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Physics‑informed neural networks 
for predicting gas flow dynamics 
and unknown parameters in diesel 
engines
Kamaljyoti Nath 1,5, Xuhui Meng 2,5, Daniel J. Smith 3 & George Em Karniadakis 1,4*

This paper presents a physics‑informed neural network (PINN) approach for monitoring the health 
of diesel engines. The aim is to evaluate the engine dynamics, identify unknown parameters in a 
“mean value” model, and anticipate maintenance requirements. The PINN model is applied to diesel 
engines with a variable‑geometry turbocharger and exhaust gas recirculation, using measurement 
data of selected state variables. The results demonstrate the ability of the PINN model to predict 
simultaneously both unknown parameters and dynamics accurately with both clean and noisy data, 
and the importance of the self‑adaptive weight in the loss function for faster convergence. The input 
data for these simulations are derived from actual engine running conditions, while the outputs are 
simulated data, making this a practical case study of PINN’s ability to predict real‑world dynamical 
systems. The mean value model of the diesel engine incorporates empirical formulae to represent 
certain states, but these formulae may not be generalizable to other engines. To address this, the 
study considers the use of deep neural networks (DNNs) in addition to the PINN model. The DNNs are 
trained using laboratory test data and are used to model the engine‑specific empirical formulae in the 
mean value model, allowing for a more flexible and adaptive representation of the engine’s states. In 
other words, the mean value model uses both the PINN model and the DNNs to represent the engine’s 
states, with the PINN providing a physics‑based understanding of the engine’s overall dynamics and 
the DNNs offering a more engine‑specific and adaptive representation of the empirical formulae. By 
combining these two approaches, the study aims to offer a comprehensive and versatile approach to 
monitoring the health and performance of diesel engines.

Powertrains of the future must meet increasingly stringent requirements for emissions, performance, reliability, 
onboard monitoring, and serviceability. Capable system models for estimating states and adapting to an indi-
vidual system’s behaviour are critical elements to meet control and health monitoring needs. Leveraging purely 
data-driven models to meet these requirements provides simplicity in modelling and captures dynamics difficult 
to formulate analytically. However, large data needs, poor physical interpretability, challenges with systems with 
long memory effects and sparse sensing, as well as inability to extrapolate beyond the training datasets present 
onerous burdens to practical implementation. Relying on purely theory-based models allows for directly inter-
pretable results with higher confidence and fewer data for calibration but often causes a tradeoff of modelling 
relevant dynamics versus model complexity, challenges in systems with high uncertainties, poor modelling where 
dynamics are not well understood, and slow solution of higher-order models. Modelling solutions that leverage 
the strengths of theory-guided as well as data-driven models have the potential to reduce data needs, increase 
robustness, and effectively use theoretical and practical knowledge of the system.

To investigate model architectures, balancing the strengths of both theory-based models and data-driven 
models, this work explores the application of physics-informed neural networks (PINNs) to a diesel internal 
combustion engine model for the purposes of simultaneous parameter and state estimation. The physical portion 
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is based on the mean value model of a diesel engine with a variable geometry turbocharger (VGT), and exhaust 
gas recirculation (EGR) proposed by Wahlström and  Eriksson1.

Physics-informed neural networks (PINNs)2 is a new method of training neural networks, which takes into 
account the physics of a problem while evaluating the parameters of the neural network. The method is suitable 
for both evaluation of the solution of PDF (forward problem) and the data-driven identification of parameters of 
PDF (inverse problem). It takes advantage of automatic  differentiation3 in formulating a physical loss in the loss 
function along with data loss. Jagtap et al.4 proposed conservative PINNs (cPINNs) for conservation laws, which 
employs domain decomposition with a PINN formulation in each domain. Further, Jagtap and  Karniadakis5 
introduced domain decomposition for general PDEs using the so-called extended PINN (XPINN). hp-VPINNs 
is a variational formulation of PINN with domain decomposition proposed by Kharazmi et al.6. Meng et al.7 
proposed the Parareal PINN (PPINN) approach for long-time integration of time-dependent partial differential 
equations. The authors  of8 proposed “separable” PINN, which can reduce the computational time and increase 
accuracy for high dimensional PDEs. In PINN, there are multiple loss functions, and the total loss function is 
given by the weighted sum of individual losses. McClenny and Braga-Neto9 proposed a self-adaptive weight 
technique, which is capable of tuning the weights automatically. PINN and its variants were also considered in 
various inverse problems like supersonic  flows10, nano-optics and  metamaterials11, unsaturated groundwater 
 flow12. Detailed reviews of PINN can be found  in13–15.

Modelling of diesel engines using neural networks has been considered in the past. Biao et al.16 considered 
Nonlinear Auto-Regressive Moving Average with eXogenous inputs (NARMAX) method for system identifica-
tion of locomotive diesel engines. The model has three inputs to the network, i.e. the fuel injected, the load of 
the main generator, and the feedback rotation speed (from the output); the outputs are rotation speed and diesel 
power. The authors considered Levenberg–Marquardt (LM) algorithm to train the network. Finesso and  Spessa17 
developed a three-zone thermodynamic model to predict nitrogen oxide and in-cylinder temperature heat release 
rate for direct injection diesel engines under steady state and transient conditions. The model is zero-dimensional, 
and the equations can be solved analytically. Thus, it required a very short computational time. Tosun et al.18 
predicted torque, carbon monoxide, and oxides of nitrogen using neural networks (3 independent networks) 
for diesel engines fueled with biodiesel-alcohol mixtures. The authors considered three fuel properties (density, 
cetane number, lower heating value) and engine speed as input parameters and the networks are optimized using 
the Levenberg-Marquardt method. The authors observed that neural network results are better than the least 
square method. González et al.19 integrated a data-driven model with a physics-based (equation-based) model 
for the gas exchange process of a diesel engine. The authors modelled the steady-state turbocharger using a 
neural network. Further, the authors integrated the data-driven model with an equation-based model. Recently, 
Kumar et al.20 considered  DeepONet21 to predict the state variables of the same mean value engine  model1 we 
considered in this study. The authors consider dynamic data to train the model. However, the model predicts 
the state variables only at the particular (trained) ambient temperature and pressure, as variations of ambient 
temperature and pressure are not considered in the training of DeepONet. The model also does not predict the 
parameters of the engine model. While the model was trained using dynamic data, the physics of the problem was 
not considered while training the network. The model (DeepONet) is capable of predicting dynamic responses.

In the present study, we formulate a PINN model for the data-driven identification of parameters and predic-
tion of dynamics of system variables of a diesel engine. In PINN, the physics of the system is directly included 
in the form of physics loss along with data loss. While data-driven models require large amount of data over the 
entire operational range in training, PINN can be trained with a smaller amount of data as it is trained online. 
The dynamics characteristic of the state variables is automatically incorporated. PINN may be used for the 
solution of differential equations or for the identification of parameters and prediction of state variables. In the 
present study, we are specifically interested in estimating unknown parameters and states when we know a few 
state variables from field data. The dynamics of the state variables of the mean value  engine1 are described by 
first-order differential equations. We will utilize these equations in the formulation of the physics-informed loss 
function. The unknown parameters are considered trainable and updated in the training process along with the 
neural network parameters.

The engine model also considers a few empirical formulae in its formulation. These equations are engine-
specific, and the coefficients of these equations need to be evaluated from experimental data. These equations are 
static in nature, and thus may be trained with smaller data compared to dynamic equations. We know that deep 
neural networks (DNNs) are universal approximators of any continuous function, thus, DNNs may be consid-
ered more general approximators of these empirical formulae. One of the advantages of considering DNNs over 
empirical formulae is that we do not need to assume the type of non-linearity between the input out variables. The 
neural network learns the non-linearity if trained with sufficient data. We approximate the empirical formulae 
using DNNs and train them using laboratory test data. Once these networks are trained using laboratory test 
data, these are considered in the PINNs model in places of the empirical formulae. During the training of the 
PINNs model, the parameters of these networks are remain constant.

The training data for the inverse problem and laboratory data are generated using the Simulink  file22 accom-
panied  in1. The input to Simulink is taken from actual field data. By doing this, we are trying to generate data 
as realistic as field data. Furthermore, we also consider noise to the field data generated. We observed that the 
proposed PINNs model can predict the dynamics of the states and unknown parameters. We summarize below 
a few of the salient features of the present study: 

1.  We formulated PINNs-based parameter identification for real-world dynamical systems, in the present case, 
a diesel engine. This is significant as it started a new paradigm for future research for onboard systems for 
the health monitoring of engines.
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2.  We showed how PINNs could be implemented in predicting important unknown parameters of diesel 
engines from field data. From these predicted parameters, one can infer the health and serviceability require-
ments of the engine.

3.  We showed the importance of self-adaptive weights (given the fast transient dynamics) in the accuracy and 
faster convergence of results for PINNs for the present study.

4.  The engine model generally considers empirical formulae to evaluate a few of its quantities. These empirical 
formulae are engine-specific and require lab test data for the evaluation of the coefficients. We have shown 
how neural networks can be considered to model the empirical formulae. We have shown how we can train 
these networks from lab-test data. This is important as it may provide a better relationship for the empirical 
formulae.

5.  The field data for the inverse problem are generated considering input recorded from actual engine running 
conditions. Further, we consider appropriate noise in the simulated data, mimicking near real-world field 
data.

We organize the rest of the article as follows: in “Problem setup”, we discuss the detailed problem statement 
and different cases considered for simulation studies. In “Methodology”, first, we discuss PINNs for the inverse 
problems for the diesel engine and the surrogates for the empirical formula. We discuss a detailed flow chart 
for the inverse problem for the PINN engine model in “Flowchart for PINN model for diesel engine”. In “Data 
generation”, we discuss the laboratory data required and their generation for the training of surrogates for the 
empirical formulae. We also discuss the field data generation for the inverse problem. We present the results 
and discussion in “Results and discussions”. The conclusions of the present study are discussed in “Summary”.

Problem setup. In this section, we first introduce the mean value model for the gas flow  dynamics1 in the 
diesel engine, and then we will formulate the inverse problems that we are interested in.

As shown in Fig. 1, the engine model considered in the present study mainly comprises six parts: the intake 
and exhaust manifold, the cylinder, the exhaust gas recirculation (EGR) valve system, the compressor and the 
turbine. More details on each engine part can be seen in “Appendix 2”. We note that the engine considered here 
is the same as  in1.

