
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports

High performance microservice
communication technology based
on modified remote procedure call
Lei Zhang 1,2*, Ke Pang 2, Jiangtao Xu 1 & Bingxin Niu 3

Microservice architecture is a programming method that decomposes a single application into
various smaller services and then executes them. However, this approach introduces new challenges
in communication between services because of the different data structures and technology types
among the multiple services. Therefore, interprocess communication (IPC) between services has
become one of the important challenges facing microservice architecture. Additionally, the choice
of IPC technology is an important decision that can affect the nonfunctional requirements of the
entire architecture. To address this problem, this study proposes a microservice communication
technology based on remote procedure calls (RPC) called RPCX to improve the communication
performance between services. The RPCX communication mechanism based on RPC uses the
nonblocking IO communication model and Protobuf data serialization standard method. It identifies
RPC communication at the client and server ends using dynamic proxy and annotation configuration
technology. We use RPCX and two traditional service communication technologies to conduct
performance stress benchmarking and evaluate the performance of RPCX through the time consumed
to process the requests and transactions per second (TPS) performance stress indicators. The results
show that the performance of RPCX is better than that of the other two technologies under different
threads and requests. In this study, we show that RPCX has overall better performance than the other
two service communication techniques under different threads and requests.

Microservice architecture is a programming method that decomposes a single application into various smaller
services and then executes them1. In view of the shortcomings of large-scale monolithic applications in terms of
maintenance, reusability, and expandability2, the microservice architecture divides the applications into multiple
services for development, which are easier to maintain and expand. Based on this architecture, developers can
choose the most suitable technology type for each service, which reduces the development cost and improves the
development efficiency3–5. Nevertheless, this approach introduces new challenges in communication between
services because of the different data structures and technology types among the multiple services. Therefore,
interprocess communication (IPC)6 between services has become one of the important challenges facing micros-
ervice architecture7.

In the development of microservice architecture, the choice of IPC technology is an important decision that
can affect the nonfunctional requirements of the entire architecture7,8. The commonly used IPC technology is
obtained by remote procedure call (RPC)9 or representational state transfer (REST) technology10–12. Therefore,
the selection of these two types of communication technologies is crucial in the service communication devel-
opment of microservices.

We propose a microservice communication technology called RPCX, which adopts RPC and uses the non-
blocking IO (NIO) communication model13, and Protobuf data serialization standard14 to establish a com-
munication bridge between the client and server. It also uses dynamic proxy15 and annotation configuration
technology16 to obtain dual-end RPC communication technology between the client and server. Thus, it renders
RPC communication more efficient and convenient.

The contributions of this study include:

OPEN

1School of Microelectronics, Tianjin University, Road No 92, Tianjin Wei Jin Road, Nankai District City,
Tianjin 300072, China. 2School of Software and Communication, Tianjin Sino-German University of Applied
Sciences, Tianjin 300350, China. 3School of Artificial Intelligence, Hebei University of Technology, Hebei 300401,
China. *email: xiaolei-zhl@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-39355-4&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

1.	 A microservice communication technology based on the RPC communication mechanism-RPCX. Compared
with other technologies, this technology significantly reduces the service communication time and increases
the transactions per second (TPS). The stress test under different threads and requests shows that the time-
consuming performance is 55.9–88.9% higher than that of other technologies. The TPS is 126.9–802.8%
higher than that of other technologies;

2.	 The user calls the remote service method locally without perception. To improve the ease of use, the dynamic
agent technology and annotation configuration rules are introduced in RPCX, so that developers can use
local methods to call remote service methods without knowing how the bottom layer operates, and achieve
the purpose of two-stage service communication; and

3.	 Buffer pool technology. To further improve the performance of RPCX, time-consuming operations are input
into the buffer pool at the program initialization stage for efficient data reading by the program at the run-
ning stage.

