset. Our suggested 
approach outperforms existing work: the framework using EfficientNet-b0 with an auxiliary network can predict 
237 genes with positive correlation, whereas ST-Net can only predict 102 genes with positive correlation. ST-Net 
identified the top-5 predicted genes in their framework with a median correlation coefficient value of 0.34, 0.33, 
0.31, 0.30, and 0.29, while our framework using EfficientNet-b0 with an auxiliary network can predict 24 genes 
with a median correlation coefficient greater than 0.50, which is a substantial performance boost.

Materials and methods
Dataset description. We used the fifth edition of the publicly accessible spatial transcriptomics  dataset18 
as also used by ST-Net16. It comprises a total of 68 WSIs of H &E-stained frozen tissue sections, from 23 breast 
cancer patients having various subtypes of breast cancer, including luminal A, luminal B, triple-negative, human 
epidermal growth factor receptor 2 (HER2) luminal, and HER2 non-luminal. Each section is scanned at 20× 
magnification, with image size approximately 9500 × 9500 pixels in JPEG format, and contains around 450 
spots, each having a diameter of 100µm and approximately 3000 gene expression counts. In total, the dataset 
comprises 30,612 spots, and includes spot coordinates, count matrices, and coordinate files.

Preprocessing of the dataset. Stain normalization. Histology samples stained with H &E often vary in 
colour between and within laboratories from one batch to the next. Stain normalisation is employed as a pre-
processing step in computational pathology algorithms to regulate variances and has a significant impact on the 
outcome of automated image analysis  methods19. In our work, we employed  StainTools20, using the Vahadane 
technique to normalize the stain variance in the target image and the Luminosity Standardizer function to stand-
ardize the brightness, both of which facilitate consistent interpretation of the  images21.

Gene and spots filtering. To eliminate background noise from gene expression data per spot, we removed genes 
with a mean expression of zero across all samples, and selected spots with at least 1000 total read counts for 
analysis. The resulting filtered genes were stored in a ZipFile format (.npz) comprising multiple arrays, including 
count, pixel, patient, and index arrays. This resulted in approximately 28,792 spot files from all samples, which 
were then utilized to generate corresponding image patches. After filtering, approximately 6000 genes remained. 
The complete preprocessing pipeline is described in detail in Ref.22.

Generating image patches. Since the original images are too large for direct input to a CNN, we extracted N 
patches from the WSIs centered on the ST spots, using their size and position. The patches were then flattened 
into an N × (3×m× n ) matrix, where m and n are the patch’s width and height, respectively, and each patch 
has 3 colour channels. In our experiment, a value of m = n = 224 pixels was selected. To ensure that the train-
ing dataset only contained informative data, we excluded patches with more than 50% white pixels, as these are 
unlikely to contain relevant information and may introduce noise in the data. In total, 27,652 image patches were 
acquired for training.

Gene symbol conversion. The dataset provides a comprehensive list of genes, including their Ensembl identi-
fiers (IDs), which are widely used as a standard for gene annotation and identification. The IDs were translated 
from the given format to gene symbols according to the HUGO Gene Nomenclature Committee (HGNC) data-
base (www. genen ames. org) and converted into a Pickle file, retaining just the Ensembl ID and its related symbol. 
Pickle is a Python library to store complex data as binary files.

Data augmentation. Histology image analysis is supposed to be orientationally invariant, just like a patholo-
gist can analyse a microscopic image from any angle. Therefore, to facilitate the generalisability of the trained 
networks, we used PyTorch’s “torchvision.transforms” module to randomly transform image patches during 
training. It performs random horizontal and vertical flipping, and random rotation of 90 degrees to increase the 
diversity of the training data. All patches were converted to a PyTorch tensor and normalised to zero mean and 
unit variance.