To describe the gas flow dynamics in the engine illustrated in Fig. 1, e.g., the dynamics in the manifold pres-
sures, turbocharger, EGR and VGT actuators, a mean value model of the diesel engine with variable geometric 
turbocharger and exhaust gas recirculation was proposed  in1. We will also utilize the same model as the governing 
equations to describe the gas flow dynamics considered in the current study. Specifically, the model proposed 
 in1 has eight states expressed as follows:

Figure 1.  Schematic diagram of the diesel engine: a schematic diagram of the mean value diesel engine with 
a variable-geometry turbocharger (VGT) and exhaust gas recirculation (EGR)1. The main components of the 
engine are the intake manifold, the exhaust manifold, the cylinder, the EGR valve system, the compressor, and 
the turbine. The control input vector is u = {uδ , uegr , uvgt} , and engine speed is ne . (Source: Figure is adopted 
 from1).



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13683  | https://doi.org/10.1038/s41598-023-39989-4

www.nature.com/scientificreports/

where pim and pem are the intake and exhaust manifold pressure, respectively, XOim and XOem are the oxygen 
mass fractions in the intake and exhaust manifold, respectively, ωt is the turbo speed; ũvgt represents the VGT 
actuator dynamics. A second-order system with an overshoot and a time delay is used to represent the dynam-
ics of the EGR-valve actuator. The model is represented by subtraction of two first-order models, ũegr1 and ũegr2 , 
with different gains and time constants. Further, the control inputs for the engine are u = {uδ , uegr , uvgt} and 
the engine speed is ne , in which uδ is the mass of injected fuel, uegr and uvgt are the EGR valve position and VGT 
actuator positions, respectively. Furthermore, the position of the valves, i.e., uegr and uvgt , may vary from 0 to 
100%, which indicates the complete close and opening of the valves, respectively. The mean value engine model 
is then expressed as

In addition, the states describing the oxygen mass fraction of the intake and exhaust manifold, i.e., XOim and 
XOem , are not considered in the present study as the rest of the states do not depend on these two states. Also, 
the parameters of the oxygen mass fractions are assumed to be constant and known. The governing equations 
for the remaining six states are as follows:

Two additional equations used for the computation of Tem in Eq. (4) read as:

where T1 is the temperature when the inlet valve closes after the intake stroke and mixing, and xr is the residual 
gas fraction. A brief discussion on the governing equations of the engine model is presented in “Appendix 2”. 
Interested readers can also refer  to1 for more details.

In the present study, we have field measurements on a certain number of variables, i.e., pim , pem , ωt , and Wegr 
as well as the inputs, i.e., u and ne , at discrete times. Further, some of the parameters in the system, e.g., Aegrmax , 
ηsc , htot and Avgtmax , which are difficult to measure directly, are unknown. Aegrmax is the maximum effective area 
of the EGR valve, ηsc is the compensation factor for non-ideal cycles, htot is the total heat transfer coefficient 
of the exhaust pipes and Avgtmax is the maximum area in the turbine that the gas flows through. From the field 
prediction of these parameters, we can infer the health of the engine; a higher deviation from their design value 
may indicate a fault in the system. We are interested in (1) predicting the dynamics of all the variables in Eqs. 
(3)–(10), and (2) identifying the unknown parameters in the system, given field measurements on pim , pem , ωt , 
and Wegr as well as Eqs. (3)–(10). We refer to the above problem as the inverse problem in this study. Specifically, 
the following cases are considered for a detailed study: 

Case 1  Prediction of dynamics of the system and identification of 3 unknown parameters Aegrmax , ηsc and htot 
with clean data of pim , pem , ωt , and Wegr.

Case 2  Prediction of dynamics of the system and identification of 3 unknown parameters Aegrmax , ηsc and htot 
with noisy data of pim , pem , ωt , and Wegr.

Case 3  Prediction of dynamics of the system and identification of 4 unknown parameters Aegrmax , ηsc , htot and 
Avgtmax with clean data of pim , pem , ωt , and Wegr.

Case 4  Prediction of dynamics of the system and identification of 4 unknown parameters Aegrmax , ηsc , htot and 
Avgtmax with noisy data of pim , pem , ωt , and Wegr.

(1)x = {pim, pem, XOim, XOem, ωt , ũegr1, ũegr2, ũvgt},

(2)ẋ = f (x, u, ne).

(3)
d

dt
pim =

RaTim

Vim
(Wc +Wegr −Wei),

(4)
d

dt
pem =

ReTem

Vem
(Weo −Wt −Wegr),

(5)
d

dt
ωt =

Ptηm − Pc

Jtωt
,

(6)
dũegr1

dt
=

1

τegr1

[
uegr(t − τdegr)− ũegr1

]
,

(7)
dũegr2

dt
=

1

τegr2

[
uegr(t − τdegr)− ũegr2

]
,

(8)
dũvgt

dt
=

1

τvgt

[
uvgt(t − τdvgt)− ũvgt

]
.

(9)T1 = xrTe + (1− xr)Tim,

(10)xr =
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 In the present study, we consider self-adaptive  weights9 (discussed in “Methodology” and “Appendix 1”) in 
our loss function. We study the above four cases using self-adaptive weight. In order to understand the effect 
and importance of self-adaptive weights in the convergence and accuracy of results, we consider one more case 
without self-adaptive weight, 

Case 5  Prediction of dynamics of the system and identification of 4 unknown parameters Aegrmax , ηsc , htot and 
Avgtmax with clean data of pim , pem , ωt , and Wegr without self-adaptive weights.

 The results of Case 1 and Case 2 are presented in “Appendix 7”. First, we study the results of Case 3 and Case 5 to 
understand the accuracy and convergence of PINN method and the importance of self-adaptive weights. Then, we 
study the results of Case 4. The results for Case 3, Case 4 and Case 5 are discussed in “Results and discussions”.

Methodology
We consider to employ the deep learning algorithm, particularly, the physics-informed neural networks (PINNs), 
to solve the inverse problem discussed in “Problem setup”. To begin with, we first briefly review the basic principle 
of PINNs, and then we discuss how to employ PINNs for the present inverse problem.

PINNs for inverse problems in the diesel engine. We first briefly review the  PINNs2,4–7 for solving 
inverse problems, and then we introduce how to employ the PINNs to solve the specific problem that we are of 
interest for the diesel engine.

As illustrated in Fig. 2, the PINN is composed of two parts, i.e., a fully-connected neural network which is to 
approximate the solution to a particular differential equation and the physics-informed part in which the auto-
matic  differentiation3 is employed to encode the corresponding differential equation. Further, Λ represents the 
unknowns in the equation, which can be either a constant or a field. In particular, Λ are trainable variables as the 
unknowns are constant, but they could also be approximated by a DNN if the unknown is a field. The loss func-
tion for solving the inverse problems consists of two parts, i.e., the data loss and the equation loss, which reads as:

where θ denotes the parameters in the DNN; M and N represent the number of measurements and the residual 
points, respectively; ŷ(ti; θ) denotes the prediction of DNN at the time ti ; y(ti) is the measurement at ti , and 
r(ti; θ;Λ) represents the residual of the corresponding differential equation, which should be zero in the entire 
domain. By minimizing the loss in Eq. (11), we can obtain the optimal parameters, i.e., θ , of the DNN as well as 
the unknowns, i.e., Λ , in the system. In the present study, we have a few empirical equations that we approximate 
using DNNs. These DNNs are trained first using data and considered in place of these empirical formulae. We 
fixed the parameters of these networks when we minimized the loss function for the PINN model. Furthermore, 
note that here we employ the system described by one equation as the example to demonstrate how to use PINNs 
for solving inverse problems. For the system with more than one equation, we can either utilize an DNN with 
multiple outputs or multiple DNNs as the surrogates for the solutions to differential equations. In addition, a simi-
lar idea can also be employed for systems with multiple unknown fields. The loss function can then be rewritten as

where K and L denote the number of variables that can be measured as well as the equations, respectively; Mk and 
Nl are the number of measurements for the kth variable and the number of residual points for the lth equation, 
respectively; and Λ collects all the unknowns in the system.

For the inverse problem presented in “Problem setup”, we are interested in (1) learning the dynamics of the 
six states (2) inferring the unknown parameters in the system, given measurements on {pim, pem,ωt ,Wegr} as well 
as Eqs. (3)–(10), using PINNs. Specifically, we utilize six DNNs as the surrogates for the solutions to different 
equations, and the corresponding equations are encoded using the automatic differentiation, as illustrated in 
Table 1. In addition, the loss for training the PINNs for Case 1 to Case 4 is expressed as follows:

(11)
L(θ;Λ) =

1

M

M∑

i=1

|ŷ(ti; θ)− y(ti)|
2

︸ ︷︷ ︸
data loss

+
1

N

N∑

i=1

|r(ti; θ;Λ)|2

︸ ︷︷ ︸
equation loss

(12)
L(θ;Λ) =

K∑

k=1

[
1
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Mk∑
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2

]
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data loss

+
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1
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where θ = (θ1, . . . , θ6) are the parameters of all NNs in PINNs, Λ are the unknown parameters, which will be 
inferred from the given measurements, Lφ , φ = (pim, pem,ωt , ũegr1, ũegr2, ũvgt , xr ,T1) are the losses for the cor-
responding equations, and Ldata

ψ , ψ = (pim, pem,ωt ,Wegr) are the losses for the corresponding measurements, 
and Lini

φ , φ = (pim, pem,ωt , ũegr1, ũegr2, ũvgt , xr ,T1) are the losses for the initial conditions, �T1 , �pim , �pem , �ωt , 
and �Wegr are the weights for different loss terms which are used to balance each term in the loss function. In 
particular, the self-adaptive weight technique proposed  in9, which is capable of tuning the weights automatically, 
is utilized here to obtain the optimal, �T1 �pim , �pem , �ωt , and �Wegr . More details for self-adaptive weights in PINN 
can be found in “Appendix 1”.