The rest of this paper is organized as follows. Section "Related work" introduces the existing literature in
related fields. Section "RPCX" describes the design method of RPCX from four key aspects: dynamic proxy
technology, annotation configuration rules, network communication model, and transmission data format.
Section "Experiment" experimentally compares RPCX with two other communication technologies in terms of
computational stress performance. Section "Conclusions" summarizes the findings and outlook.

Related work
The performances of various IPC communication technologies and their impact on the overall performance of
microservices were compared and analyzed in the extant literature. For example, Kumar et al.2, Shafabakhsh
et al.17, and Hong et al.18 discussed and compared the performance indicators of various communication tech-
nologies, such as Google Remote Procedure Call (gRPC), Thrift, REST, and RabbitMQ, and proposed the best
application scenarios for them. Gan and Delimitrou19 established a microservice system for streaming media
services to evaluate various indicators in microservices, including the performance impact of RPC communica-
tion between microservices on the entire system. Georgiou and Spinellis20 discussed the energy consumption of
various IPC communication technologies under different programming languages.

Gan et al.21, Sriraman and Wenisch22, Ueda et al.23, and others focused on the impact of communication
technology on the performance of microservice architectures. Gan et al.21 also analyzed the time taken to pro-
cess a communication request with respect to the time taken by the entire application. Sriraman and Wenisch22
developed a suite of microservices to analyze the influence of the operating system and communication requests
on the overall latency of microservices. Ueda et al.23 tested the same on a monolithic application and a micros-
ervice architecture, respectively, and concluded that the optimization of communication between services can
improve the overall performance.

To summarize, the performance of communication technology contributes to the overall performance of
the microservice architecture. Therefore, we proposed an efficient microservice communication technology
called RPCX, which uses the nonblocking IO network model and the Protobuf data transmission format as
the underlying communication mechanism and uses dynamic proxy technology and annotation configuration
rules to allow developers to call methods locally. The purpose of the remote method is to use the buffer pool
technology to input time-consuming operations in the buffer pool for the program to read data at high speed
during the running phase. It will play a positive role in promoting the development of the microservice IPC
communication technology field.

RPCX
First, the structure of the high-performance remote communication technology (RPCX) is described. Next, the
four key components of the technology, namely dynamic proxy, annotation configuration rules, network com-
munication model, and transmitted data format, are described.

Overall structure of RPCX technology.  Our objective for RPCX is to enable local applications to call
services at remote servers with more ease and efficiency. Accordingly, we describe the four components men-
tioned in the previous paragraph: dynamic proxy, annotation configuration rules, network communication
model, and transmitted data format.

As illustrated in Fig. 1, RPCX is based on the principle of RPC remote communication. It is divided into two
parts: client and server processes. In the client part, the remote proxy object is implemented first. RPCX used
dynamic proxy technology to proxy the remote proxy service as a local service. The information required to
locally call remote services, such as server IP information, service name, parameter names, and values, was locally
annotated to disguise the service name and other information, obtain service positioning, and enable developers
to implement it. Corresponding information could be directly obtained via the provided annotation class. The
communication model was implemented using the nonblocking IO (NIO) communication model. The commu-
nication data were implemented using Protobuf. The required information was encoded into binary data, which
were transmitted to the server through the network communication model service for decoding. The binary
result data returned by the server were locally decoded and returned to the “method handler” for processing.

The server part was divided into service provider and service center. The service provider was used to provide
the service interface definition and service implementation method. On the one hand, the service center was
responsible for publishing the local service of the server as a remote service to provide services to the client.
On the other hand, it managed remote services and could perform operations such as start, stop, and obtain
the port number for the remote services. Developers could disguise service names through annotations and

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

then publish the disguised service names for unified management at the service center. Once the binary data
were received through the NIO network service on the server, the data were decoded to obtain the information
required by the service. After the service was executed, the result was encoded, and the binary data of the result
were returned to the client.

