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Computations of volumes in five 
candidates elections
Winfried Bruns 1* & Bogdan Ichim 2,3

We describe several analytical (i.e., precise) results obtained in five candidates social choice elections 
under the assumption of the Impartial Anonymous Culture. These include the Condorcet and Borda 
paradoxes, as well as the Condorcet efficiency of plurality, negative plurality and Borda voting, 
including their runoff versions. The computations are done by Normaliz. It finds precise probabilities as 
volumes of polytopes in dimension 119, using its recent implementation of the Lawrence algorithm.

In1, p. 382 Lepelley, Louichi and Smaoui state:

“Consequently, it is not possible to analyze four candidate elections, where the total number of variables 
(possible preference rankings) is 24. We hope that further developments of these algorithms will enable 
the overcoming of this difficulty.”

This hope has been fulfilled by previous versions of Normaliz2. In connection with the symmetrization suggested 
by Schürmann3, it was possible to compute volumes and Ehrhart series for many voting events in four candidates 
elections; see4. As far as Ehrhart series are concerned, we cannot yet offer progress. But the volume computation 
was already substantially improved by the descent algorithm described in5. Examples of Normaliz being used 
for voting theory computations by independent authors can be found in6,7 and8. The purpose of this paper is 
to present precise probability computations in five candidates elections under the assumption of the Impartial 
Anonymous Culture (IAC). They are made possible by Normaliz’ implementation of the Lawrence algorithm9.

The connection between rational polytopes and social choice was established independently in1 and10. Solu-
tions for the four candidates quest were proposed for example in3,4 and5. The similar, but much more challenging 
computational problem of performing precise computations in five candidates elections is wide open. Various 
authors have used the well known Monte Carlo methods in order to perform computations with five or more 
candidates, but fundamentally these methods can only deliver approximative results, without even clear bounds 
for errors. We note that methods that were successful in obtaining precise results in the four candidates case are 
ineffective in the five candidates case due to the huge leap in computational complexity implied by the increase 
in the dimension of the associated polytopes (from 23 to 119). Therefore a different algorithmic approach is 
needed in order to obtain the desired precise results.

To the best of our knowledge, we present here the first precise results obtained for computations with five 
candidates. By precise we mean either absolutely precise rational numbers, or results obtained using the fixed 
precision mode of Normaliz where the desired precision is set and fully controlled by the user.

The polytopes in five candidates elections have dimension 119, and are defined as subpolytopes of the simplex 
spanned by the unit vectors of R120 . The number of the inequalities cutting out the subpolytope is the critical 
size parameter, but fortunately we could manage computations with ≤ 8 inequalities (in addition to the 120 sign 
inequalities) on the hardware at our disposal, although the algorithm allows an arbitrary number of inequalities. 
This covers the Condorcet paradox11 (computable on a laptop in a few minutes), the Borda winner and loser 
paradoxes12, and the Condorcet efficiency of plurality, negative plurality and Borda voting, including their runoff 
extensions. We also compute the probabilities of all 12 configurations of the five candidates that are defined by 
the Condorcet majority relation.

As Table 6 shows, the computations for 5 candidates are very demanding on the hardware in memory and 
computation time. Therefore we consider it a major value of the new algorithm that it improves the situation in 
four candidates elections considerably, where it is now possible to allow preference rankings with all types of 
partial indifference. Moreover one can run series of parameterized computations for four candidates like those 
that one finds in13 for three candidates. In order to illustrate this possibility we compute the probability of the 
Condorcet paradox in the presence of voters with indifference and the Condorcet efficiency of approval voting 
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(see Sect. “Indifference”). Note that potential applications are not only limited to voting theory, as can be seen in14, 
Table 3. There the new algorithm is performing better (as the dimension grows) for the first family of examples.

Normaliz computes lattice normalized volume and uses only rational arithmetic without rounding errors 
or numerical instability. But there is a slight restriction: while it is always theoretically possible to compute the 
probabilities as absolutely precise rational numbers, the fractions involved can reach sizes which are unmanage-
able on the available hardware. For these cases Normaliz offers a fixed precision mode whose results are precise 
up to an error with a controlled bound that can be set by the user.

In contrast to algorithms that are based on explicit or implicit triangulations of the polytope P (or the cone 
C(P) defined by P) under consideration, the Lawrence algorithm uses a “generic triangulation” of the dual cone 
C(P)∗ . We make a brief discussion of the available Lawrence algorithm implementations and their limitations 
in Section “Implementations of the Lawrence algorithm and their limitations”. In order to reach the order of 
magnitude that is necessary for five candidates elections, one needs a fine tuned implementation. It is outlined 
in15. Moreover, the largest of our computations need a high performance cluster to finish in acceptable time. 
Section “Computational report” gives an impression on the computation times and memory requirements by 
listing them for selected examples.

The computations that we report in this note were done by version 3.9.0 of Normaliz. Meanwhile it has been 
succeeded by version 3.10.1 without changes in the Lawrence algorithm. Both versions are available at https://​
www.​norma​liz.​uni-​osnab​rueck.​de/.

For details on the implementation and the performance of the previous versions of Normaliz we point the 
reader to16–19.

A challenging computational problem arising from social choice
Voting schemes and rational polytopes.  The connection between voting schemes and rational poly-
topes is based on counting integral points in the latter. In this subsection we sketch the connection. As a general 
reference for discrete convex geometry we recommend20. The interested reader may also consult21 and22.