In the Case 5, where we have not considered self-adaptive weights, so the loss function is given as

Figure 2.  Schematic of physics-informed neural networks (PINNs) for inverse problems: the left part of the 
figure, enclosed in the red dashed line, shows a DNN whose input is time. The DNN is to approximate the 
solution (y) to a differential equation. The top left part of the figure enclosed in the black dashed line shows 
an DNN whose input is the output y (maybe with other input, e.g. ambient condition). The output of this 
network is a function g(y). This network is pre-trained with laboratory data of y and g(y). The right part of the 
figure, enclosed in the blue dashed line, denotes the physics loss/residue. The DNN (enclosed in a red dashed 
line) approximates the solution to any differential equation, and the equation is encoded using automatic 
differentiation. The total loss L(θ) includes the loss of equation as well as the data. The �1 and �2 are two weights 
to the data loss and physics loss, which may be fixed or adaptive depending upon the problem and solution 
method. θ = {W , b,Λ} represents the parameters in DNN, W and b are the weights and biases of DNN, 
respectively and Λ are the unknown parameters of the ODE; σ is the activation function, q(t) is the right-hand 
side (RHS) of the differential equation (source term), h is the function of the predicted variable, and r is the 
residual for the equation. θP = {WP , bP} represents the parameters in pre-trained neural network, WP and bP 
are the weights and biases of the pre-trained neural network.

Table 1.  Neural network surrogates employed PINNs for solving the inverse problems. N i(t; θ i), i = 1, . . . , 6 
denotes the surrogate for the ith DNN parameterized by θ i with the input t. In particular, N 1(t; θ1) and 
N 4(t; θ4) have two outputs, which are used to approximate {pim, pem} and {ũegr1, ũegr2} , respectively; the 
remaining DNNs have only one output.

Variables pim , pem xr T1 ũegr1 , ũegr2 ωt ũvgt

Surrogate N 1(t; θ1) N 2(t; θ2) N 3(t; θ3) N 4(t; θ4) N 5(t; θ5) N 6(t; θ6)

Equations  (3) and (4)  (10)  (9)  (6) and (7)  (5)  (8)
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As for training the PINNs in the present study, we first employ the first-order optimizer, i.e.,  Adam23, to train 
the parameters in the NNs, unknowns in the systems as well as the self-adaptive weights for a certain number 
of steps. We then fix the self-adaptive weight and employed Adam to train the parameters in the NNs, and 
unknowns in the systems for another certain number of steps. We then switch to the second-order accuracy 
optimizer, i.e., LBFGS-B, to further optimize the parameters in the NNs and the unknowns in the systems. Note 
that the self-adaptive weights are optimized at the first training stage of Adam only, and they are fixed during 
the second training stage of Adam and LBFGS-B training with the values at the end of the first stage of Adam 
optimization.

Neural network surrogates for empirical formulae. In the mean value engine model proposed  in1, empirical for-
mulae, e.g., polynomial functions, are employed for the volumetric efficiency ( ηvol ), effective area ratio function 
for EGR valve ( fegr ), turbine mechanical efficiency ( ηtm ), effective area ratio function for VGT ( fvgt ), choking 
function (for VGT) ( f�t ), compressor efficiency ( ηc ), and volumetric flow coefficient (for the compressor) ( �c ). 
Note that these empirical formulae are engine-specific and may not be appropriate for the diesel engines consid-
ered in the present study. Deep neural networks (DNNs), which are known to be universal approximators of any 
continuous function, are thus utilized as more general surrogates for the empirical formulae here. Particularly, 
we employ six DNNs for the aforementioned variables, and the inputs for each DNN are presented in Table 2.

We now discuss the training of the DNNs illustrated in Table 2. In laboratory experiments, measurements 
on all variables are available. We can then train the neural network surrogates in Table 2 using the data collected 
in the laboratory. The loss function considered for the training of these networks is

where i = 1, 2, . . . , 6 are the different neural networks for the approximation of the empirical formulae, xi are the 
input corresponds to the ith network, ŷi and yi are the output of the ith network and the corresponding labelled 
values respectively, ni is the number of labelled dataset corresponds to the ith neural network. The laboratory 
data required for calculating labelled data for training each of these networks are shown in Table 3 (in “Data 
generation”). We discuss the calculation of labelled data from the laboratory data in “Appendix 4”. We train these 
networks using the Adam optimizer. Upon the training of these DNNs, we will plug them in the PINNs to replace 
the empirical models, which are represented by the pretrained neural network with the output g(y) in Fig. 2.

Flowchart for PINN model for diesel engine. In “Problem setup”, we discussed the problem setup, 
and in subsequent sections, we discussed the approximation of different variables using neural networks as well 
as the basics of the PINN method and the implementation of PINN in the present problem. In Fig. 2, we have 
shown a schematic diagram along with a pre-trained network for a general ordinary differential equation. In this 
section, we show a complete flowchart for the calculation of physics loss functions for the engine problem. In 
Fig. 3, we show the flow chart for calculating the physics-informed loss for the present problem. Note that we 
have not shown the data loss and the self-adaptive weights in the flow chart.

Data generation. We now discuss the generation of data for training the NNs utilized in this study. Specifi-
cally, we have mainly two different types of data here: (1) the data collected from the laboratory that are used 
to train the DNN surrogates to replace the empirical formulae used  in1; and (2) field data pim , pem , ωt and Wegr.

In laboratory experiments, we have measurements on state variables, some of which can be employed for 
training the neural network surrogates for the empirical formulae. The laboratory data required to calculate the 
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Table 2.  Neural network surrogates for empirical formulae N (P)
i

(x; θPi ) , i = 1, . . . , 6 denotes the surrogate 
for the ith DNN parameterized by θP

i
 with the input x. All the neural networks have one output each. †The 

empirical equations are discussed in Appendix.

Variable ηvol fegr Fvgt,�t ηtm ηc �c

Surrogate N
(P)
1 (x; θP1 ) N

(P)
2 (x; θP2 ) N

(P)
3 (x; θP3 ) N

(P)
4 (x; θP4 ) N

(P)
5 (x; θP5 ) N

(P)
6 (x; θP6 )

Input ( x) {pim , ne} ũegr {ũvgt ,�t } {ωt ,Tem ,�t } {Wc ,�c} {Tamb ,�c ,ωt }

Equations†  (27)  (43)  (73)  (52)  (59)  (69)
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labelled data for each of the surrogates are shown in Table 3. The calculation of labelled data from laboratory 
data is discussed in “Appendix 4”. After training, we consider these pre-trained surrogates in field experiments 
in place of the empirical formulae. The parameters of these networks are kept constant in the PINNs model for 
the field experiment.

In field experiments, we have records for the four inputs, i.e., u = {uδ , uegr , uvgt} and ne . In addition, we 
only have measurements on four variables in field experiments, i.e., the intake manifold pressure ( pim ), exhaust 
manifold pressure ( pem ), turbine speed ( ωt ) and EGR mass flow ( Wegr).

In both the laboratory and field experiments, we have the records for the inputs (i.e., u = {uδ , uegr , uvgt} 
and ne ) from an actual engine running conditions. Considering that we only have a certain number of records 
for the variables in the running engine, which cannot be used to verify our PINN model since our objective is to 
use it to predict the whole gas flow dynamics in the engine. We, therefore, take the records for the real inputs (i.e., 
u = {uδ , uegr , uvgt} and ne ) and employ them as the inputs for the governing equations Eqs. (3)–(8). We then 

Figure 3.  Flow chart for the proposed PINN model for the inverse problem for the engine for prediction of 
dynamics of the system variables and estimation of unknown parameters. The inputs are input control vector 
{uδ , uegr , uvgt} and engine speed ne .  Six neural network N i(t; θ) , i = 1, 2, . . . , 6 indicated in dashed rectangular 
oval takes time t as input and predict pim , pem , xr and T1 ũegr1 , ũegr2 , ωt and ũvgt as shown in Table 1.  Four 
unknown parameters indicated in hexagon are ηsc , htot , Aegrmax and Avgtmax .  Six pre-trained neural networks 
N

(P)
i (.; θ) , i = 1, 2, . . . , 6 indicated in dashed-dotted rectangular oval takes appropriate input and predict the 

empirical formulae as shown in Table 2. The parameters (weights and biases) of these pre-trained DNNs are 
kept fixed to predict the empirical formulae.  There are eight main blocks calculating different variables. The 
equations for the calculation of each of the quantities are shown in Appendix  6.  Cylinder flow: calculates Wei , 
Wf  and Weo using Eqs. (24), (26) and (25), respectively.  Cylinder temperature: calculates xv , xp , Te and Tem using 
Eqs. (33), (32), (28) and (35), respectively. htot and ηsc are considered as learnable parameters in the calculation 
of Tem and Te respectively.  EGR dynamics: calculated ũegr using Eq. (38). EGR flow: calculates EGR mass flow 
Wegr using Eq. (39). Aegrmax is considered as learnable parameter.  Compressor flow: calculates compressor 
mass flow Wc using Eq. (68). Compressor power: calculates compressor power Pc using Eq. (58). Turbine flow: 
calculates turbine mass flow Wt using Eq. (46). Avgtmax is considered as trainable parameter.  Turbine power: 
calculates effective turbine power Ptηm using Eq. (51). There are five blocks, which calculate the residual of the 
equation. The first block calculates the residual for state equations for pim and pem ; the second one calculates 
the residual for the equations of xr and T1 ; the third block calculates the residuals for state equations for ũegr1 
and ũegr2 ; the fourth block calculates the residual for the state equation for ũvgt , and the fifth block calculates the 
residual for the state equation for ωt . There are another two blocks, which calculate the physics loss. The first 
one calculates the physics loss corresponding to state variable pim , pem and ωt . The second block calculates state 
physics loss corresponding to state variables ũegr1 , ũegr2 , ũvgt and physics loss corresponding to xr and T1 . The 
data losses can be calculated from the variables calculated from the appropriate blocks.
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solve these equations using  Simulink22 to obtain the dynamics for all variables. We use the data from Simulink 
to mimic the real-world measurements, which are employed as the training data for PINNs and the DNN for the 
pre-trained networks. The remaining data are used as the validation data to test the accuracy of PINN for recon-
structing the gas dynamics in a running engine, given partial observations. Given that the real measurements are 
generally noisy, we add 3% , 3% , 1% and 10% Gaussian noise in pim , pem , ωt and Wegr , respectively. These different 
signals have different noise values because they are different measurements with different noise characteristics.