Key components.  Dynamic proxy.  The purpose of a dynamic proxy is to call methods remotely on the
server side, similar to methods on the client side, so that users can call remote methods locally without being
aware of it. Therefore, while calling the local method, the user only requires the information of the remote server,
namely the server address, port number, name, and the name of the server method. RPCX uses Java SE Develop-
ment Kit (JDK) Proxy to create a proxy object, access the target server, and then transmit the remote method
name, local method parameter value, and parameter type to the server. Upon receiving the method execution
result from the server, it will return the value of the method, obtaining the effect of dynamically calling the local
method to obtain the remote server method’s return value during the runtime of the program (Fig. 2).

Annotation configuration rules.  To improve user friendliness and secure the application programming inter-
face (API) exposed to the server, RPCX uses an annotation configuration rule to disguise the server informa-
tion and configure it on the client side. For example, the @RPCXClient annotation class is used for the called
local interface class. This annotation class has three attributes, RemoteServerName, RemoteServerDomain, and

Figure 1.   Overall structure of RPCX communication technology.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

RemoteServerAddress, which represent the remote server service name, remote server port number, and remote
server address, respectively. Through this annotation, the remote server information to be called can be directly
marked on the local interface class, reducing the steps of feeding relevant information into the configuration file.
In the local interface method of the client, @Method can be used to annotate the class to mark the name of the
remote server method to be accessed on the local method. This enables the remote server method to be called
locally.

When using the annotation class, the remote server can annotate the service and method names that it
requires to publish through the @PRCXServer and @Method annotation classes. The published name might not
be the same as the actual name; hence, RPCX takes the annotated name as the standard. Thus, the actual name
is disguised, and the actual information is masked, enhancing the security of server-side information.

For better performance, in the initialization phase, RPCX recursively traverses all the annotation classes in
this project and converts them into a unified structure. It can directly use this structure to obtain the local and
remote server information during runtime (Fig. 3).

Network communication model.  The network communication model of RPCX adopted Netty’s asynchro-
nous NIO design (Fig. 4). For this, we created NioEventLoop threads on the client and server sides, configured
each component through Bootstrap and ServerBootstrap to start and guide, and executed data I/O operations
through the channel pipeline.

The client transfers data to the server in binary format. Upon receiving the data, the server decodes and
serializes it and then returns the result to the client in the same manner. However, because of the multithreaded
asynchronous nature of Netty’s I/O operations, when the server returns the result, the identity of the thread that
transferred the result is not revealed to the client. To solve this problem, when the client transfers data, the unique
identifier of the request was added, and a key-value pair, with the key as the request identifier and the value as
the RPCXFuture structure, was established in the client cache pool. RPCXFuture was used to save the serialized
data returned by the server. This result would be stored in the key-value pair of the client’s cache pool with the
request ID as the key, so that the client could receive a unique result corresponding to the request when calling.

Figure 2.   Dynamic proxy structure.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

Transmission data format.  RPCX employs Protobuf as the transmission data’s format (Fig. 5). The client sends
the RPCXRequest message body to the server, where (1) is the unique identifier of the request. As described in
the network communication model, the identifier is used to indicate the uniqueness of the result of the trans-
mission request when sending and receiving multithreaded messages. This identifier is a random long number.
(2) and (3) are the service and method names sent to the server after information disguise, respectively. (4) Is a
group of method array message bodies containing (5) method parameter types and (6) method parameter val-
ues. The RPCXReply message body is the data structure of the method returned by the server upon receiving the
RPCXRequest request. The server adds the unique identifier (7) in the request and the result data (8) returned
by the method into the RPCXReply and subsequently relays it to the client in the form of binary data. After the
client receives the result returned by the method, the client structures data according to the return type of the
method, which forms a complete data path for locally calling the remote method.

Experiment
Here, we compared the proposed RPCX with two service communication technologies in terms of stress per-
formance, collated the experimental results, and interpreted them.