The basic assumption in the mathematics of social choice is the existence of individual preference rankings ≻ : 
every voter ranks the candidates in linear order. Examples for three candidates named by capital letters:

For n candidates there exist N = n! preference rankings, usually numbered in lexicographic order. (By an exten-
sion it is possible to allow indifferences; for example see13.)

The result or profile of the election is the N-tuple

Thus an election result for three candidates may be written in the following tabular form: 

Number of voters x1 x2 x3 x4 x5 x6

Ranking

A A B B C C

B C A C A B

C B C A B A

In the following we want to compute probabilities of certain events related to election schemes. This requires 
a probability distribution on the set of election results. The Impartial Anonymous Culture (IAC) assumes that 
all election results for a fixed number of voters, in the following denoted by k, have equal probability. In other 
words, it is the equidistribution on the set of voting profiles for a fixed number of k voters.

The Marquis de Condorcet (1743–1794) was a leading intellectual in France before and during the revolution. 
He already observed that there is no ideal election scheme, a fact now most distinctly manifested by Arrow’s 
impossibility theorem. We say that candidate A beats candidate B in majority, A >M B , if

A (necessarily unique) Condorcet winner (CW) beats all other candidates in majority. There is general agreement 
that the CW is the person with the largest common approval. However, Condorcet realized that a CW need not 
exist: the relation >M is not transitive: a minimal example is the profile (1, 0, 0, 1, 1, 0). This phenomenon is 
called the Condorcet paradox. From a quantitative viewpoint, the most ambitious goal is to find the exact num-
ber of election profiles exhibiting the Condorcet paradox (or the opposite), given the number of voters k. For 
large k, this number is gigantic. It is much more informative to understand the behavior for k → ∞ : what is the 
probability that an election result exhibits the Condorcet paradox? Since we assume the IAC, this probability is

It is a crucial consequence of (IAC) that the event “A is the CW” can be characterized by a system of homogene-
ous linear inequalities. For three candidates they are

A ≻ B ≻ C, C ≻ A ≻ B.

(x1, . . . , xN ), xi = #{voters of preference ranking i}.

#{voterswith A ≻ B} > #{voterswith B ≻ A}.

lim
k→∞

#{election resultswithoutCWfor k voters}

#{all election results for k voters}
.

A >M B : x1 + x2 + x5 > x3 + x4 + x6,

A >M C : x1 + x2 + x3 > x4 + x5 + x6.

https://www.normaliz.uni-osnabrueck.de/
https://www.normaliz.uni-osnabrueck.de/
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If we are only interested in probabilities for k → ∞ , standard arguments of measure theory allow ties and 
replacement of > by ≥.

We now consider an event E defined for an n candidates election by a system of homogeneous linear inequali-
ties on the set of election profiles. As above, set N = n! . The election profiles (x1, . . . , xN ) are the lattice points 
(points with integral coordinates) in the positive orthant RN

+ satisfying the equation x1 + · · · + xN = k . The 
real points in the positive orthant satisfying this equation form a polytope �k , and the linear inequalities whose 
validity defines E cut out a subpolytope Pk . We illustrate this assertion by the (necessarily unrealistic) Fig. 1.

For large numbers of voters we want to find the probability prob(E) of the event E. Under (IAC) it is given by

We project �k orthogonally onto �1 , and thus Pk onto P1 . The density, roughly speaking, of the projections of 
the lattice points converges to 1, and therefore

For volume computations in connection with the counting of lattice points one uses the lattice normalized volume 
vol , giving volume 1 to �1 . With this choice prob(E) = vol(P1).

It is not difficult, but would take many pages, to write down the linear inequalities for the voting schemes and 
events discussed in the following. For four candidates the complete systems are contained in4. For the inequalities 
one must often fix the roles that certain candidates play, like the Condorcet winner A above. Then probabilities 
must be computed carefully, and this may require the inclusion-exclusion principle.

Both from the theoretical as well as from the computational viewpoint it is better to consider the cone C 
defined by the homogeneous linear inequalities as the prime object, and the polytopes as intersections of C with 
the hyperplane defined by the equation x1 + · · · + xN = k.

It is not difficult to see that a voting event that can be realized by a voting profile has positive probability:

Proposition 1  Let E be a subset of all voting profiles defined by strict homogeneous rational inequalities. If E is 
nonempty, then it has probability > 0 under (IAC).

Proof  Clearing denominators, one can assume that the coefficients of the inequalities are integers. Let m be the 
maximum of all their absolute values and x ∈ E be a voting profile. Then x′ = (m+ 1)x ∈ E as well by homoge-
neity. It is easily checked that also x′ + ei ∈ E where ei , i = 1, . . . ,N is the i-th unit vector. The parallel translation 
by −x′ maps the the polytope P spanned by the x′ + ei bijectively onto �1 . Thus P has lattice normalized volume 
1, and therefore its orthogonal projection to �1 has positive volume. 	�  �

The Condorcet paradox in five candidates elections.  The Condorcet paradox, introduced in Section 
“Voting schemes and rational polytopes”, does not occur in the case of two candidates (if draws are excluded). 
For three candidates the exact probability of an outcome with a Condorcet winner (under IAC) was first com-
puted by Gehrlein and Fishburn23 while for four candidates it was first determined by Gehrlein in24.