In the present study, we consider two sets of input data in the training and testing of the surrogate neural 
networks for the empirical formulae. The first set of data (Set-I) is two (2) h of data collected at a sampling rate 
of 1 s. This control input vector {uδ , uegr , uvgt} and ne are considered to generate simulated data with different 
ambient conditions, which are shown in Table 4. The second set of data (Set-II) is twenty-minute (20 min) data 
collected at a sampling rate of 0.2 s. This control input vector {uδ , uegr , uvgt} and ne are considered to generate 
simulated data with Case-V ambient conditions.

The labelled data for the training of surrogate neural network for ηvol , Fvgt,�t , ηc and �c are generated for 
Case-I to Case-IV with a dt = 0.2 s. The testing data are generated for Case-V with the same dt. We observed 
from the engine model that the EGR valve actuator is independent of the other system of the engine and depends 
only on the EGR control signal ( uegr ). Thus, for the training of surrogate neural network for fegr ( N (P)

2 (:, θ) ), we 

Table 3.  List of empirical formulae represented using a pre-trained neural network and lab test data required 
for their training †. † It is assumed that the parameters/constant are known, however not the coefficients for 
the empirical formulae. ††The definition of the quantities are discussed in relevant sections in “Appendix 2”. 
†††The calculations of the empirical quantify from the laboratory data are included in “Appendix 4”. †††† A 
brief discussion on instrumentation and test procedure is included in “Appendix 3”. ††††† For calculation of 
ηtm , dynamic data are required (discussed in “Appendix 4” and “Appendix 8: Neural network surrogates for 
empirical formulae”).

Empirical quantities ††, ††† Symbol Laboratory test data required ††††

Volumetric efficiency (“Cylinder”) ηvol

 Intake manifold pressure ( pim)

 Engine speed ( ne)

 Total mass flow from the intake manifold into the cylinders 
( Wei)

 Intake manifold temperature ( Tim)

Effective area ratio function for EGR (“EGR valve”) fegr

 EGR position ( ̃uegr)

 EGR mass flow ( Wegr)

 Exhaust manifold pressure ( pem)

 Intake manifold pressure ( pim)

 Exhaust manifold temperature ( Tem)

Effective area ratio function for VGT ( fvgt ) and chocking function ( f�t ) (“Turbo-
charger”) fvgt × f�t

 VGT position ( ̃uvgt)

 Exhaust manifold pressure ( pem)

 Ambient pressure ( pamb)

 Turbine mass flow ( Wt)

 Exhaust manifold pressure ( pem)

 Exhaust manifold temperature ( Tem)

Turbine mechanical efficiency ††††† (“Turbocharger”) ηtm

 Turbine speed ( ωt)

 Exhaust manifold temperature ( Tem)

 Exhaust manifold pressure ( pem)

 Ambient pressure ( pamb)

 Compressor mass flow ( Wc)

 Compressor temperature ( Tc)

 Ambient temperature ( Tamb)

 Turbine mass flow ( Wt)

Compressor efficiency (“Compressor”) ηc

 Intake manifold pressure ( pim)

 Compressor mass flow ( Wc)

 Temperature after the compressor ( Tc)

 Ambient temperature ( Tamb)

 Ambient pressure ( pamb)

Volumetric flow coefficient for compressor (“Compressor”) �c

 Turbine speed ( ωt)

 Compressor mass flow ( Wc)

 Intake manifold pressure ( pim)

 Ambient temperature ( Tamb)

 Ambient pressure ( pamb)
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consider the training data set corresponding to Case-I only and the testing data set corresponding to Case-V. 
The labelled data for ηtm are calculated from Eq. (44) (“Turbocharger”), which is a differential equation, thus 
requires a finer dt. The simulated data for the calculation of labelled ηtm are generated with dt = 0.025 s in all 
the Cases. We assume that the Set-I data for the input control vector includes a good operating range for train-
ing surrogate neural networks for the empirical formulae. The field data ( pim , pem , ωt and Wegr ) for the inverse 
problem are considered from Case-V.

Results and discussions
In this section, we demonstrate the applicability of proposed PINNs for solving the inverse problems discussed in 
“Problem setup”. Case 1 and Case 2 have three unknown parameters, while Case 3 to Case 5 have four unknown 
parameters. The predicted values of the unknowns for all five cases are shown in Table 5. In this section, we will 
discuss the results of Case 3 to Case 5. The results of Case 1 and Case 2 are presented in “Appendix 7”.

First, we study the results of Case 3 and Case 5 to understand the applicability of PINN and the importance 
of self-adaptive weight in accuracy and convergence. Then, we study the results of Case 4, which is similar to 
Case 3; however, with added noise in the field data considered. We also discuss the results for the surrogate for 
the empirical formulae in Appendix 12. Note that the results for all variables are presented in a normalized scale 
from zero to one using the following equation,

where x and xscale are the data before and after scaling, respectively, xmin is the minimum value of true data of x 
within the time span considered, xmax is the maximum value of true data of x within the time span considered.

We are considering the input control vector {uδ , uegr , uvgt} and engine speed ne from an actual field record. 
It is assumed that these data have inherent noise in their records. Detailed studies are carried out consider-
ing a 1-min duration. The number of residual points considered in the physics-informed loss and data loss 
is 301 at equal dt = 0.2 s. The initial conditions considered for {pim, pem, xr , T1, ũegr1, ũegr2, ωt , ũvgt} 
are {8.0239× 104, 8.1220× 104, 0.0505, 305.3786, 18.2518, 18.1813,1.5827× 103, 90.0317} respectively. 
The measured field data are also considered for 1 min with equal dt = 0.2 s. Thus, each of the measured field 
quantities has 301 records.

The details of the neural networks considered for the PINN problem are shown in Table 6. We consider 
σ(·) = tanh(·) activation function for hidden layers for all the neural networks. We would also like to emphasize 

(16)xscale =
x − xmin

xmax − xmin
,

Table 4.  Ambient conditions for training and testing of neural networks: the different ambient conditions 
are considered for generating training and testing data. The input data Set-I is 2 h of input control vector 
{uδ , uegr , uvgt} and ne collected from an actual engine running condition. Similarly, Set-II is 20-min of input 
control vector {uδ , uegr , uvgt} and ne collected from an actual engine running condition. Case-I to Case-IV are 
considered for the training of the surrogate neural network for the empirical formulae ( N (P)

i (:, θ i) ), while 
Case-V is considered for testing of these networks. The data for the field data are also considered from Case-V.

Case Tamb  (kelvin) pamb × 105 (Pa)  (Approx. elevation) Input

Sampling (s)

Purposedt

Case-I 233.15 ( −40 ◦C) 0.7000 (at 3000 m) Set-I 1 Training

Case-II 233.15 ( −40 ◦C) 1.0111 (at 17.9 m) Set-I 1 Training

Case-III 270.15 ( −3 ◦C) 0.7000 (at 3000 m) Set-I 1 Training

Case-IV 313.15 ( 40 ◦C) 1.0111 (at 17.9 m) Set-I 1 Training

Case-V 298.15 ( 25 ◦C) 0.8000 (at 1837 m) Set-II 0.2 Testing

Table 5.  Predicted unknowns: predicted unknown parameters for different cases considered.

Aegramx ηsc htot Avgtmax Known variables Predicted variables

True 4× 10−4 1.102 96.28 8.456× 10−4

Case 1 3.93× 10−4 1.12 110 NA Clean data of pim , pem , ωt , Wegr

The neural networks predict: pim , pem , ũvgt , ũegr1 , ũegr2 , 
T1 , xr . The pretrained neural networks predict: ηvol , ηtm , 
ηc , �c , Fvgt,�t , fegr . Other variables are derived from these 
predicted quantities

Case 2 3.93× 10−4 1.12 109 NA Noisy data of pim , pem , ωt , Wegr

Case 3 3.61× 10−4 0.962 113 7.86× 10−4 Clean data of pim , pem , ωt , Wegr

Case 4 3.51× 10−4 0.834 134 7.27× 10−4 Noisy data of pim , pem , ωt , Wegr

Case 5 2.28× 10−4 0.829 140 7.27× 10−4 Case 3 without self-adaptive weights

Mask and scale considered

 Mask Exponential Softplus Exponential Exponential For faster convergence and to have positive value

 Scale ×10−4 ×1 ×10 ×10−4 Scale to obtain the parameters in physical domain
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that the scaling of output is one of the important considerations for faster and an accurate convergence of the 
neural network. Furthermore, output transformation is another important consideration. The outputs are physi-
cal quantity and always positive. The governing equations are valid only for positive quantities (e.g. in Eq. 39, a 
negative pim will result in negative Wegr ). The output transformation will ensure that the predicted quantities are 
always positive in each epoch. Similarly, as shown in Table 5, the mask for the unknown parameters will ensure 
a positive value. We also observed that the unknown parameters are of different scales. The scale considered for 
the unknown parameters will ensure the optimization of these parameters is on the same scale. The parameters 
of the neural network are optimized first using Adam optimized in Tensorflow-1 with 200× 103 epoch and 
further with LBFGS-B optimized. It is also important to note that we have considered self-adaptive weights in 
the proposed method; thus, we considered different optimizers for each set of self-adaptive weights. Further, 
self-adaptive weights are optimized only during the process of Adam optimization up to 100× 103 epoch. After 
100× 103 epoch and during the process of optimization using LBFGS-B, the self-adaptive weights are considered 
constants with the values at 100× 103 epoch of Adam optimization. The sizes of self-adaptive weight are 301× 1 
for �pim , �pem , �ωt and �Wegr . The size of self adaptive weight of �T1 is 1× 1 . Softplus masks are considered for all 
the self-adaptive weights.

PINN for the inverse problem with four unknown parameters. Results for Case 3 and Case 5. We 
first consider Case 3 and Case 5 in which we have four unknown parameters Aegrmax , ηsc , htot and Avgtmax . The 
dynamics of pim , pem , ωt and Wegr can be obtained from the corresponding sensor measurements. We then 
employ the PINN to predict the dynamics for the variables and infer the four unknowns in the system. The dif-
ference between the two cases is that in Case 3, we have considered self-adaptive weights, while in Case 5, we 
have not considered self-adaptive weights. We consider these two cases to study the applicability of PINN and 
the importance of self-adaptive weights in the present problem.