Experimental environment.  Experimental platform.  The experimental platform consists of two cloud
servers with identical configurations. The specifications of each cloud server are as follows: 1 vCPU, 2 GB of
memory, 40 GB of cloud storage, and 1 Mbps of bandwidth. The cloud servers are equipped with the CentOS 8.2
64-bit operating system, and the JDK 1.8 runtime environment has been installed.

Service communication technology.  The communication technologies for the comparison were selected from
REST and gRPC. REST is a stateless architectural style in distributed systems widely used to provide globally
accessible APIs. In microservices, developers commonly use Spring’s OpenFeign, a REST technology20. Open-
Feign is a declarative WebService client with the core function of providing simple and efficient RPC calls for
the REST in the form of an HTTP method. gRPC is a cross-platform, open-source, and high-performance RPC
framework developed by Google. It uses Protocol buffers 3 and http/2 to boost its speed and interoperability
between services. We selected gRPC as several companies using microservices (e.g., Netflix, Cisco, Coreos) are
adopting it in their production lifecycle20,24.

Experimental architecture.  In this experiment, we have set up two cloud servers with identical configurations:
cloud server A and cloud server B. Cloud server A serves as the client-side server for RPCX, gRPC, and Open-
Feign and is used to send information, whereas cloud server B serves as the server-side server and is used to
receive information sent from cloud server A and return results. The performance testing experiment platform
architecture for these three technologies is shown in Fig. 6.

To ensure the fairness of the experiment, the data transmitted by RPCX, gRPC, and OpenFeign in the experi-
ment had the same strings. Both gRPC and OpenFeign used the example method given on the official website24,25.
The key software versions used in the experiments are presented in the following table (Table 1).

Performance experiment method.  To evaluate the performance of the RPCX communication technol-
ogy, we conducted a performance stress benchmark test by comparing it with gRPC and OpenFeign technolo-
gies. The stress benchmark test is a method of evaluating the performance of related technologies by simulating
multi-threaded and multi-request scenarios to test program runtime and transactions per second (TPS). To test

Figure 3.   Annotation configuration design structure.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

Figure 4.   Network communication model structure.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

Figure 5.   Protobuf transmission format design.

Figure 6.   Experimental architecture.

Table 1.   Software versions used for the RPCX versus benchmark stress performance test. RPCX remote
communication technology, JDK Java SE Development Kit, gRPC Google Remote Procedure Call.

Communication technology Technical name Version Link

RPCX

JDK 1.8 https://​www.​oracle.​com/​hk/​java/​techn​ologi​es/​javase/​javas​e8u211-​later-​
archi​ve-​downl​oads.​html

Netty 4.1.76 https://​netty.​io/​downl​oads.​html

Protobuf 3.20.0 https://​github.​com/​proto​colbu​ffers/​proto​buf

gRPC
OpenFeign

gRPC 1.45 https://​github.​com/​grpc/​grpc-​java

SpringBoot 2.7.11 https://​spring.​io/​proje​cts/​spring-​boot

SpringCloud 2021.0.7 https://​spring.​io/​proje​cts/​spring-​cloud

Openfeign 3.1.7 https://​spring.​io/​proje​cts/​spring-​cloud-​openf​eign

https://www.oracle.com/hk/java/technologies/javase/javase8u211-later-archive-downloads.html
https://www.oracle.com/hk/java/technologies/javase/javase8u211-later-archive-downloads.html
https://netty.io/downloads.html
https://github.com/protocolbuffers/protobuf
https://github.com/grpc/grpc-java
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-cloud
https://spring.io/projects/spring-cloud-openfeign

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

these two indicators, we developed a client-side testing program. The pseudocode for the testing program is as
follows:

The pseudocode for the client-side testing program

1 Input: ThreadNumber; RequestNumber;

2 Output: Time (program runtime); TPS (transactions per second);

3 Get ThreadNumber; // get the count of threads

4 Get RequestNumber; // get the count of requests

5 For (10) { // loop 10 times

6 startTime = get current system time; // calculate the start time

7 Executors.newFixedThreadPool(ThreadNumber); // create a thread pool with the

count of threads specified by ThreadNumber

8 new CountDownLatch(RequestNumber); // create a countdown latch with the count of

requests specified by RequestNumber

9 for(RequestNumber) { // loop through the count of requests specified by

RequestNumber

10 executorService submits a thread to execute the following code block {

11 RunRPCX("HelloWorld"); // execute an RPCX call

12 OR

13 RunGRPC("HelloWorld"); // execute a gRPC call

14 OR

15 RunOpenFeign("HelloWorld");}} // execute an OpenFeign call

16 countDownLatch.await(); // wait for all threads to complete

17 endTime = get current system time; // calculate the end time

18 Output Time = endTime - startTime;

19 Output TPS = RequestNumber / (Time / 1000); } // calculate transactions per second

The loop operation in line 5 of the client-side testing program is designed to run each communication tech-
nology 10 times under the same count of threads and requests and record the consumption time of each run.
The average program runtime and TPS of the 10 runs are then calculated. The purpose of this operation is to

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

test the performance of each communication technology in a fair and accurate manner and to avoid the impact
of exceptional conditions, such as server or communication failures, on the experimental data of a single run,
which may affect the overall accuracy and reliability of the experimental results.

The test program takes thread count and request count as input variables. In Eqs. (1) and (2), we define the
thresholds for thread count and request count, where α and β are integers.

As shown in line 19 of the testing program, TPS is an important metric for measuring the processing capabil-
ity of a system in stress performance testing. In this experiment, it can be calculated from the count of requests
and program runtime as follows:

In Eq. (3), the program runtime (expressed as time) is in milliseconds; hence, when calculating the TPS, we
divided the request by 1000 to convert the value to seconds.

The performance stress tests of the three communication technologies simulate data communication between
the client-side and the standardized server-side program under different thread and request counts. Therefore,
the server-side testing program serves to start and interact with the client-side for data communication. As
a result, the server-side testing programs for gRPC and OpenFeign are examples of the official startup of the
server-side program. In contrast, the server-side testing program for RPCX has the structure shown in Section
"Overall structure of RPCX technology", with pseudocode as follows:

Pseudocode of Server-side Test Program.

1 Input: None

2 Output: None

3 RegistryServer.registry(); // Searches for information about the annotated classes that

open remote services, including the published service name and method name.

4 new Server; // Instantiates a remote service.

5 start; // Starts the remote service.

To facilitate the performance experiments on cloud servers, we packaged the testing

To facilitate the performance experiments on cloud servers, we packaged the testing programs of RPCX,
gRPC, and OpenFeign into component packages with a file extension of .jar, which we refer to as jar packages.
The jar packages of the three communication technologies are divided into client-side and server-side, and
uploaded to cloud servers A and B, respectively, with irrelevant threads closed to maximize the utilization of
server resources for testing program execution.

To maximize the stress performance of RPCX, gRPC, and OpenFeign communication technologies on cloud
servers, a technical performance testing plan was developed that covers the full range of the two input param-
eters of the testing program: thread count and request count. That is, the thread count and request count start
at 10 and continue to accumulate until their values are large enough to exhaust server resources, resulting in
an infinitely prolonged communication time that makes communication impossible. Based on this strategy, the
threshold of α and β in Eqs. (1) and (2) is from 10 to + ∞. Under the same thread count, the request count will
run from 10 to + ∞ once in a loop, with both the thread count and request count increasing by 10 each time. To
implement this strategy, we wrote 115 lines of shell commands to loop and run the testing program on the cloud
server, with pseudocode as follows:

Pseudocode for running a test program in the shell;

(1)α ≤ TheadNumber ≤ β

(2)α ≤ RequestNumber ≤ β

(3)TPS =
RequestNumber

Time/1000

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

In our experiments, we found that when server resources are exhausted and communication cannot be estab-
lished, the runtime of a single-cycle program is generally not more than 10 min. Additionally, communication
exceeding 10 min is often meaningless in practical applications. Therefore, we set the waiting time for program
execution on line 6 of the test shell to 600 s. We consider communication to have failed if the single-cycle com-
munication time exceeds 10 min, and the communication result cannot be waited for.