For five candidates, we have computed in the full precision mode of Normaliz (and the method presented in 
Section “Implementations of the Lawrence algorithm and their limitations”) that

where

and

prob(E) = lim
k→∞

#{lattice points in Pk}

#{lattice points in�k}
.

prob(E) =
vol(P1)

vol(�1)
.

pCW =
a

b
,

a = 760794547958864241496408591531018198021484884229346111658236615929935

Figure 1.   Subpolytope defined by linear inequalities.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13266  | https://doi.org/10.1038/s41598-023-39656-8

www.nature.com/scientificreports/

In decimal notation with 100 decimals, we obtain

In order to illustrate the fixed precision mode of Normaliz, we compare the above exact result with the result 
obtained for fixed precision of 100 decimal digits, namely

where

and

In decimal notation with 100 decimals, we obtain

The reader should observe that in the decimal notation only the last 4 digits are different. The error bound is

where 6, 572, 904 is the size of the “generic triangulation” (see Section “Implementations of the Lawrence algo-
rithm and their limitations” and Table 5).

This means that using the fixed precision mode of Normaliz is sufficient for many applications, while it saves 
computation time and is significantly less demanding on the hardware.

For practical reasons, in the following we use shorter decimal representations of the rational numbers. (The 
full rational representations of these numbers are available on demand from the authors.) A decimal represen-
tation is called rounded to n decimals when the first n− 1 printed decimals are exact and only the last decimal 
may be rounded up.

Rule versus rule runoff, Condorcet efficiencies.  The most common voting scheme in elections is the 
plurality rule PR: for each candidate X one counts the voters that have X on first place in their preference rank-
ing, and the winner is the candidate with most first places. However, in many elections one uses a second ballot, 
called runoff, if the winner has not got the votes of more than half of the voters. In the runoff only two candidates 
are left, namely the two top candidates of the first round. A typical example is the French presidential election.

If the ideal winner of an election is the Condorcet winner CW, then one must ask for the probability that 
the plurality winner is the CW under the condition that a CW exists. This conditional probability is called the 
Condorcet efficiency, studied intensively by Gehrlein and Lepelley21 as a quality measure for voting schemes.

Another important question is whether the runoff is a real improvement: (i) what is the probability that the 
winner of the first ballot also wins the second, and (ii) by how much does the Condorcet efficiency increase by 
the runoff.

An often discussed variant of plurality is negative plurality NPR: the winner is the least disliked candidate 
X, defined by the least number of voters who have placed X on the last place in their preference ranking. As for 
plurality one can have a runoff, and again it makes sense to compute the Conndorcet efficiencies and the prob-
ability that the first round winner also wins the runoff.

Both plurality and negative plurality are special cases of weighted voting schemes in which the places in the 
preference ranking have a fixed weight, and every candidate is counted with the sum of the weights in the pref-
erence ranking of the voters. In plurality the first place has weight 1 and the other places have weight 0, wheres 
negative plurality gives weight −1 to the last place. In addition to these two rules we discuss the Borda rule BR 
that for n candidates gives weight n− p to place p.

In the case of four candidates the plurality voting versus plurality runoff problem was first computed by De 
Loera, Dutra, Köppe, Moreinis, Pinto and Wu in25 using LattE Integrale26 for the volume computation.The Con-
dorcet efficiency of plurality voting was first computed by Schürmann in3, whereas the Condorcet efficiency of 
the runoff plurality voting was given in4. According to22, it was obtained independently in4 and27. In Section 65 we 
additionally discuss the influence of a third ballot on the Condorcet efficiencies of plurality and negative plurality.

Our results for five candidates are listed in Table 1. The first line contains the probability that the first round 
winner also wins the runoff. These three computations were done using the full precision mode of Normaliz. The 
next two lines contain the Condorcet efficiencies, computed the fixed precision mode of Normaliz. For practical 
reasons we have only included the results rounded to 15 decimals.

In Table 2 we reproduce the results for the Condorcet efficiency of all three rules contained in Table 7.6 of22, 
which were obtained using Monte Carlo methods in28.

b = 1010827262551214358630401511004028249102084136257935356483840264634368.

pCW ≈ 0.75264545797736434427639219331756247271265813365410

18228684464583400970327543361542592465345709195008.

pCW ≈
a′

b′
,

a′ = 940806822471705430345490241646953090890822667067627278585558072925121

29094292019282405816821364997

b′ = 125000000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000.

pCW ≈ 0.75264545797736434427639219331756247271265813365410

18228684464583400970327543361542592465345709199760.

6572904 · 10−100 < 10−93,
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The numbers are relatively close, which confirms the correctness of all algorithms involved. However, at 
least 14 decimals printed in Table 1 are exact, while for the numbers printed in Table 2 we have 2, 4 and 3 exact 
decimals.

Strong Borda paradoxes.  The Borda paradoxes are named after the Chevalier de Borda who studied them 
in12. The strict Borda paradox is the event that for a voting profile plurality and majority rank the candidate in 
opposite order. A less sharp paradox is the strong Borda paradox: the plurality winner is the Condorcet loser, and 
the reverse strong Borda paradox occurs if the Condorcet winner finishes last in plurality. These paradoxes can be 
discussed for all voting schemes for which every profile defines a linear order of the candidates. There is however 
no point in computing them for negative plurality. As shown in Section 2.54 plurality and negative plurality are 
dual to each other: the strong Borda paradox and the reverse strong Borda paradox exchange their roles.