Gene expression prediction models. We experimented with four distinct deep learning architectures, 
which include ResNet, InceptionNet, six variants of EfficientNet, and two vision transformer models, as the 
basis for our BrST-Net framework (Fig. 1), briefly described below. These main networks were trained to learn 
spatial features from histology images and predict gene expression levels. However, due to the high dimension-
ality of ST data, CNN architectures may be limited in their ability to predict gene expression levels accurately 
for the remaining genes. To address this limitation, we modified the main network by introducing an auxiliary 
network (AuxNet) just before the end of the network. The AuxNet is a simple feed-forward neural network 
with a single fully connected layer that predicts the remaining genes. This approach has been shown to enhance 
the performance of various models in handling high-dimensional data. By doing so, the AuxNet enhances the 
generalisation performance of the main network and helps prevent overfitting, providing an alternative form of 
 regularization23–27.

ResNet model. ResNet (Residual Network)28 is a deep learning architecture widely used in computer vision 
tasks such as image classification, object detection, and semantic  segmentation29,30. It uses residual connections 

http://www.genenames.org
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to improve information propagation and learning, expressed as F(x) = H(x)+ x , where x is the input, H(x) is 
the learned residual mapping, and F(x) is the residual block output. This helps mitigate the vanishing gradient 
problem in deep neural networks. In this study, ResNet101 is used as the main network and fully trained on the 
ST dataset, making this the first study to use ResNet for gene expression prediction.

Inception model. Inception27 is a deep convolutional neural network designed for image classification. It uses a 
combination of convolutional and pooling layers, along with auxiliary classifiers, to capture both local and global 
features in the input image. The final prediction is made by combining the outputs of the main and auxiliary clas-
sifiers, represented mathematically as y = Wx + b , where x is the input feature vector, W is the weight matrix 
and b the bias term, and y is the output. Different versions exist, with Inception-v3 achieving state-of-the-art 
performance on benchmark datasets and now being widely used in real-world  applications31,32. In this study, we 
fully trained it on the ST dataset and evaluated its performance for gene expression prediction.

EfficientNet model. The conventional approach to increasing the learning capacity of CNN models involves 
tweaking the network’s depth d and width w and the image resolution r. While this enhances accuracy, it often 
requires significant manual tuning and can result in suboptimal performance. This has been addressed in litera-
ture by examining various scaling strategies and proposing a systematic network architecture scaling method, 
leading to the development of  EfficientNet33. The scaling method employs a user-defined coefficient, ϕ , to scale 
up networks in a more systematic manner, according to the following equations:

where α , β , and γ are calculated through automatic hyperparameter optimisation using grid search. The scal-
ing of the model is regulated by ϕ , which controls the allocation of computational resources. In pathological 
image analysis, multiple studies have utilized the EfficientNet model and achieved superior  accuracy34–38. To our 
knowledge, however, our study is the first to use EfficientNet for gene expression prediction using the ST dataset. 
Specifically, we experimented with versions b0, b1, b2, b3, b4, and b5.

Vision transformer model. Recent editions of the ImageNet Large-Scale Visual Recognition Competition have 
witnessed the dominance of the vision transformer (ViT) over other state-of-the-art approaches. Inspired by 
the challenge of natural language processing (NLP) to deal with varying sentence lengths, ViT aims to deal with 
dependencies at various spatial distances, and partitions an image into a fixed number of patches. In the feature 
extraction stage of a ViT model, a 2D image x ∈ R

X×Y×C of size X × Y  pixels and C channels, is transformed 
into a 1D sequence xp ∈ R

N×P2×C of N patches of size P2 , where N is equal to the input sequence length of the 
transformer encoder and is calculated as N = XY/P2 . In the transformer, all patches are flattened and then 
projected linearly to D dimensions, referred to as patch embeddings. These patch embeddings are the input 
to the transformer encoder, preserving positional  information39. The transformer encoders consist of multiple 
multihead self-attention (MHSA) and multilayer perceptron (MLP) blocks. The MHSA layer in the transformer 
is capable of learning the attention for spots or image patches and involves a linear combination of several atten-
tion heads:

where c denotes the number of heads, W0 are the weights used to aggregate the attention heads, and Q, K, and V 
represent the query, key, and value, respectively. Each head is calculated as:

where WQ
i  , WK

i  , WV
i  are weight matrices. Here, QKT/

√
dK  refers to the attention map, whose pattern is N × N , 

and V represents the self-attention mechanism’s value, where V = Q = K . The attention mechanisms produces 
an N × 1024 matrix as output. In our experiment, we evaluated the performance of the ViT-B16 and ViT-B32 
models, where B16 and B32 refer to the partitioning of an image into 16 and 32 patches,  respectively39.