Experimental data analysis.  During the experiment, to save server resources used for data storage, the
performance stress test results of the three communication technologies were stored in real-time on the server
in the form of files with thread-request count units, totaling 186,860 data. After the experiment, we needed to
store the experimental data in a database for further data analysis.

First, we established an original data model and developed a data cleaning program. The original data model
is shown in Fig. 7a, where (1) "id" represents the primary key of the database table with an integer data type that

1 Input: None

2 Output: Log

3 for(threadNum=10;threadNum+=10;) //An infinite loop starting with 10 threads,

increments by 10 at each iteration

4 for(requestNum=10;requestNum+=10;) //An infinite loop starting with 10

requests under each thread count, increments by 10 at each iteration

5 RPCX.sh or gRPC.sh or OpenFeign.sh start $threadNum $requestNum

//Start the test program through a subshell, passing the thread count

and request count as arguments

6 sleep 600 //Wait for the test program to run for 600 seconds, measured

in seconds

7 RPCX.sh or gRPC.sh or OpenFeign.sh stop //Kill the current process

Pseudocode for running the test program in the subshell

8 Input: threadNum, requestNum

9 Output: Log

10 Define application name

11 Define jar file path

12 Define jar file name

13 Define log path

14 Define thread PID file

15 get threadNum //Get the count of threads

16 get requestNum //Get the count of requests

17 is_exist() //Define a function to check if the program is running

18 start() {

java -jar -DthreadNum=$threadNum -D requestNum=$requestNum

RPCX.jar/gRPC.jar/OpenFeign.jar //Start the corresponding communication

technology component package

19 stop() //Function to stop the thread

20 status() //Output the running status

21 restart() //Function to restart the thread

22 exit(0) //Exit the shell

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

automatically increases with the increase in data volume; (2) "type" represents the communication technology
with an integer data type, where type = 1 represents RPCX, 2 represents gRPC, and 3 represents OpenFeign; (3)
"threadNum" represents the count of threads; (4) "requestNum" represents the count of requests; (5) "timeTotal"
represents the total running time of the test program; (6) "TPS" represents the transactions processed per second;

Figure 7.   Experimental data model (a) original data model (b) cleaned data model.

Table 2.   Partial original data of RPCX.

id Type threadNum requestNum timeTotal (ms) TPS Order

1 1 10 10 944 10.593220338983052 0

2 1 10 10 39 256.4102564102564 1

3 1 10 10 41 243.9024390243902 2

4 1 10 10 27 370.3703703703704 3

5 1 10 10 32 312.5 4

6 1 10 10 40 250 5

7 1 10 10 43 232.55813953488374 6

8 1 10 10 33 303.03030303030303 7

9 1 10 10 36 277.77777777777778 8

10 1 10 10 40 250 9

11 1 10 20 947 21.11932418162619 0

12 1 10 20 42 479.1904761904762 1

13 1 10 20 33 606.0606060606061 2

14 1 10 20 32 625 3

15 1 10 20 41 487.8048780487804 4

16 1 10 20 45 444.4444444444444 5

17 1 10 20 31 645.1612903225806 6

18 1 10 20 34 588.235294117647 7

19 1 10 20 35 571.4285714285714 8

20 1 10 20 39 512.8205128205128 9

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

and (7) "order" represents the order in which the test program runs 10 times for each thread and request count
combination. Therefore, the threshold of "order" is 0 ≤ order ≤ 9 . The method of the original data model is to
get the value and set the value for each attribute.