For three candidates elections a detailed study of the family of Borda paradoxes12 is contained in29, while the 
case of four candidates is discussed in Section 2.54. According to22, similar results were obtained independently 
in27.

For the time being, the computation of the strict Borda paradox in the case of five candidates seems not to 
be reachable. The strong paradoxes have been computed in the fixed precision mode of Normaliz. The results 
are rounded to 15 decimals.

For large numbers of voters the probability of the strong Borda paradox is

and the probability of the reverse strong Borda paradox is

Indifference.  We want to point out that the Normaliz implementation of Lawrence’s algorithm does not only 
yield precise results in five candidates elections, but also extends the range of computations for four candidates 
considerably by allowing preference rankings with partial indifference that increase the dimension of the related 
polytopes considerably. We demonstrate this by two examples.

In the examples we allow all possible types of indifference except the equal ranking of all candidates: no 
indifference, equal ranking of two candidates in three possible positions (top, middle, bottom), two groups of 
two equally ranked candidates, and equal ranking of three candidates (top and bottom). In total one obtains 
74 rankings. Compared to the 24 rankings without indifference this is a substantial increase in dimension. We 
assume that all rankings have the same probability. The authors of13 allow weights for the types of indifference, 
for example that the number of voters with a linear order of the candidates is twice the number of voters with 
indifference. Such weights can easily be realized as a system of homogeneous linear equations in the Normaliz 
input file.

The first computation is the probability of a Condorcet winner under the Extended Impartial Anonymous 
Culture (EIAC), as discussed in13 for 3 candidates (and varying weights for the different types of indifference). 
This requires only 3 inequalities to fix the Condorcet winner, and the computation is very fast. We obtained the 
value of

for the probability of the existence of a Condorcet winner under EIAC (rounded to 15 decimals).
The second example is the Condorcet efficiency of approval voting. Under this rule one additionally assumes 

that every voter casts a vote for each candidate on first place in his or her preference ranking. This requires 6 
inequalities, namely 3 to mark the CW and 3 to make the same candidate the winner of the approval voting. 

BSg ≈ 0.018125801480904

BSgRev ≈ 0.019238302806489.

0.884041566089553

Table 1.   Probabilities computed by Normaliz.

Rule R

PR NPR BR

RVsRunoff 0.673383666340974 0.614598375568014 0.769395916647461

CondEffR 0.614270758198443 0.509039971570300 0.854442922091020

CondEffRRunoff 0.832220522376460 0.775488383677566 0.991189085613331

Table 2.   Results obtained by Monte Carlo, according to22 and28.

Rule R

PR NPR BR

CondEffR 0.6139 0.5090 0.8541
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Consequently the computation time is going up considerably. See the data for CondEffAppr 4cand in Table 6. 
Normaliz obtains

as the probability that there exists a CW who finishes first in the approval voting. This yields the Condorcet 
efficiency of

for approval voting (under the assumptions above). The computations were done using the full precision mode 
of Normaliz.

From three to five candidates.  In Table 3 we give an overview of the probabilities of voting events for 
three, four and five candidates as far as we have computed them for five candidates. We use the shorthands PR, 
NPR and BR for the plurality rule, negative plurality rule and Borda rule as introduced above. The remaining 
abbreviations are self explanatory. For better overview we have rounded all probabilities to 4 decimals.

One observes that all probabilities are decreasing from three to five candidates. This reflects the increase in 
the number of configurations defined by the voting profiles. The Condorcet efficiencies and the probabilities of 
the Borda paradoxes are conditioned on the probabilities of the existence of a Condorcet winner, which itself is 
decreasing. But this does not compensate the decrease of the absolute probabilities.

In view of our observations above it is justified to formulate.

Conjecture 2  All series of probabilities associated to voting events in Table 3 are monotonically decreasing with the 
number of candidates n.

Condorcet classes
A voting outcome without ties imposes an asymmetric binary relation on the n candidates that we call a Condorcet 
configuration. A Condorcet configuration is also called a dominance relation, according to30. Evidently there are 

2

(

n
2

)

 such configurations. The permutation group Sn acts on the set of configurations by permuting the candi-

dates. We call the orbits of this action Condorcet classes. For n = 4 the classes and their probabilities are discussed 
in4.

From the graph theoretical viewpoint the Condorcet configurations are nothing but simple directed complete 
graphs with n labeled vertices, i.e., graphs with n labeled vertices without loops, in which each two vertices are 
connected by a single directed edge. These graphs are also know as tournament graphs.

In this section we present the precise probabilities of the Condorcet classes under IAC. First we make a 
presentations of the classes, which is needed in order to understand a reduction critical to be made for the 
computations to be successful.

For n = 5 these Condorcet configurations fall into 12 classes under the action of the group S5 . There are 6 
classes that have a Condorcet winner (CW) or a Condorcet loser (CL): 

LinOrd CW4cyc

CW2nd3cyc 3cyc4thCL

CW3cycCL 4cycCL

 here “cyc” stands for “cycle”. For example, CW2nd3cyc denotes the class that has a Condorcet winner, a candidate 
in second position majorizing the remaining three, and the latter are ordered in a 3-cycle.