Model training and evaluation. Loss function. To train a network, its weights are iteratively updated to 
minimise a given loss function. In our framework, we use the following loss:

where L is the overall loss, Lmain is the loss of the main network, Laux is the loss of the auxiliary network, with 
both losses being calculated using cross-entropy, and � is a hyperparameter used to balance the contribution of 
the two losses. The � value effectively controls the influence of the auxiliary network on the overall training of the 
model, acting as a form of regularization by adding an additional constraint that the model needs to satisfy. We 
experimented with various values of � and found that a value of 40 gives good performance. Stochastic gradient 
descent (SGD) optimization was used to minimise the loss.

(1)
d = αϕ , w = βϕ , r = γ ϕ ,

s.t. α · β2 · γ 2 ≈ 2, α ≥ 1, β ≥ 1, γ ≥ 1,

(2)MultiHead (Q,K ,V) = [head1, . . . , headc] ×W0,

(3)headi = Attention

(

QW
Q
i ,KW

K
i ,VW

V
i

)

,

(4)Attention(Q,K ,V) = softmax

(

QKT

√
dk

)

V ,

(5)L = Lmain + � · Laux,
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Error measures. To quantify errors between predicted and actual values, we used the mean absolute error 
(MAE) and root mean squared error (RMSE):

where n is the total number of observations, yi is the true value of observation i, and ŷi is its predicted value. 
Both error measures yield an average prediction error of a model, ranging from 0 to ∞ , with smaller values 
indicating more accurate predictions.

Correlation measure. To assess the reliability of gene expression predictions from histopathology images, we 
used the Pearson correlation coefficient (PCC)40–42:

where ai and bi are the true and predicted genes, respectively, n is the total number of genes, ā is the mean of the 
ai , and b̄ is the mean of the bi . The PCC evaluates the linear relationship between two variables and assigns a score 
ranging from −1 to 1. A score of 1 means there is a perfect positive linear correlation, a score of −1 indicates a 
perfect negative linear relationship, and a score of 0 implies there is no linear relationship. In practice, a PCC 
score between 0.5 to 1 indicates strong correlation, a score between 0.3 to 0.5 indicates medium correlation, and 
a score between 0.1 to 0.3 indicates weak correlation.

Measures taken to prevent overfitting. Despite the limited size of our dataset, we have implemented several 
strategies to prevent overfitting and ensure model robustness. A 5-fold cross-validation strategy was employed 
on 22 out of 23 patients, ensuring model performance isn’t overly reliant on a single data subset. To evaluate 
model generalizability, data from one patient was reserved as an independent test set, providing a stringent test 
of the model’s extrapolation capabilities.

Overfitting was further mitigated through various techniques. Batch gradient descent was utilized during 
training, and gradients were zeroed at each loop’s start. Data augmentation was applied during the training pro-
cess to effectively increase the training dataset size. The Stochastic Gradient Descent (SGD) optimizer was set 
with a weight decay parameter, introducing L2 regularization. Early stopping was implemented, halting training 
when validation set performance ceased to improve. A ReduceLROnPlateau scheduler was used for learning rate 
scheduling, reducing the learning rate when validation loss plateaued. Lastly, an auxiliary loss was introduced 
during training, acting as a form of regularization and adding an additional constraint to the model, thereby 
enhancing its generalization ability.

Experimental results
Implementation and setup. BrST-Net was implemented in PyTorch and Python 3.7. For training, the 
batch size was set to 32, the number of epochs to 200, the gene filter to 250, and the learning rate for SGD was 
set to 0.001. The models were trained on 2 GPUs with 24 CPU cores and 50 GB of RAM on the Gadi cluster of 
the National Computational Infrastructure in Australia. A 5-fold cross-validation was performed on 22 out of 
23 patients to evaluate the performance of the trained models. The remaining patient was held out as a final test 
set to assess the generalisability of the models.