The original data cleaning program aims to traverse all the original data files, read the data from each file one
by one, transform the data into the original data model, and map the original data model to the corresponding
database fields. Using the original data model, the program inserts the original data into the database, completing
the task of reading and storing the original data from the files in the database.

Through analysis of the original data model, it was found that under the same thread count and request count,
each technology performed 10 rounds of operation. In each round, the first run time was significantly higher than
the other 9 run times, on average 20 times higher. Taking the RPCX technology as an example, Table 2 shows a
part of the original data, with field meanings as described above. Table 2 presents the run time of two rounds,
each consisting of 10 runs, for thread count 10 and request counts 10 and 20, respectively. Order 0 corresponds
to the first run time of each round. From Table 2, it can be seen that the first run times for request counts 10 and
20 are 944 and 947 ms, respectively, which are 20 times higher than the other nine program run times. Analysis
showed that when the test program starts each round of testing, it needs to load various additional component
packages, which leads to an extended first run time. Therefore, we believe that the first run time of each round
of testing is not of reference value for the purpose of detecting the time performance of communication tech-
nologies in this experiment. Therefore, before analyzing the test results data, we need to clean the original result
data, remove the first test program runtime data, and calculate the average of the remaining nine run times as
the final experimental result of this round.

Figure 8.   Performance of RPCX communication technology in data processing.

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

According to the data analysis strategy we have formulated, after completing the data cleaning, we established
a cleaned data model, as shown in Fig. 7b, to store the cleaned data in the database. Items (8)–(11) in the cleaned
data model have the same meaning as items (1)–(4) in the original data model shown in Fig. 7a. Item (12) in
Fig. 7b, "timeTotalAvg", represents the average value of program runtime, with a double-precision floating point
data type; and item (13), "tpsAvg", represents the average TPS, with a double-precision floating point data type.
The methods for the cleaned data model are used to get and set the values for each attribute. By using the cleaned
data model, we can map the cleaned data model to the new table fields in the database and store the data in the
database, thus completing the data storage work after cleaning.

Due to the large volume of data, to present the performance of data processing for the three communication
technologies more clearly, we sequentially expanded the data processing thread counts for the three technologies
from low to high, starting from 10 threads and increasing by 100 threads, until reaching 990 threads. For each
thread count, data processing for each technology starts with 10 requests and increases by 200 requests until
reaching 900 requests to evaluate its performance.

Figure 8 shows the performance of RPCX communication technology in terms of average program runtime
and TPS, from a low thread count of 10 to a high thread count of 990. As inferred from Eqs. (1) and (2), we set
the threshold values of thread and request counts, α and β, from 10 to + ∞. However, experimental results revealed
that RPCX cannot demonstrate the difference in average program runtime in milliseconds when α < 10, which
has no experimental significance. On the other hand, when β > 1000, the consumption of cloud server resources
by RPCX communication reaches the limit, resulting in either a long execution time or the stopping of RPCX.
Therefore, Fig. 8a displays the bar chart of the average program runtime of RPCX from a low thread count of
10 to a high thread count of 990. It can be observed that as the thread count increases, the program runtime of

Figure 9.   Performance of gRPC communication technology in data processing.

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

RPCX also increases, and within the same thread count, the execution time of RPCX increases as the request
count increases. This distribution trend conforms to the objective law that the running time required by com-
munication technology increases as the testing pressure increases.

Figure 8b shows the bar chart of the average TPS of RPCX from a low thread count of 10 to a high thread
count of 990. As indicated by Eq. (3), when the request volume is constant, the higher the execution speed, the
larger the TPS. From the figure, it can be seen that from a low thread count with a short execution time to a high
thread count with a long execution time, the TPS decreases as the request volume increases. This fully conforms
to the rule that communication technology has a high TPS under low response times.

Figure 9a shows the bar chart of the average program running time of gRPC communication technology,
starting from a low thread count of 10 with an increment of 100 to a high thread count of 990, and a request

Figure 10.   Performance of OpenFeign communication technology in data processing.