0.695293409282039

0.786494024661739

Table 3.   Probabilities of voting events for 3, 4 and 5 candidates.

3 cand 4 cand 5 cand

Condorcet Par 0.9375 0.8384 0.7526

PR vs RunO 0.8767 0.7545 0.6734

CondEff PR 0.8815 0.7426 0.6143

CondEff PR RunO 0.9685 0.9117 0.8322

NPR vs RunO 0.6389 0.6227 0.6146

CondEff NPR 0.6296 0.5516 0.5090

CondEff NPR RunO 0.9704 0.8450 0.7755

BR vs RunO 0.8750 0.8053 0.7694

CondEff BR 0.9111 0.8706 0.8544

CondEff BR RunO 1.0000 0.9962 0.9912

Strong Borda Par 0.0296 0.0227 0.0181

Strong RevBorda Par 0.0315 0.0238 0.0192
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There are 6 further classes as has been known for a long time. Presumably Davis31 is the oldest source. (For 
more sources and cardinalities of the set of classes see32.) The classes can be structured by the signatures (p, q) 
of a candidate in which p counts the candidates majorized by the chosen candidate and q = n− 1− p is the 
number of the candidates majorizing the chosen one. In graph theoretical language, p is the in-degree and q is the 
out-degree of the chosen node. Without a CW or CL, the signatures (4, 0) and (0, 4) are excluded. The number 
of signatures (2, 2) must now be odd, and using this observation one easily finds the 6 classes without a CW or 
CL. They are named in Fig. 2. In the figure candidates of signature (3, 1) are colored red, those of signature (2, 2) 
are blue, and green indicates the signature (1, 3).

The cardinalities of all classes and their probabilities (rounded to 6 decimals) are listed in  Table 4.
We have computed these probabilities not only for aesthetic reasons: that they sum to 1 is an excellent test 

for the correctness of the algorithm.
For effective computations the following reduction is critical. At first it seems that one must use 10 inequali-

ties representing the relation >M between the five candidates in addition to the 120 sign inequalities in order to 
compute the probability of a single class (or configuration). But computations with 130 inequalities are currently 
not reachable on the hardware at our disposal. Some observations help to reduce the number of inequalities, 
significantly easing the computational load. For example, LinOrd can be (and is) computed with 128 inequalities 
if one exploits that it is enough to choose the first two in arbitrary order and the candidate for third place. Once 
the probability of LinOrd is known, the remaining 5 classes with a CW or CL can be obtained from the Condorcet 
paradox (124 inequalities), CWand2nd (126), CWandCL (127) and the symmetry between CW and CL (see4).

For the other 6 classes it is best to “relax” the direction of some edges and to count which configurations 
occur if one chooses directions for the relaxed edges. For a proper choice of relaxed edges one gets away with 
127 inequalities for Ŵ1,1 and only 126 or 125 inequalities for the remaining cases.

It is no surprise that all Condorcet classes have positive probability. In fact, by a theorem of33 also see Theo-
rem 3.130 all Condorcet configurations can be realized by a voting profile. So Proposition 1 implies positive 
probability.

Figure 2.   The Condorcet classes without a Condorcet winner or loser.

Table 4.   Condorcet classes, their cardinalities and probabilities.

Class #config p(class)

LinOrd 120 0.533665

CW2nd3cyc 40 0.066882

CW3cycCL 40 0.069984

CW4cyc 120 0.082115

3cyc4thCL 40 0.066882

4cycCL 120 0.082115

Ŵ1,1 120 0.031467

Ŵ1,2 120 0.032172

Ŵ2,1 40 0.004509

Ŵ2,2 120 0.014644

Ŵ2,3 120 0.014203

Ŵ3 24 0.001362
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The problem of finding the minimal number of voters that are necessary to realize a given Condorcet con-
figuration or even a voting event is largely unknown; see34 for an asymptotic lower bound. Some values for four 
candidates elections have been computed by Normaliz; see4, Remark 8.

Implementations of the Lawrence algorithm and their limitations
The Lawrence algorithm is based on the fact that a “signed decomposition” into simplicies of the polytope in the 
primal space may be obtained from a “generic triangulation” � of its dual cone. For each δ ∈ � we get a simplex 
Rδ in the primal space and the volume of the polytope in the primal space is the sum of volumes of simplices 
Rδ induced by the “generic triangulation” with appropriate signs e(δ) = ±1 . Thus the following formula can be 
used for computing the volume of P:

For mathematical details we refer the reader to Filliman35. Details of its implementation in Normaliz are described 
in15.

In order to compute a “generic triangulation”, Normaliz, following Lawrence’s suggestion, finds a “generic 
element” ω , which in turn induces the “generic triangulation” � = �ω . Since ω almost inevitably has unpleas-
antly large coordinates, the induced simplices Rδ have even worse rational vertices, and their volumes usually are 
rational numbers with very large numerators and denominators. This extreme arithmetical complexity makes 
computations with full precision sometimes very difficult on the hardware at our disposal. In the fixed precision 
mode the volumes volRδ are computed precisely as rational numbers. But the addition of these numbers may 
result in gigabytes filling fractions. Therefore in order to make computations feasible the precise rational num-
bers are truncated to a predetermined set of exact decimal digits, which is typically 100 digits. Then the error is 
bounded above by T · 10−100 where T is the size of the “generic triangulation” (i.e. the total number of simplices).