Quantitative results. To assess the efficacy of the different models for our framework, we fully trained 
and evaluated a total of 10 models on the ST dataset: ResNet101, Inception-v3, EfficientNet-b0, EfficientNet-b1, 
EfficientNet-b2, EfficientNet-b3, EfficientNet-b4, EfficientNet-b5, ViT-B-16 and ViT-B-32, with and without the 
use of AuxNet, and compared their performances in predicting the top 250 genes. From the results with AuxNet 
on the held-out test case (Table 1 and Fig. 2), we observe that the EfficientNet architecture is dominant, with Effi-
cientNet-b0 performing most favourably, followed by EfficientNet-b4. The results without using AuxNet for the 
test case (Supplementary Table S1) clearly show the improvements brought by the proposed auxiliary network. 
Specifically, for each gene, the best median PCC value is higher with the use of AuxNet than without, though 
this higher number may be produced by a different main network model. Of the other models, ResNet101, 
Inception-v3, and ViT-B16 performed somewhat comparably (no consistent winner), and better than ViT-B32 
and EfficientNet-b5, the latter of which generally performed worst. EfficientNet-b0 with AuxNet was able to 
predict 237 genes with positive correlation (Fig. 3), including 24 genes with median PCC values greater than 0.5 
(strong correlation), 123 genes with PCC values between 0.3 and 0.5 (medium correlation), and 78 genes with 
PCC values between 0.1 and 0.3 (weak correlation).

The average MAE and average RMSE of all models with and without AuxNet (Table 2) show that for the best-
performing model according to the PCC metric (Table 1) the errors on the testing data are smaller with the use 
of AuxNet than without. More broadly, Inception-v3, the lower-version EfficientNet models, and ViT-B16 all 
produce smaller errors with the use of AuxNet. Interestingly enough, the errors of these models on the training 
data (Table 2) as well as on the validation data (Supplementary Tables S2 and S3) can be larger with the use of 
AuxNet. This may be explained by the fact that AuxNet introduces additional outputs in the network, which can 
make the optimization process more difficult. During training, the network learns to optimize the main objective 

(6)MAE = 1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣, RMSE =

√

√

√

√

1

n

n
∑
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(
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)2
,
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while also optimizing the auxiliary objectives. Consequently, this may result in a more complex optimization 
problem, and the network may not converge as quickly or as well as without the use of AuxNet. However, the 
use of AuxNet can still enhance the generalisation performance of the models on the unseen testing data, which 
is crucial in practical applications. Thus, the slight increase in training error is a reasonable trade-off for the 
improved generalisation performance on the testing data.

Table 1.  Top 10 predicted genes by our framework using different models with AuxNet. The numbers are 
median PCC values on the held-out test patient ID BC23903. Here, to save space, “EfficientNet” is abbreviated 
to “ENet”, and “Inception-v3” to “Incep-v3”.  Bold indicates best performance (highest PCC) per gene and 
italics indicates second-best.

Genes ResNet101 Incep-v3 ENet-b0 ENet-b1 ENet-b2 ENet-b3 ENet-b4 ENet-b5 ViT-B16 ViT-B32