The predicted output from the neural networks, i.e., the states and T1 and xr are shown in Fig. 4. The predicted 
values of the unknown parameters are shown in Table 5. We observe that the predicted states are in good approxi-
mation with the true value in both cases. However, the predicted T1 and xr are not in good agreement with the 
true value. We study the effect of T1 and xr on the other variables by comparing the predicted dynamics of Te and 
Tem (ref Eqs. (28) and (35)). We also note that Te depends on the unknown ηsc and Tem depends on unknowns 
Te and htot . The predicted dynamics of Te and Tem are shown in Fig. 5b,c, respectively. We observe that both Te 
and Tem show somewhat good agreement even T1 and xr do not match with the true value. The accuracy is more 
in Case 3 compared to Case 5. We believe that the difference in the true value and the predicted value is due to 
the error in the predicted value of unknown parameters. We also study the dependent variables Aegr and Wt of 
unknown Aegrmax and Avgtmax , and are shown in Fig. 5a,d, respectively. We observe that in Case 3, the predicted 
dynamics for both variables show good agreement with true value. However, in Case 5, the Aegr does not show 
good agreement with true value. This is because the predicted value of Aegrmax has more error than Case 3.

In order to study the importance of self-adaptive weights, we study the convergence of the unknown param-
eters for both cases with self-adaptive weight (Case 3) and without self-adaptive weight (Case 5). The conver-
gences of the unknown parameters with epoch for both cases are shown in Fig. 6. In Case 3 (with self-adaptive 
weights), we can observe that the unknown parameters converge faster and are more accurate. Furthermore, we 
also study the effect of different initialization of network parameters for PINN and self-adaptive weights. We run 
the PINN model for Case 3 and Case 5 with different initialization of parameters of PINN (DNN and unknown 
parameters) and self-adaptive weight keeping other hyperparameters (number of epoch considered, learning 
rate scheduler etc.) the same. The results for both cases are shown in Fig. 7. It is observed that for unknowns, 
ηsc and Avgtmax for both cases show similar accuracy. However, for unknowns, Aegrmax and htot , Case 3, which is 
with self-adaptive weights, shows better accuracy than Case 5 (without self-adaptive weights) for all the runs. 
In Fig. 8, we show the self-adaptive weights for pim , pem , ωt and Wegr after 100× 103 epoch (constant value after 

Table 6.  Details of neural network for PINNs: details of neural networks considered to approximate the state 
variables and T1 and xr. The input to the neural networks is time t and the activation functions for the hidden 
layers are σ(·) = tanh(·) . The outputs for each network are shown in the “Output” column. The “Output 
transformation” column shows whether the output from the neural network is passed through any other 
function. The last column, “Scaling”, shows the scaling factor to be multiplied by the final output to obtain the 
variable in physical space. The input to the networks is time 0–60 s and scaled between [−1, 1]. ‡‡  Sp(·) −→ 
softplus function. S(·) −→ sigmoid function.

Neural network Network size Output Outputs transformation ‡‡ Scaling

N 1(t; θ1) [1, 10, 10, 10, 2] pim , pem SP(pim)+ 0.5, SP(pem) ×105

N 2(t; θ2) [1 10, 10, 1] xr SP(xr ) ×0.03

N 3(t; θ3) [1, 15, 15, 15, 1] T1 SP(T1)+ 230/300 ×300

N 4(t; θ4) [1, 10, 10, 10, 2] ũegr1, ũegr2 S(ũegr1, ũegr2) ×100

N 5(t; θ5) [1, 10, 10, 1] ωt SP(ωt ) ×5× 103

N 6(t; θ6) [1, 10, 10, 1] ũvgt S(ũvgt ) ×100
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100× 103 epoch). Thus, we conclude that self-adaptive weights are important for better accuracy and convergence 
for the present problem.

Results for Case 4: four unknowns with noisy measurement data. In the previous section, we have shown the 
effectiveness of PINN and the importance of self-adaptive weights. In this section, we test the robustness of the 
proposed PINN formulation for predicting the gas flow dynamics of the diesel engine given noisy data. In par-
ticular, we are considering Case 4 (the same Case 3 but noisy measure data), in which we have four unknown 
parameters Aegrmax , ηsc , htot and Avgtmax , with noise measurement of pim , pem , ωt , Wegr.

We contaminate the training data pim , pem , ωt , Wegr considered in Case 3 with Gaussian noise and consider 
these as synthetic field measurements. We present the predicted dynamics of the known data in Fig. 9a–d and 
unknown parameters in Table 5. We observe that the dynamics of the predicted pim , pem , ωt , Wegr matches with 
the reference solution. However, in the case of Wegr , there is a small discrepancy in the predicted values near 

Figure 4.  Predicted states and T1 and xr for Case 3 and Case 5: predicted dynamics of the state variables of the 
engine and Tr and x1 for Case 3 (PINN with self-adaptive weights) and Case 5 (standard PINN without self-
adaptive weights). The variables are scaled using Eq. (16). It can be observed that the predicted dynamics of the 
states are in good agreement with the true values. However, T1 and xr do not match with the true value. We study 
the dependent variables of these two variables, and are shown in Fig. 5.

Figure 5.  Predicted dynamics of dependent variables for Case 3 and Case 5: predicted dynamics of Aegr , Te , Tem 
and Wt for Case 3 and Case 5. These variables depend on the unknown parameters Aegrmax , ηsc , htot and Avgtmax 
respectively. We also note that Te depends on T1 and xr.
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20–25 s, which we can attribute to over-fitting caused by the noisy training data. We study the dynamics of Tem , 
Wei Aegr and Wt on which we do not have any measured data, and these are shown in Fig. 9e–h. We observe that 
Wei matches with the reference results. Most of the dynamics of Aegr and Wt match with the reference solution. 
The mismatch in these two variables may also be attributed to over-fitting caused by noisy data. The profile of 
Tem matches with the reference solution, however, it is not an exact match with the reference solution. This is 
because of the error in the predicted value of unknown parameter ηsc and htot . We also note that in the present 
study, we do not have any temperature measurements of field data. Thus, we expect errors in the predicted 
temperature measurements and unknown parameters. We also study the convergence of the unknown param-
eters with epoch and shown in Fig. 10. We note that, in this case, we consider the same hyperparameters in the 
optimization process. In some cases, we see over-feeting due to noisy data. This may be controlled by changing 
the hyperparameters, specially the learning rate for the self-adaptive weights.

Figure 6.  Convergence of the unknown parameters for Case 3 and Case 5: Convergence of the unknown 
parameters with epoch for Case 3 (PINN with self-adaptive weights) and Case 5 (standard PINN without self-
adaptive weights). It is observed that Case 3 converges faster and also shows better accuracy.

Figure 7.  Predicted unknown parameters for Case 3 and Case 5: predicted unknown parameters for Case 3 
(PINN with self-adaptive weights) and Case 5 (standard PINN) when prediction is made multiple times with 
different initialisation of the parameters of PINN, self-adaptive weights, and the unknown parameters Black 
dashed line → true value, Blue dots → Case 3, Red dots → Case 5.

Figure 8.  Self-adaptive weights for Case 3: self-adaptive wights for pim , pem , ωt and Wegr after 100× 103 epoch 
of Adam optimization. The values of the self-adaptive weights after 100× 103 Adam optimization and LBFGS-B 
optimization are constant with the values of self-adaptive weight at 100× 103 epoch.
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We also study the prediction of empirical formulae in this case and shown in Fig. 11. We observe that ηvol and 
ηc match with the reference solution. These two quantity gives the volumetric efficiency of the cylinder and the 
efficiency of the compressor. The other four quantities ( fegr , fvgt × f�t , ηtm , �c ), also match most of its points. 
The discrepancy can be attributed to the noisy measurement of field data.

Summary
In this study, we proposed a PINNs-based method for estimating unknown parameters and predicting the 
dynamics of variables of a mean value diesel engine with VGT and EGR, given the measurement of a few of its 
variables. Specifically, we know field data of intake manifold pressure ( pim ), exhaust manifold pressure ( pem ), 
turbine speed ( ωt ) and EGR flow ( Wegr ). We predicted the dynamics of the system variables and unknown 
parameters ( Aegrmax , ηsc , htot and Avgtmax ). The input data for the study are considered from actual engine running 
conditions and show good accuracy in predicted results. We also studied the importance of self-adaptive weight 
in the accuracy and convergence of results. Furthermore, we also showed how we could approximate empirical 
formulas for different quantities using neural networks and train them. We believe the proposed method could 
be considered for an online monitoring system of diesel engines. The field-measured data are collected using 

Figure 9.  Predicted dynamics for variables for Case 4: predicted dynamics of (a–d) variables whose noisy 
field measurements are known. (e–h) dynamics of other important variables, which are also dependent on the 
unknown parameters. These results are for Case 4 with 4 unknown parameters and noisy field measurements.

Figure 10.  Convergence of the unknown parameters for Case 4: convergence of the unknown parameters with 
epoch for Case 4 (PINN with self-adaptive weights and noisy field data).
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individual sensors. Thus, in the event of sensor failure or erroneous data, the method may give erroneous results. 
The method also does not consider a failure of engine components, e.g. leakage in the EGR valve. We considered 
the engine model proposed  in1. In the present study, we do not have any temperature measurement of field data, 
and thus we expect errors in predicted temperature measurements and unknown parameters as observed. Future 
research may include modelling of failure of engine components. Since the proposed PINN consider online 
training, with change in input data, field measured data or ambient condition, the PINN networks are required 
to train again. The accuracy of the results also depends on the size of neural networks and the optimization strat-
egy (e.g. optimizer, learning rate scheduler) considered. For example, a large neural network or higher value in 
learning rate may result in overfitting of predicted results. The activation function also plays an important role 
in the accuracy and computational  cost24. Further study may include a neural architecture search for optimal 
network sizes considering different operational ranges. Future studies may include a more robust and efficient 
PINN method for the problem that can be used with edge systems, including proper transfer learning strategies 
to reduce the computation cost. As there is noise in the measured data, the future study in this regard may also 
be towards uncertainty quantification of the predicted dynamics and unknown parameters.

Input data and data generations
The input data Set-I and Set-II are collected from actual engine running conditions. These data are considered 
to generate simulated data with different ambient conditions using the Simulink  file22  accompany1.