Remark 3  Before Normaliz, the program vinci36 has provided an implementation of the Lawrence algorithm using 
floating point arithmetic. As it is noted by the authors in37, their floating point implementation is numerically 
unstable. We point out at least one possible reason for this problem, which is indicated by the above discussion.

In any implementation of the Lawrence algorithm the alternating sum 1 must be evaluated. When using 
floating point arithmetic for subtracting nearby quantities it is possible that the most significant digits are equal 
and they will cancel each other. This is a severe limitation of the floating point arithmetic that may lead to a 
phenomenon known as “catastrophic cancelation”. It is a fact that, because of the relative error involved, the 
evaluation of a single subtraction in floating point arithmetic could produce completely meaningless digits.

This problem is visible already when computing voting problems with 4 candidates and only becomes 
worse for 5 candidates. Consider the problem of comparing 4 voting rules for 4 candidates as it is presented 
in detail in5, Sect. 6.1. With its HOT algorithm vinci computes the precise associated Euclidean volume of 
1.260510232743 · 10−25 . At the same time, a computation with the Lawrence algorithm as it is implemented in 
vinci provides the erroneous value of 9.287423132835 · 10−8 for the same volume. So is clear that the results 
provided by the vinci implementation of the Lawrence algorithm may lack any kind of precision, therefore it 
does not make sense to include in this paper a benchmark of the (different) implementation of the Lawrence 
algorithm in vinci.

Remark 4  The program polymake38 has also implemented a simplified version of the Lawrence’s algorithm. This 
implementation is restricted to the “smooth” case. Note that smooth implies “simple”, which in turn implies that 
the dual polytope is “simplicial”, so its boundary has a trivial triangulation. The polytopes that appear in voting 
theory are not smooth, in fact they are not even simple. Thus the implementation in polymake of the Lawrence 
algorithm cannot be compared with the Normaliz implementation for the polytopes presented here.

Computational report
Selected examples.  In order to give the reader an impression of the computational effort, we illustrate it by 
the data of several selected examples. Except (1) and (2) they are all computations for elections with 5 candidates: 

(1)	 strictBorda 4cand is the computation of the probability of the strict Borda paradox for elections 
with 4 candidates as discussed in4.

(2)	 CondEffAppr 4cand is the Condorcet efficiency of approval voting for 4 candidates.
(3)	 Condorcet stands for the existence of a Condorcet winner in elections with 5 candidates.
(4)	 PlurVsRunoff computes the probability that the plurality winner also wins the runoff.
(5)	 CWand2nd computes the probability that there exists Condorcet winner and a second candidate dominat-

ing the remaining three.
(6)	 CondEffPlurRunoff is used to compute the probability that the Condorcet winner exists and finishes at 

least second in plurality.
(7)	 CondEffPlur computes the probability that the Condorcet winner exists and wins plurality.

In all cases one has to make choices for the candidates that have certain roles in the computation in order to 
define the polytope for the computation. Table 5 contains their characteristic combinatorial data.

(1)volP =
∑

δ∈�

e(δ)volRδ .



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13266  | https://doi.org/10.1038/s41598-023-39656-8

www.nature.com/scientificreports/

Parallelized and distributed volume computations.  The implementation in Normaliz of the Law-
rence algorithm consists of 4 distinct steps that are described in15. For effective computations these steps can be 
separated (and sometimes they must be separated) and run on different machines.

The computation times in Table 6 are “wall clock times” taken on a Dell R640 system with 1 TB of RAM and 
two Intel™Xeon™Gold 6152 (a total of 44 cores) using 32 parallel threads (of the maximum of 88).

Additional information: 

(1)	 All computations in the table use 64 bit integers for steps (1)–(3). Even step (4) is done with 64 bit integers 
for strictBorda 4cand and Condorcet.

(2)	 The volumes of the first 5 polytopes were computed with full precision, whereas for CondEffPlur and 
CondEffPlurRunoff fixed precision was used.

(3)	 The following rule of thumb can be used to estimate the computation time for a smaller number of threads: 
if one reduces the number of parallel threads from 32 to 8, then one should expect the computation time 
to go up by a factor of 3. A further reduction to 1 thread increases it by another factor of 7.

(4)	 From the selected examples, only strictBorda is computable with the algorithms previously imple-
mented in Normaliz. For this example, the data in Table 6 may be compared with the data in5, Table 2 which 
was recorded on the same system.

(5)	 The data in Table 6 shows why computations with more than 128 inequalities are currently not reachable on 
the hardware at our disposal. Each additional inequality added leads to a significant jump in the required 
RAM memory and there exists a 1 TB limit on our system.

Stage (4) of the last two polytopes was computed on a high performance cluster (HPC) because the computa-
tion time would become extremely long on the R640, despite of the high degree of internal parallelization. The 
time for CondEffPlurRunoff would still be acceptable, but CondEffPlur would take several weeks. Instead 
doing step (4) directly, the result of steps (1)–(3) is written to a series of compressed files on the hard disk. Each 
of these files contains a certain number of simplices and this number can be chosen by the user, for example 106 
simplices. For CondEffPlur we need 12, 277 s for writing the input files of the distributed computation, and 
CondEffPlurRunoff needs 528 s.