B2M 0.4729 0.5720 0.6325 0.5659 0.5722 0.5199 0.6221 0.1800 0.5475 0.3909

ACTG1 0.5457 0.5391 0.6233 0.5637 0.6054 0.5888 0.6220 0.2259 0.6075 0.5231

ACTB 0.6066 0.4985 0.6204 0.3723 0.4843 0.5919 0.6147 0.2718 0.6359 0.5452

TMSB10 0.3896 0.4678 0.6197 0.0634 0.4597 0.5621 0.5717 0.2038 0.5576 0.1359

GNAS 0.5019 0.5896 0.6139 0.5864 0.5886 0.5976 0.6170 0.2588 0.5872 0.4148

PTMA 0.5521 0.5072 0.5902 0.5641 0.5654 0.5423 0.5956 0.3685 0.5639 0.4762

PTPRF 0.4927 0.5269 0.5926 0.5667 0.5524 0.5359 0.5568 0.0733 0.5126 0.4643

ERBB2 0.3156 0.5033 0.5897 0.3600 0.3499 0.5930 0.5750 0.1684 0.5343 0.4626

PRDX1 0.4561 0.5329 0.5702 0.4478 0.5246 0.5405 0.5466 0.1213 0.5262 0.4789

TMSB4X 0.4238 0.4884 0.5665 0.3876 0.4203 0.5876 0.5872 0.2086 0.5717 0.5345

Figure 2.  Stacked bar chart summarising the predictive performances of the different models.

Figure 3.  Gene prediction PCC value histogram of the 237 positive correlations produced by EfficientNet-b0 + 
AuxNet.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13604  | https://doi.org/10.1038/s41598-023-40219-0

www.nature.com/scientificreports/

Visualisation of gene expression. To better understand the gene expression predictions, the top pre-
dicted genes with high PCC values were visualised on the corresponding histology image (Fig. 4 and Supplemen-
tary Figs. S1 and S2). The visual comparison of the true and predicted expressions of gene B2M and their PCC 
values for the test dataset (Fig. 4) shows a strong correlation between the two. The yellow portions correspond 
to regions where B2M is strongly expressed, while the blue portions correspond to regions where that gene is 
poorly expressed. We observe that the yellow portion of the tissue is highly correlated with the presence of the 
black tumour annotation, indicating that this gene is colocated with cancer cells in the image. This demonstrates 
the effectiveness of our proposed framework BrST-Net in predicting local gene expression from tissue images 
for a selected panel of genes.

Computational costs. To evaluate the computational cost of training our framework, we recorded the 
training times of all considered models in our experiments. From the results (Table  3) we observe that as 
EfficientNet increased in scale from b0 to b5, the training time gradually increased accordingly, as expected. 
ResNet101 and Inception-v3 were about as costly as the lower-scale versions of EfficientNet, while ViT-B16 
was about as expensive as the higher-scale versions of EfficientNet, and ViT-B32 was the fastest network. For a 
few models, the use of AuxNet added comparatively little to the total cost, and for most models, it even slightly 
reduced the cost, demonstrating that AuxNet is a lightweight network that can improve accuracy while incurring 

Table 2.  Average mean absolute error (aMAE) and average root mean squared error (aRMSE) of different 
models with and without AuxNet on the training and testing data.