Appendix 1: Note on neural network and training of PINN
In this section, we present more details on neural networks, PINN and optimization for inverse problems. As 
shown in Fig. 2, the neural network (FFN/DNN) takes time t as input and approximates the unknown variable 
y. For a DNN with n− 1 hidden layers, the equation for the neural network can be written as, 

 where W and b are the weights matrices and bias vectors of the network, σ(·) is an activation function, which is 
considered as hyperbolic tangent function in the present study. The output ŷ is a function of input t parameterized 

(17a)y0 = t Input

(17b)yi = σ
(
W iyi−1 + bi

)
i ∀ 1 ≤ i ≤ n− 1 Hidden layers

(17c)ŷ = yn = Wnyn−1 + bn−1 Output layer

Figure 11.  Empirical formulae for Case 4: the prediction of empirical formulae for Case 4 (PINN with self-
adaptive weights and noisy field data).
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by the weights W and biases b . We can tune the parameters of the network to predict a large number of snapshots 
y by minimizing a loss function using an appropriate optimization technique.

In the case of a data-driven model of neural networks, the loss function is generally considered as the mean 
square error (MSE) between the predicted ( ̂y ) and the exact value (y). On the other hand, in the case of PINN, 
the neural network output is made to satisfy the differential equation and the initial/boundary conditions. The 
derivatives of the equation are generally evaluated using automatic differentiation. As discussed in “PINNs for 
inverse problems in the diesel engine”, the loss function is a weighted sum of physics loss which is MSE of residual 
and boundary/initial loss, which is MSE between predicted and exact boundary/initial value. The optimal param-
eters (weights and biases) of the network are obtained using an optimization method such as Adam or L-BFGS-B. 
In the case of an inverse problem using PINN where the objective is to predict unknown parameters ( � ) along 
with the variable (y). The unknown parameters are also optimized along with the network parameters. Thus, 
the trainable parameters are weights, biases and the unknown parameters ( θ = {W , b,Λ} ). Also, an additional 
loss function is added, which is data loss between the predicted and the known value of y. Furthermore, in the 
present study we have considered self adaptive  wights9 for the loss function. The loss function is maximized with 
respect to the self self adaptive weights ( � ). Thus, the optimization process may be written as,

Consider the updates of a gradient descent/ascent approach to this problem 

 where lrθ and lr� are the learning rate associated with θ and �.
In the present study, the parameters are optimized using Adam and L-BFGS-B optimizer in Tensorflow-1 

(with single precision floating point). Further, self-adaptive weights are optimized only during the process of 
Adam optimization up to fixed epoch as discussed in “Results and discussions”.

Appendix 2: Engine model
As discussed in “Problem setup”, we consider a mean value engine model proposed by Wahlström and  Eriksson1 
in our present study. The engine has eight states, and we have considered six in the present study. These are,

where pim and pem are the intake and exhaust manifold pressure, respectively, ωt is the turbo speed. ũegr1 and ũegr2 
are the two states for the EGR actuator dynamics, and ũvgt represents the VGT actuator dynamics. The control 
inputs for the engine are u = {uδ , uegr , uvgt} and the engine speed is ne . Where uδ is the mass of injected fuel, 
uegr and uvgt are the EGR and VGT valve positions, respectively. The mean value engine model is then expressed as

The engine model consists of 6 parts intake and exhaust manifold, the cylinder, the turbine, EGR valve system, 
and the compressor system. A schematic diagram of the engine is shown in Fig. 1. In this section, we briefly 
discuss the equation required for the present study and these are taken  from1. For detail of the engine model, 
the interested reader may refer to Wahlström and  Eriksson1.

Manifold pressures. The pressure at the intake manifold ( pim ) is modelled using a first-order differential 
equation as,

where Tim and Vim are the temperature and volume of the intake manifold, respectively, and both are assumed 
to be constant, Wc , Wegr and Wei are the compressor mass flow, EGR mass flow and total mass flow, respectively. 
The ideal gas constant and specific heat capacity of the air are Ra and γa , respectively.

Similarly, the exhaust manifold pressure pem is modelled as,

where Re is the ideal gas constant of the exhaust gas with specific heat capacity γe , Tem and Vem are the exhaust 
manifold temperature, and volume, Weo , Wt are the mass flow out from the cylinder and turbine mass flow, 
respectively.

Cylinder. The total mass flow from the intake manifold to the cylinder Wei , and the total mass flow out of the 
cylinder Weo are modelled as,

(18)min
θ

max
�

L(θ , �)

(19a)θ = θ − lrθ∇θL(θ , �)

(19b)� = �+ lr�∇�L(θ , �)

(20)x = {pim, pem, ωt , ũegr1, ũegr2, ũvgt}

(21)ẋ = f (x, u, ne).

(22)
d

dt
pim =

RaTim

Vim

(
Wc +Wegr −Wei

)

(23)
d

dt
pem =

ReTem

Vem

(
Weo −Wt −Wegr

)

(24)Wei =
ηvolpimneVd

120RaTim
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where Wf  is the fuel mass flow into the cylinder is given by,

Vd , ne and ncyl are the displaced volume, engine speed and the number of cylinders, respectively. The volumetric 
efficiency, ηvol of the cylinder may be modelled as

where cvol1 , cvol2 and cvol3 are constant.
The temperature at cylinder out based upon ideal-gas Seliger cycle (or limited pressure cycle) and given as,

where the pressure ratio ( �e ) over the cylinder is ratio of pressure at exhaust ( pem ) and intake ( pim),

the fuel consumed during constant-volume combustion is xcv and fuel consumed during constant pressure com-
bustion is 1− xcv , ηsc and rc are compensation factor for non-ideal cycles and compression ratio. The temperature, 
T1 when the inlet valve closes and after the intake stroke and mixing is given by,

The residual gas fraction ( xr ) is model as

The pressure ratio ( xp ) and the volume ratio ( xv ) in the Seliger cycle between point 3 (after combustion) and 
point 2 (before combustion) are modelled as,

where the specific energy constant of the charge is modelled as

The temperature at cylinder out modelled in Eq. (28) is the temperature at the cylinder exit. However, it is 
not the same as the temperature as the exhaust manifold. This is due to the heat loss in the exhaust pipes between 
the cylinder and the exhaust manifold. The exhaust manifold temperature ( Tem ) is given as

where Tamb is the ambient temperature, dpipe , lpipe and npipe are the pipe diameter, pipe length and the number 
of pipes, respectively.

EGR valve. The actuator dynamics of the EGR-valve are modelled as,

where τegr1 , τegr2 are time constants, τdegr is the time delay and Kegr is a constant that affect the overshoot.
We model the mass flow through the EGR valve through the restriction ( pem < pim ) as,

(25)Weo = Wf +Wei

(26)Wf =
10−6

120
uδnencyl ,

(27)ηvol = cvol1
√
pim + cvol2

√
ne + cvol3

(28)Te = ηsc�
1−1/γa
e r1−γa

c x
1/γa−1
p

[
qin

(
1− xcv

cpa
+

xcv

cVa

)
+ T1r

γa−1
c

]

(29)�e =
pem

pim
,

(30)T1 = xrTe + (1− xr)Tim

(31)xr =
�

1/γa
e x

−1/γa
p

rcxv

(32)xp =
p3

p2
= 1+

qinxcv

cVaT1r
γa−1
c

(33)xv =
v3

v2
= 1+

qin(1− xcv)

cpa

[
(qinxcv/cVa)+ T1r

γa−1
c

]

(34)qin =
Wf qHV

Wei +Wf
(1− xr)

(35)Tem = Tamb + (Te − Tamb) exp

(
−htotπdpipelpipenpipe

Weocpe

)

(36)
d

dt
ũegr1 =

1

τegr1

[
uegr(t − τdegr)− ũegr1

]

(37)
d

dt
ũegr2 =

1

τegr2

[
uegr(t − τdegr)− ũegr2

]

(38)ũegr = Kegr ũegr1 − (Kegr − 1)ũegr2
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where �egr is a parabolic function

The effective area is modelled as,

When the sonic conditions are reached (flow is choked) in the throat and when no backflow can occur 
( 1 < pim/pem ), the pressure ratio �egr over the valve is limited and modelled as,

Aegrmax , �egropt are constant and fegr(ũegr) is modelled as a polynomial function,

where cegr1 , cegr2 and cegr3 are constant.

Turbocharger. The turbo speed, ωt is modelled as a first-order differential model as,

where Jt is the inertia, Pt and Pc are the power delivered by the turbine and power required to drive the compres-
sor, respectively, ηm is the mechanical efficiency of the turbocharger.

The VGT actuator system is modelled as a first-order system

where τvgt and τdvgt are the time constant and time delay respectively.
The turbine mass flow ( Wt ) is calculated using

Avgtmax is the maximum area in the turbine that the gas flow through.

where Kt a constant and �t = pes/pem . pes > pamb if there is a restriction like an after-treatment system. However, 
in the model we consider, there is no restriction after the turbine, thus

Further, with the increase in VGT control signal ( uvgt ), the effective area increases and thus also increases the 
flow. The effective area of the VGT fvgt(ũvgt) is modelled as an ellipse

which is

(39)Wegr =
Aegrpim�egr
√
TemRe

(40)�egr = 1−

(
1−�egr

1−�egropt
− 1

)2

(41)Aegr = Aegrmaxfegr(ũegr)

(42)�egr =






�egropt if
pim

pem
< �egropt

pim

pem
if �egropt ≤

pim

pem
≤ 1

1 if 1 <
pim

pem

(43)fegr(ũegr) =






cegr1ũ
2
egr + cegr2ũegr + cegr3 if ũegr ≤ −

cegr2

2cegr1

cegr3 −
c2egr2

4cegr1
if ũegr > −

cegr2

2cegr1

(44)
d

dt
ωt =

Ptηm − Pc

Jtωt

(45)
dũvgt

dt
=

1

τvgt

[
uvgt(t − τdvgt)− ũvgt

]

(46)Wt =
Avgtmaxpemf�t (�t)fvgt(ũvgt))

√
TemRe

(47)f�t (�t) =

√
1−�

Kt
t

(48)�t =
pamb

pem

(49)
[
fvgt(ũvgt)− cf 2

cf 1

]2
+

[
ũvgt − cvgt2

cvgt1

]2
= 1

(50)fvgt(ũvgt) = cf 2 + cf 1

√√√√max

(
0, 1−

(
ũvgt − cvgt2

cvgt1

)2
)
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The power delivered by the turbine, Pt and the mechanical efficiency of the turbocharger ηm are modelled as,

where the blade speed ratio (BSR) is defined as the ratio of the turbine blade tip speed to the speed which a gas 
reaches when expanded entropically at the given pressure ratio �t.