The compressed files are then collected and transferred to the HPC. The Osnabrück HPC has 51 nodes, each 
equipped with 1 TB of RAM and 2 AMD Epyc 7742 so that 128 threads can be run on each node. In our setup 
each node ran 16 instances of chunk simultaneously and every instance used 8 threads of OpenMP paralleli-
zation. Consequently 816 input files could be processed simultaneously. For a CondEffPlur input file of 106 
simplices one needs about 165 MB of RAM and 3 h of computation time. Therefore the volume of CondEffPlur 
could be computed in ≈ 9 h.

Even on a less powerful system it can be advisable to choose this type of approach since one loses only a 
small amount of data when a system crash should happen and the amount of memory used remains low. Also 
“small” computations can profit from fixed precision. For example, step (4) of Condorcet takes 13.9 s with 
fixed precision, but 52.5 s with full precision.

Table 5.   Combinatorial data.

dim C # inequalities # triangulation # generic triang

strictBorda 4cand 24 33 100,738 324,862

CondEffAppr 4cand 74 80 1,620,052 30,564,920

Condorcet 120 124 137,105 6,572,904

PlurVsRunoff 120 125 4,912,369 93,749,784

CWand2nd 120 126 15,529,730 608,572,514

CondEffPlurRunoff 120 127 246,310,369 5,456,573,880

CondEffPlur 120 128 2,388,564,481 39,390,184,920
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Data availability
Input and output files for all computations of this paper can be found at https://​www.​norma​liz.​uni-​osnab​rueck.​
de/​docum​entat​ion/​inter​esting-​and-​chall​enging-​examp​les-​for-​norma​liz/.

Received: 15 March 2023; Accepted: 28 July 2023

References
	 1.	 Lepelley, D., Louichi, A. & Smaoui, H. On Ehrhart polynomials and probability calculations in voting theory. Soc. Choice Welf. 30, 

363–383 (2008).
	 2.	 Bruns, W., Ichim, B., Söger, C., & von der Ohe, U. Normaliz. Algorithms for rational cones and affine monoids. https://​norma​liz.​

uos.​de.
	 3.	 Schürmann, A. Exploiting polyhedral symmetries in social choice. Soc. Choice Welf. 40, 1097–1110 (2013).
	 4.	 Bruns, W., Ichim, B. & Söger, C. Computations of volumes and Ehrhart series in four candidates elections. Ann. Oper. Res. 280, 

241–265 (2019).
	 5.	 Bruns, W. & Ichim, B. Polytope volume by descent in the face lattice and applications in social choice. Math. Program. Comput. 

13, 415–442 (2021).
	 6.	 Brandt, F., Geist, C., & Strobel, M. Analyzing the practical relevance of voting paradoxes via Ehrhart theory, computer simulations, 

and empirical data. In Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems 385–393.
	 7.	 Brandt, F., Hofbauer, J., & Strobel, M. Exploring the no-show paradox for condorcet extensions using Ehrhart theory and computer 

simulations. In Proceedings of the 2019 International Conference on Autonomous Agents & Multiagent Systems 520–528.
	 8.	 Diss, M., Kamwa, E. & Tlidi, A. On some k-scoring rules for committee elections: Agreement and Condorcet Principle. Revue 

d’Écon. Polit. 130, 699–725 (2020).
	 9.	 Lawrence, J. Polytope volume computation. Math. Comput. 57, 259–271 (1991).
	10.	 Wilson, M. C. & Pritchard, G. Probability calculations under the IAC hypothesis. Math. Soc. Sci. 54, 244–256 (2007).
	11.	 de Condorcet, N. Marquis. Éssai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix (Imprimerie 

Royale, Paris, 1785).
	12.	 de Borda, J.-C. Chevalier. Mémoire sur les élections au scrutin. Histoire de’Académie Royale Des Sci. 102, 657–665 (1781).
	13.	 Friese, E., Gehrlein, W. V., Lepelley, D. & Schürmann, A. The impact of dependence among voters’ preferences with partial indif-

ference. Qual. Quant. 51, 2793–2812 (2017).
	14.	 Ichim, B., & Moyano-Fernández, J. J. On the consistency of score sheets of a round-robin football tournament.https://​arxiv.​org/​abs/​

2208.​12372.
	15.	 Bruns, W. Polytope volume in Normaliz. São Paulo J. Math. Sci. 17, 36–54 (2022).
	16.	 Bruns, W. & Koch, R. Computing the integral closure of an affine semigroup. Univ. Iagell. Acta Math. 39, 59–70 (2001).
	17.	 Bruns, W. & Ichim, B. Normaliz: Algorithms for affine monoids and rational cones. J. Algebra 324, 1098–1113 (2010).
	18.	 Bruns, W., Ichim, B. & Söger, C. The power of pyramid decomposition in Normaliz. J. Symb. Comput. 74, 513–536 (2016).
	19.	 Bruns, W. & Söger, C. Generalized Ehrhart series and Integration in Normaliz. J. Symb. Comput. 68, 75–86 (2015).
	20.	 Bruns, W. & Gubeladze, J. Polytopes, Rings and K-theory (Springer, 2009).
	21.	 Gehrlein, W. V. & Lepelley, D. Voting Paradoxes and Group Coherence (Springer, 2011).
	22.	 Gehrlein, W. V. & Lepelley, D. Elections, Voting Rules and Paradoxical Outcomes (Springer, 2017).
	23.	 Gehrlein, W. V. & Fishburn, P. Condorcet’s paradox and anonymous preference profiles. Public Choice 26, 1–18 (1976).
	24.	 Gehrlein, W. V. Condorcet winners on four candidates with anonymous voters. Econ. Lett. 71, 335–340 (2001).
	25.	 De Loera, J. A. et al. Software for exact integration of polynomials over polyhedra. Comput. Geom. 46, 232–252 (2013).
	26.	 Baldoni, V., Berline, N., De Loera, J. A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Vergne, M., & Wu, J. A user’s guide for LattE 