Model

Training data Testing data

aMAE aRMSE aMAE aRMSE

ResNet101 + AuxNet 0.7823 0.9654 0.7609 0.9344

Inception-v3 + AuxNet 0.7831 0.9650 0.7403 0.9036

EfficientNet-b0 + AuxNet 0.7730 0.9528 0.7490 0.9144

EfficientNet-b1 + AuxNet 0.7489 0.9259 0.7345 0.8976

EfficientNet-b2 + AuxNet 0.7618 0.9399 0.7277 0.8898

EfficientNet-b3 + AuxNet 0.7858 0.9677 0.7481 0.9135

EfficientNet-b4 + AuxNet 0.8037 0.9899 0.7718 0.9409

EfficientNet-b5 + AuxNet 0.8042 0.9904 0.7905 0.9716

ViT-B16 + AuxNet 0.7909 0.9754 0.7262 0.8893

ViT-B32 + AuxNet 0.8039 0.9909 0.7699 0.9403

ResNet101 0.7830 0.9675 0.7484 0.9158

Inception-v3 0.7801 0.9657 0.7470 0.9148

EfficientNet-b0 0.7456 0.9242 0.7499 0.9148

EfficientNet-b1 0.7529 0.9324 0.7462 0.9122

EfficientNet-b2 0.7610 0.9419 0.7397 0.9042

EfficientNet-b3 0.8008 0.9878 0.7465 0.9120

EfficientNet-b4 0.7635 0.9446 0.7445 0.9100

EfficientNet-b5 0.7761 0.9586 0.7374 0.9017

ViT-B16 0.7878 0.9730 0.7621 0.9324

ViT-B32 0.7961 0.9829 0.7607 0.9311

Figure 4.  Visualisation of gene B2M expression for patient BC23903 slide number C2. (a) Histopathology 
sample from the test data. (b) Binary label of tumour (black) and normal (white) areas, with gray parts 
indicating areas that are not purely tumor or normal. (c) Ground truth expression of gene B2M. (d) Predicted 
expression of gene B2M (PCC = 0.6325). (e) Visualisation of predicted gene B2M expression overlayed on the 
tissue slice.
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minimal computational overhead. For all models, while training takes many hours, their application at test time 
takes only a few seconds per image, making them computationally very feasible in clinical practice.

Discussion
Spatial transcriptomics technologies can profile gene expression for complete transcriptomics at almost single-
cell resolution, with spatial positions matched with H &E-stained histological images (WSIs). While WSIs are 
inexpensive, accessible, and commonly generated in clinics, generating ST data is very costly and complicated, 
and currently, only a limited number of research centres are capable of doing so. Therefore, predicting gene 
expression directly from WSIs is useful.

In this paper, we proposed BrST-Net, a framework for predicting gene expression using ST data. We fully 
trained and tested four distinct deep learning architectures, which include ResNet101, Inception-v3, EfficientNet 
(with six different variants), and vision transformer (with two different variants), for our framework to predict 
250 genes based on ST breast cancer data. Of all considered models, the combination of EfficientNet-b0 and 
our proposed AuxNet was able to predict 237 genes with positive median correlation, including 24 genes with 
strong correlation (PCC value over 0.5), 123 genes with medium correlation (PCC values between 0.3 and 0.5), 
and 78 genes with weak correlation (PCC values between 0.1 and 0.3). EfficientNet-b4 and EfficientNet-b3 also 
performed relatively well, as did Inception-v3 and ViT-B16, while EfficientNet-b5 performed worse and ViT-
B32 generally did poorly. The fact that, among the transformer models, ViT-B16 outperformed ViT-B32 in gene 
expression prediction, may be attributed to the smaller dimensionality of ViT-B16, which enhances its ability 
to capture complex gene expression relationships. These findings emphasize the significance of selecting an 
appropriate model architecture for the given task and dataset.

In our research, we chose to evaluate ten models and diverse architectures, including convolutional neural 
networks (CNNs) and transformer models. This diversity allowed us to comprehensively evaluate different types 
of models on the task of predicting gene expression from histopathological images. We found that the EfficientNet 
architecture, particularly EfficientNet-b0, performed most favorably, likely due to its balanced scaling of network 
width, depth, and resolution, which effectively handles high-dimensional data. The Vision Transformer (ViT) 
models, specifically ViT-B16, also performed well due to their smaller dimensionality, which enhances their 
ability to capture complex gene expression relationships. We also introduced an auxiliary network (AuxNet) as 
a form of regularization, which improved the performance of all the models by adding an additional constraint, 
thereby enhancing their generalization ability. We believe that the choice of model architecture is significant for 
the given task and dataset, as different architectures have different strengths and weaknesses, and their suitability 
for a task depends on the specific characteristics of the data and the task requirements.

While the choice of model architecture is significant, it is equally important to prioritize a data-centric 
approach in spatial transcriptomics. This involves ensuring high-quality data through careful preprocessing and 
normalization, and leveraging large-scale datasets for training robust and generalizable models. Strategies to 
manage and learn from large-scale data, such as regularization techniques and efficient computational frame-
works, are crucial in this context.

Table 3.  Computational cost of our framework using different models.