where Rt is the turbine blade radius, and

Compressor. The compressor model consists of two models: the compressor efficiency model and the com-
pressor mass flow model. The compressor efficiency is defined as the ratio of the power from the isentropic 
process ( Pc,s ) to the compressor power ( Pc)

where Tc is the temperature after the compressor, and the pressure ratio is given by,

The power from the isentropic process is given as,

where Wc is the compressor mass flow and cpa is a constant. Thus, the compressor power can be modelled from 
Eqs. (55) and (57) as

ηc is modelled as an ellipses, which depends on the pressure ratio ( �c ) and compressor mass flow ( Wc),

where X  is a vector and given as,

where Wcopt and πcopt are the optimum values of Wc and πc respectively. πc is a non linear transformation of �c as

and Qc is a semi-definite matrix

The model for compressor mass flow, Wc is modelled using two non-dimensional variables: energy transfer 
coefficient ( �c ) and volumetric flow coefficient ( �c ). The energy transfer coefficient is defined as,

where Rc is the compressor blade ratio. The volumetric flow coefficient is defined as,

The energy transfer coefficient ( �c ) and volumetric flow coefficient ( �c ) can be described by a part of an 
ellipse,

(51)Ptηm = ηtmWtcpeTem

(
1−�

1−1/γe
t

)

(52)ηtm = ηtm,max − cm(BSR − BSRopt)
2

(53)BSR =
Rtωt√

2cpeTem(1−�
1−1/γe
t )

(54)cm = cm1[max(0,ωt − cm2]
cm3

(55)ηc =
Pc,s

Pc
=

Tamb(�
1−1/γa
c − 1)

Tc − Tamb

(56)�c =
pim

pamb

(57)Pc,s = WccpaTamb(�
1−1/γa
c − 1)

(58)Pc =
Pc,s

ηc
=

WccpaTamb

ηc
(�1−1/γa−1

c )

(59)ηc = ηcmax −X TQcX

(60)X =

[
Wc −Wcopt

πc − πcopt

]

(61)πc = (�c − 1)cπ

(62)Qc =

[
a1 a3
a3 a2

]

(63)�c =
2cpaTamb(�

1−1/γa
c − 1)

R2
cω

2
t

(64)�c =
Wc/ρamb

πR3
cωt

=
RaTamb

pambπR3
cωt

Wc
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where c�1 and c�1 are function of turbine speed ( ωt ) and modelled as a second order polynomial as,

Solving Eq. (65) for �c and Eq. (64) for Wc , the compressor mass flow is given as,

where cω�1 , cω�2 , cω�3 , cω�1 , cω�2 , cω�3 , c�2 and c�2 are constant.

Appendix 3: Brief discussion on lab test data
The engine model considered in this study uses empirical formulae. These equations are engine specific and may 
not be appropriate for the present study. As discussed in “Neural network surrogates for empirical formulae”, 
we consider surrogate neural networks and uses lab test data to train these model. In this section, we briefly 
discuss lab test data.

Practical limitations exist when instrumenting engines for testing. Some physical phenomena are easily 
measurable, while others are not. When conducting modelling efforts, one must consider the necessary meas-
urements for model tuning to ensure the experimental setup is adequate. The data collection capabilities can 
also impact loss function weights based on data trustworthiness, as well as noise values applied in the analysis. 
There are a few signals that pose particular challenges in cost-effective and simple measurement in part due to 
the high temperature, pressure, dynamics and flow constituents in some areas.

Often as areas closer to the cylinder are considered, measurements become increasingly difficult. For example, 
exhaust port flow, Weo is difficult to measure directly, as the gas is very hot and reactive. In-cylinder measure-
ments are limited by high pressure and temperatures, requiring specialized equipment. Even measuring charge 
flows directly can be challenging. Because of these limitations, care must be taken in the experimental methods 
and analysis design to ensure enough data is gathered to be able to observe and identify the system. Sometimes 
steady state characterizations are used to obtain a static characterization. Consider volumetric efficiency as an 
example: because measuring flow directly into or out of the cylinder is difficult, a fresh air flow measurement 
combined with an EGR flow measurement can be used to estimate charge flow to enable the calculation of volu-
metric efficiency. However, any intake, EGR, or Exhaust leak impacts this measurement, as does the tolerance 
stack up of both measurements.

Appendix 4: Calculation of labelled data for training of the neural network 
for the empirical formulae
We approximate the empirical formula using surrogate neural networks and are discussed in “Neural network 
surrogates for empirical formulae”. The lab test data required for calculating each of these quantities are shown 
in Table 3. In this section, we discuss the calculation of labelled data from lab-test data. The functional approxi-
mation of the empirical formulae is independent of time; thus, static data may be considered for the calculation 
of labelled data. However, in the case of calculation of labelled for ηtm , the differential equation Eq. (44) is con-
sidered. Thus, we consider dynamic data for this calculation.

We approximate the volumetric efficiency using a surrogate neural network ( N (P)
1 (:, θ)P1  ). The inputs to the 

network are intake manifold pressure ( pim ) and engine speed ( ne ) and trained using labelled data of ηvol . The 
labelled ηvol are calculated from measurement of Wei using Eq. (24),

The effective area ratio function for EGR valve is approximated using a surrogate neural network ( N (P)
2 (:, θ)P2 ). 

The input to the network is ũegr and trained using labelled data of fegr . The labelled fegr are calculated from the 
measurement of Wegr using Eqs. (39) and (41),

(65)c�1(ωt)(�c − c�2)
2 + c�1(ωt)(�c − c�2)

2 = 1

(66)c�1(ωt) = cω�1ω
2
t + cω�2ωt + cω�3

(67)c�1(ωt) = cω�1ω
2
t + cω�2ωt + cω�3

(68)Wc =
pambπR

3
cωt

RaTamb
�c

(69)�c =

√

max

(
0,

1− cψ1(�c − c�2)
2

c�1

)
+ c�2

(70)ηvol =
120RaTimWei

pimneVd

(71)Aegr =

√
TemRe

pim�egr
Wegr

(72)fegr =
Aegr

Aegrmax
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It is important to node that the value of �egr varies from 0 to 1 (Eq. 40), thus in the calculation of Aegr , a 
situation may occurs where division by 0. This situation occurs when pem < pim (Eq. 42). In order to avoid this, 
labelled data are calculated only for �egr > 10−15.

The neural network approximating ( N (P)
3 (:, θ)P3  ) for Fvgt,� = fvgt × f�t is trained using labelled data which 

are calculated from the measurement of turbine mass flow ( Wt ) using Eq. (46),

The training for the neural network ( N (P)
4 (:, θ)P4  ) for the surrogate model of turbine mechanical efficiency 

( ηtm ) is done using labelled ηtm which is calculated from the measurement of ωt using Eqs. (44) and (51)

The compressor power ( Pc ) is calculated as,

In the present study, we consider a five-point method to approximate the derivative present in Eq. (74).

Once Ptηm calculated from Eq. (74), the labelled ηtm are calculated using Eq. (51)

The values of ηtm are restricted to maximum value ηtm,max

The labelled data for the training of neural network ( N (P)
5 (:, θ)P5  ) for compressor efficiency ( ηc ) is calculated 

using Eqs. (58) and (55) 

 To avoid any division by 0, the value of Tc − Tamb less than 10−6 are considered as 10−6 . Further, the value 
of ηc is clipped between 0.2 and ηcmax

The training for the neural network ( N (P)
6 (:, θ)P6  ) for surrogate model of volumetric flow coefficient ( �c ) 

is done using labelled data which are calculated from the measurement of compressor mass flow ( Wc ) Eq. (64)

Appendix 5: Detail loss function for the PINNs model for the engine
We consider the following loss function for Case 1 to Case 4, which have self-adaptive weights in the loss 
function,

(73)Fvgt,�t (ũvgt ,�t) = fvgt(ũvgt)× f�t (�t) =
Wt

√
TemRe

Avgtmaxpem

(74)Ptηm = Pc + Jtωt
dωt

dt

(75)Pc = Wccpa(Tc − Tamb)

(76)f (1)(x) ≈
−f (x + 2h)+ 8f (x + h)− 8f (x − h)+ f (x − 2h)

12h

(77)ηtm =
Ptηm

WtcpeTem

(
1−�

1−1/γe
t

)

(78)ηtm = min(ηtm,max , ηtm), ηtm,max = 0.8180

(79a)ηc =
Pc,s

Pc

(79b)=
WccpaTamb

(
�

1−1/γa
c − 1

)

Wccpa(Tc − Tamb)

(79c)=
Tamb

(
�

1−1/γa
c − 1

)

Tc − Tamb

(80a)ηc = max(0.2, ηc)

(80b)ηc = min(ηcmax , ηc), ηcmax = 0.7364

(81)�c =
RaTamb

pambπR3
cωt

Wc
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In the Case 5 where we have not considered self-adaptive weights, the loss function is given as

where θ = (θ1, . . . , θ6) are the hyperparameters of all NNs in PINNs, which include both weights and biases, Λ 
are the unknown parameters of the equations which need to be found out. �pim , �pem , �ωt and �Wegr are the self-
adaptive  weight9 for the data loss in pim , pem , ωt and Wegr respectively. �T1 is the self-adaptive weight for physics 
loss in T1 . Lpim(θ) , Lpem(θ) , Lωt , Lũegr1 , Lũegr2 , and Lũvgt are the physics loss corresponding to the differential 
equations of the states of the diesel engine pim , pem , ωt ũegr1 , ũegr2 and ũvgt respectively. Lxr and LT1 are the physics 
loss correspond to xr and T1 respectively. 

 where n and r(·) are the number of residual points and residual, respectively.
In the Case 1 to Case 4, Ldata

pim
(�pim , Ldata

pem
(�pem) , Ldata

ωt
(�ωt ) , and Ldata

Wegr
(�Wegr ) are the data loss in pim , pem , ωt 

and Wegr respectively and defined as, 
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ũegr2

+ L
ini
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 The same in the Case 5 is given as, 
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 are the predicted values in pim , pem and ωt respectively from N 1(t; θ1) , N 1(t; θ1) and N 5(t; θ5) 
respectively. Similarly, ŴegrNN is predicted value in Wegr from NNs output. n is the number of measured data 
points.