integrale v1.7.2, 2013. Software package LattE is available at https://​www.​math.​ucdav​is.​edu/​~latte/.
	27.	 Lepelley, D., Ouafdi, A. & Smaoui, H. Probabilities of electoral outcomes: From three-candidate to four-candidate elections. Theory 

Decis. 88, 205–229 (2020).
	28.	 Lepelley, D., Louichi, A. & Valognes, F. Computer simulations of voting systems. Adv. Complex Syst. 3, 181–194 (2000).
	29.	 Gehrlein, W. V. & Lepelley, D. On the probability of observing Borda’s paradox. Soc. Choice Welf. 35, 1–23 (2010).
	30.	 Brandt, F., Brill, M. & Harrenstein, P. Tournament solutions. In Handbook of Computational Social Choice 56–84 (Cambridge 

University Press, 2016).
	31.	 Davis, R. L. Structure of dominance relations. Bull. Math. Biophys. 16, 131–140 (1954).
	32.	 The online encyclopedia of integer sequences. http://​oeis.​org/​A0005​68.
	33.	 McGarvey, D. C. A theorem on the construction of voting paradoxes. Econometrica 21, 608–610 (1953).
	34.	 Erdős, P. & Moser, L. On the representation of directed graphs as unions of orderings. Publ. Math. Inst. Hung. Acad. Sci. 9, 125–132 

(1964).
	35.	 Filliman, P. The volume of duals and sections of polytopes. Mathematika 39, 67–80 (1992).
	36.	 Büeler, B., & Enge, A. Vinci.https://​www.​math.u-​borde​aux.​fr/​~aenge/.
	37.	 Büeler, B., Enge, A. & Fukuda, K. Exact volume computation for polytopes: A practical study. In Polytopes—Combinatorics and 

Computation (Oberwolfach, 1997) 131–154, DMV Sem., 29, (Birkhäuser, Basel, 2000).

Table 6.   Memory usage and times for parallelized volume computations.

RAM  in GB

Time

Stages (1)–(3) Stage (4) Total

strictBorda 4cand 0.35 1.278 s 0.464 s 1.742 s

CondEffAppr 4cand 7.4 97.8 s 14:31 m 16:09 m

Condorcet 1.67 18.0 s 52.493 s 1:10 m

PlurVsRunoff 26.2 12:40 m 1:29:21 h 1:42:01 s

CWand2nd 56.4 49:55 m 10:21:36 h 11:11:31 h

CondEffPlurRunoff 113 13:30:22 h HPC –

yCondEffPlur 646 125:27:20 h HPC –

https://www.normaliz.uni-osnabrueck.de/documentation/interesting-and-challenging-examples-for-normaliz/
https://www.normaliz.uni-osnabrueck.de/documentation/interesting-and-challenging-examples-for-normaliz/
https://normaliz.uos.de
https://normaliz.uos.de
https://arxiv.org/abs/2208.12372
https://arxiv.org/abs/2208.12372
https://www.math.ucdavis.edu/%7elatte/
http://oeis.org/A000568
https://www.math.u-bordeaux.fr/%7eaenge/


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13266  | https://doi.org/10.1038/s41598-023-39656-8

www.nature.com/scientificreports/

	38.	 Assarf, B. et al. Computing convex hulls and counting integer points with polymake. Math. Program. Comput. 9, 1–38 (2017).

Acknowledgements
The first author was supported by the DFG (German Research Foundation) Grant Br 688/26-1. The second author 
was partially supported by a Grant of Romanian Ministry of Research, Innovation and Digitization, CNCS/
CCCDI - UEFISCDI, project number PN-III-P4-ID-PCE-2020-0878, within PNCDI III. The high performance 
cluster of the University of Osnabrück that made the computations possible was financed by the DFG Grant 
456666331. We cordially thank Lars Knipschild, the administrator of the HPC, for his assistance. Our thanks 
also go to Ulrich von der Ohe for his careful reading of the manuscript.

Dedication
To the memory of Udo Vetter, our teacher, colleague and friend.

Author contributions
All authors have been equally contributing to the paper.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Computations of volumes in five candidates elections
	A challenging computational problem arising from social choice
	Voting schemes and rational polytopes. 
	The Condorcet paradox in five candidates elections. 
	Rule versus rule runoff, Condorcet efficiencies. 
	Strong Borda paradoxes. 
	Indifference. 
	From three to five candidates. 

	Condorcet classes
	Implementations of the Lawrence algorithm and their limitations
	Computational report
	Selected examples. 
	Parallelized and distributed volume computations. 

	References
	Acknowledgements