Model
Training time
(hours:minutes:seconds)

ResNet101 + AuxNet 23:17:50

Inception-v3 + AuxNet 20:04:46

EfficientNet-b0 + AuxNet 19:04:28

EfficientNet-b1 + AuxNet 23:54:54

EfficientNet-b2 + AuxNet 23:30:49

EfficientNet-b3 + AuxNet 25:02:51

EfficientNet-b4 + AuxNet 29:58:24

EfficientNet-b5 + AuxNet 37:02:11

ViT-B16 + AuxNet 33:09:25

ViT-B32 + AuxNet 17:08:06

ResNet101 23:58:59

Inception-v3 20:05:58

EfficientNet-b0 19:49:15

EfficientNet-b1 23:07:10

EfficientNet-b2 22:35:53

EfficientNet-b3 25:00:06

EfficientNet-b4 30:02:30

EfficientNet-b5 37:36:46

ViT-B16 32:18:28

ViT-B32 17:18:28
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In our study, we have made several preprocessing choices that have potential implications on the results. 
For instance, we have implemented a filter to consider only spots with total read counts greater than or equal 
to 1000. This decision ensures that we focus on spots with sufficient information, reducing the impact of noise 
in our data. However, we acknowledge that altering this threshold could potentially affect the results, and fur-
ther investigation into the optimal threshold could be beneficial. Additionally, we have applied a logarithmic 
transformation to the count data, a common normalization technique in gene expression analysis, to stabilize 
the variance and make the data more normally distributed. We also selected the top 250 genes based on their 
mean expression across all spots, a decision that reduces the dimensionality of the data and focuses on the most 
informative genes. These preprocessing choices, including the number of genes to keep, are hyperparameters 
of our pipeline. While these were chosen based on empirical observations and literature recommendations, we 
did not perform systematic hyperparameter optimization in this study. We acknowledge that different choices 
of these hyperparameters could potentially impact the results, and future work could explore the effects of these 
hyperparameters in more detail.

In comparison to the first method in this area, ST-Net16, our BrST-Net framework improved the gene expres-
sion prediction performance quite substantially. We have completely trained the most recent state-of-the-art 
CNN models and transformers and compared their performances on the ST dataset, while ST-Net employed 
a DenseNet trained on natural images (such as cats, dogs, and flowers), which may not be optimal for histopa-
thology. In our suggested approach, in addition to the core network, an auxiliary network is added to predict 
the remaining genes. The auxiliary loss helps reduce the fading gradients problem and stabilizes and regularises 
the training. Whereas ST-Net can predict only 102 genes with positive correlation, our framework was able to 
predict 237. ST-Net revealed the top-5 predicted genes with a median correlation coefficient value of (0.34, 0.33, 
0.31, 0.30, and 0.29), and for smoothed data (0.49, 0.50, 0.50, 0.52, and 0.43). In contrast, with our framework 
using EfficientNet-b0 with the proposed AuxNet, we could predict 24 genes with a median correlation coefficient 
greater than 0.50, which represents a considerable increase in performance.

Notwithstanding the merits of BrST-Net, there is still much room for further study and development in 
this field. To mitigate the risk of overfitting and to ensure the robustness and generalizability of our model, we 
employed a rigorous out-of-fold cross-validation strategy on 22 out of the 23 patients. This strategy ensures that 
our model is not overly reliant on a specific subset of the data and can generalize well to unseen data. However, 
we recognize that the generalizability of our model can be impacted by various factors in practical scenarios, 
including data acquisition techniques. Nevertheless, it is worth noting that the BrST-Net framework holds 
potential for implementation on a large-scale dataset, which can lead to improved performance and further 
enhance the model’s generalizability. As is well known, deep learning methods require a large dataset to obtain 
good results. Thus we expect future studies using larger datasets to increase the prediction performance and 
robustness of the models. A richer dataset from a larger number of patients would also expand our framework’s 
generalisability. Because each model has unique performance characteristics, combining two or more models can 
be beneficial. Also, it may be possible to do further gene expression filtering and model training for predicting 
target gene expression. There is a need to further improve the number of genes predicted with high correlation, 
which are of established relevance in cancer biology and treatment. In the meantime, BrST-Net could serve as an 
inexpensive and fast high-throughput screening tool for large numbers of patient samples to direct downstream 
definitive molecular analyses.

Data availability
Data used in this study is available from Mendeley Data at https:// data. mende ley. com/ datas ets/ 29ntw 7sh4r. The 
code for the BrST-Net framework can be found at the following GitHub repository: https:// github. com/ Mamun 
ur- 20/ BrSTN et.
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