L
ini
pim

 , Lini
pem

 , Lini
ωt

 , Lini
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 where pim0 , pem0 , ωt0 , ũegr10 , ũegr20 , ũvgt0 , xr0 and T10 are the initial conditions and p̂im0 , p̂em0 , ω̂t0 , ˆ̃uegr10 , ˆ̃uegr20 , 
ˆ̃uvgt0 , x̂r0 and T̂10 are corresponding output from neural network at time t = 0 for pim , pem , ωt , ũegr1 , ũegr2 , ũvgt , 
xr and T1 respectively.

Appendix 6: Additional tables
See Tables 7, 8 and 9.

Appendix 7: Additional figures
In this section, we present the results for Case 1 and Case 2.
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Table 7.  Values of the constants considered in the present study.

Description Symbol Value

1 Ideal gas constant of air Ra 287

2 Intake manifold temperature Tim 300.6186

3 Intake manifold volume Vim 0.0220

4 Ideal gas constant of exhaust gas Re 286

5 Exhaust manifold volume Vem 0.0200

6 Displaced volume of the cylinder Vd 0.0127

7 Number of cylinder ncyl 6

8 Specific heat capacity ratio of air γa 1.3964

9 Specific heat capacity at constant pressure of air cpa 1011

10 Specific heat capacity at constant volume air cva 724

11 Compression ratio rc 17

12 Fuel consumed during constant-volume combustion xcv 2.3371× 10−14

13 Heating value of fuel qHV 42900000

14 Diameter of exhaust pipe dpipe 0.1

15 Length of exhaust pipe lpipe 1

16 Number of exhaust pipe npipe 2

17 Specific heat capacity at constant pressure of exhaust gas cpe 1332

18 Time constant 1 for EGR τegr1 0.05

19 Time constant 2 for EGR τegr2 0.13

20 Time delay constant for EGR τdegr 0.065

21 Constant for EGR overshoot Kegr 1.8

22 Optimal value of pressure ratio of EGR �egropt 0.6500

23 Inertial of turbocharger Jt 2.0× 10−4

24 Time constant for VGT τvgt 0.025

25 Time delay constant for VGT τdvgt 0.04

26 Specific heat capacity at constant pressure of exhaust cpe 1332

27 Specific heat capacity ratio of exhaust gas γe 1.2734

28 Turbine blade radius Rt 0.04

29 Compressor blade radius Rc 0.0400

Table 8.  True value of the unknown parameters.

Unknown ηsc htot Aegrmax Avgtmax

Value 1.1015 96.2755 4.0× 10−4 8.4558× 10−4
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For Case‑1: 3 unknown parameters with clean data. The predicted state variables and T1 and xr for 
Case 1 (3 unknown with clean data) are shown in Fig. 12. The predicted dynamics of the known variables are 
shown in Fig.  13a–d. In Fig.  13e–h, we have shown the dynamics of variables which are dependent on the 
unknown parameters. The predicted empirical formulae are shown in Fig. 14. We also studied the convergence 
of the unknown parameters, which are shown in Fig. 15.

For Case‑2: 3 unknown parameters with noisy data. The predicted state variables and T1 and xr for 
Case 2 (3 unknown with noisy data) are shown in Fig. 16. The predicted dynamics of the known variables are 
shown in Fig.  17a–d. In Fig.  17e–h, we have shown the dynamics of variables which are dependent on the 
unknown parameters. The predicted empirical formulae are shown in Fig. 18. We also studied the convergence 
of the unknown parameters, which are shown in Fig. 19.

Table 9.  Value for the coefficients of the empirical formulae.

Symbol Value Symbol Value Symbol Value

cvol1 −2.0817× 10−4 cegr1 −1.1104× 10−4

cvol2 − 0.0034 cegr2 0.0178

cvol3 1.1497 cegr3 0

cω�1 1.0882× 10−8 cω�1 −1.4298× 10−8 c�2 0

cω�2 −1.7320× 10−4 cω�2
−0.0015 c�2 0

cω�3
1.0286 cω�3

29.6462

πcopt 1.0455 cm1 1.3563 cvgt1 126.8719

Wcopt 0.2753 cm2 2.7692e + 03 cvgt2 117.1447

a1 3.0919 cm3 0.0100 cf 1 1.9480

a2 2.1479 BSRopt 0.9755 cf 2 −0.7763

a3 −2.4823 ηtm,max 0.8180 Kt 2.8902

ηcmax 0.7364

cπ 0.2708

Figure 12.  Predicted states and T1 and xr for Case 1: predicted dynamics of the state variables of the engine and 
T1 and xr for Case 1 (PINN with self-adaptive weights for 3 unknown parameters). It can be observed that the 
predicted dynamics of the states are in good agreement with the true values. However, similar to 3 unknown 
parameters T1 and xr do not match with the true value.
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Figure 13.  Predicted dynamics of variables for Case 1: (a–d) predicted dynamics of the variables whose field 
measurement data are known. (e–h) dynamics of important variables which also depend on the unknown 
parameters for Case 1.

Figure 14.  Empirical formulae for Case 1: the predicted values of empirical formulae for Case 1 (3 unknown 
parameters with clean data).
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Appendix 8: Neural network surrogates for empirical formulae
The empirical formulae of the engine model are approximated using surrogate neural networks and are discussed 
in “Neural network surrogates for empirical formulae2.1”. In “Data generation”, we discuss the laboratory data 
required to train these neural networks. The laboratory data required for training of each neural network are 
shown in Table 3 (“Data generation”). The labelled data for training these neural networks may be calculated 
from static data on the entire operational range of each quantity except for turbine mechanical efficiency ( ηtm ). 
The labelled data for the turbine mechanical efficiency is calculated using Eq. (44) (“Turbocharger”), which is 
a differential equation, thus requiring dynamic data with fine dt. The calculations of the labelled data from the 
laboratory measurements are discussed in “Appendix 4”. In the case of training of neural network N (P)

3 (x; θP3 ) 
for the approximation of Fvgt,�t , L2 weight regularizer (except last layer) is considered in the loss function with 
a coefficient 5× 10−10.

The predicted values of the empirical formulae for Case-V (Table 4 in “Data generation”) with the true values 
for 1-min duration are shown in Fig. 20. The % relative L2 errors for training and testing data set are shown in 
the last two columns of Table 10. We observe that the neural networks are able to predict the empirical quantity 
with very good accuracy. The testing error in the case of the surrogate neural network for fegr is smaller than the 

Figure 15.  Convergence of the unknown parameters for Case 1: convergence of the unknown parameters with 
epoch for Case 1 (3 unknown parameters with clean data).

Figure 16.  Predicted states and T1 and xr for Case 2: predicted dynamics of the state variables of the engine and 
T1 and xr for Case 2 (PINN with self-adaptive weights for 3 unknown paramters). It can be observed that the 
predicted dynamics of the states are in good agreement with the true values. However, similar to 4 unknown 
parameters T1 and xr do not match with the true value.
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Figure 17.  Predicted dynamics of variables for Case 2: (a–d) predicted dynamics of the variables whose field 
measurement data are known. (e–h) dynamics of important variables which also depend on the unknown 
parameters for Case 2.

Figure 18.  Empirical formulae for Case 2: the predicted values of empirical formulae for Case 2 (3 unknown 
parameters with noisy data).
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Figure 19.  Convergence of the unknown parameters for Case 2: convergence of the unknown parameters with 
epoch for Case 2 (3 unknown parameters with noisy data).

Table 10.  Details of neural networks for empirical formulae: details of the DNNs to approximate empirical 
formulae. The first two columns specify the neural network (Table 2) and their input, respectively. The 
third column indicates the neural network size considered. The activation function of the hidden layers is 
σ(·) = tanh(·) . The “Output” column specifies the empirical quantity the neural network approximated. 
The last two columns give the results for the test data after the completion of the training. The column 
“Error” specifies the relative %L2 error for the test case (Case V). Appropriate scaling of input and output are 
considered in the training of neural networks. ‡ S −→ sigmoid function.

Neural  network Input  ( x) Network size Output Output  restrict ‡
L2 error (%)

Train Test

N
(P)
1 (x; θP1 ) ne , pim [2, 4, 4, 1] ηvol 0.01 0.03

N
(P)
2 (x; θP2 ) ũegr [1, 4, 4, 1] fegr S(fegr ) 0.14 0.10

N
(P)
3 (x; θP3 ) �t , ũvgt [2, 8, 8, 8, 1] Fvgt,�t 1.1× S(Fvgt,�t ) 0.03 0.52

N
(P)
4 (x; θP4 ) ωt ,�t ,Tem [3, 4, 4, 4, 1] ηtm min(0.818, ηtm) 1.62 1.32

N
(P)
5 (x; θP5 ) Wc ,�c [2, 4, 4, 4, 1] ηc max(0.2, S(ηc)) 0.16 0.18

N
(P)
6 (x; θP6 ) ωt ,�c ,Tamb [3, 10, 10, 10, 1] �c S(�c) 0.76 1.13

Figure 20.  Prediction of empirical formulae: the predicted and true values of the empirical formulae for test 
case (Case-V). The plots are normalized within 20-min data, and only a portion (0–1 min) of the results are 
shown. The predicted empirical formulae are in good agreement with the true values.
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training error. This is because of the nature of the function and the data considered. The input-output relation-
ship is simple, with only one input and one output. The maximum value of the testing data is smaller than the 
maximum value of the training data. Similarly, the minimum value of testing data is larger than the minimum 
value of training data. We also observed that the standard deviation of testing data is smaller than the standard 
deviation of the training data. Since the EGR system is independent and fegr depends only on ũegr , not any 
other variables (e.g. ambient temperature and pressure), we assume that most of the testing set of data might be 
within the training data set (training data set is 2 h while testing data set is 20 min). Thus, the testing error is 
marginally smaller than the training error. The testing error in the case of the surrogate model for ηtm is smaller 
than that of the training error. The approximation considered in calculating the labelled data for ηtm from the 
laboratory data, we have considered a five-point method to approximate the differentiation present in Eq. (44) 
(“Turbocharger”). Thus, a few noisy data are observed in both training and testing data sets. As the duration 
of the training data set is larger than the testing dataset, the amount of noisy data is more in the training data. 
Thus, the error in training is slightly higher than the testing error. These neural networks, after training, will 
be used in the places of the empirical formulae in the inverse problem. The trained weights and biases will be 
considered fixed in the inverse problem.
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