Table 3.   Comparison of average program runtime between RPCX and the other two technologies. DR
decrease rate of average program runtime.

Average program runtime

Requests = 100 Requests = 300 Requests = 500

RPCX gRPC

DR to
gRPC
(%) OpenFeign

DR to
OpenFeign
(%) RPCX gRPC

DR to
gRPC
(%) OpenFeign

DR to
OpenFeign
(%) RPCX gRPC

DR to
gRPC
(%) OpenFeign

DR to
OpenFeign
(%)

Threads

 10 175.2 648.6 73.0 442.1 60.4 362.0 1973.8 81.7 1647.9 78.0 446.9 3158.1 85.8 2449.8 81.8

 100 204.6 656.2 68.8 464.2 55.9 369.6 2092.7 82.3 1730.3 78.6 452.9 3831.4 88.2 2694.8 83.2

 200 206.7 679.4 69.6 482.7 57.2 379.8 2119.3 82.1 1851.4 79.5 453.4 4093.8 88.9 3125.9 85.5

 300 209.0 684.7 69.4 502.1 58.4 413.0 2183.7 68.1 2036.6 79.7 541.8 4650.9 88.4 4201.3 87.1

 400 211.8 695.7 69.6 585.3 63.8 462.6 2189.0 78.9 2249.1 79.4 564.1 4815.8 88.3 5020.4 88.8

 500 225.2 739.1 69.5 602.9 62.6 465.9 2246.8 79.3 2271.6 79.5 668.1 5167.9 87.1 5120.8 87.0

 600 235.2 743.6 68.4 621.1 62.1 477.9 2318.7 79.4 2289.8 79.1 712.0 5333.0 86.6 5325.6 86.6

 700 237.4 760.7 68.8 652.0 63.6 495.4 2413.1 79.5 2301.2 78.5 719.8 5451.3 86.8 5432.2 86.7

 800 238.6 799.6 70.2 675.2 64.7 517.7 2621.4 80.3 2311.0 77.6 741.8 5553.2 86.6 5574.9 86.7

 900 244.0 870.4 72.0 679.4 64.1 527.8 2829.0 81.3 2452.4 78.5 879.9 5858.7 85.0 5929.2 85.2

 990 260.4 942.3 72.4 686.2 62.0 597.2 2847.0 79.0 2714.8 78.0 888.2 5923.1 85.0 6522.1 86.4

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

count of 10 with an increment of 200–500. According to the experimental results, the thread count threshold
α = 10 and β = 990 is determined by Eq. (1), and the request count threshold α = 10 and β = 500 is determined by
Eq. (2). When conducting the performance test of gRPC communication technology, the program cannot show
the running time when the thread count is greater than 300 and the request count is above 500. Therefore, to
display the results more clearly, the request count in the running time bar chart of gRPC is uniformly set from
10 with an increment of 200–500. Figure 9b shows the bar chart of the average TPS with a thread count ranging
from 10 to a high thread count of 990 and a request count ranging from 10 to 500. Similar to RPCX, gRPC also
follows the objective rule that the program running time increases and TPS decreases gradually as the perfor-
mance pressure increases during the performance test.

Figure 10a shows the bar chart of the average running time of programs using OpenFeign communication
technology, with a low thread count of 10 and an increment of 100 up to a high thread count of 990, and a request
count of 10 with an increment of 200 up to 900. The experimental results show that the thread count threshold
of Eq. (1) is α = 10 and β = 990, and the request count threshold of Eq. (2) is α = 10 and β = 900. Figure 10b shows
the TPS situation with thread counts ranging from 10 to 990 and request counts ranging from 10 to 900. Similar
to RPCX and gRPC, OpenFeign follows the objective law that the program running time increases gradually and
TPS decreases as the performance pressure continuously increases in performance stress tests.

According to the experimental data shown in Figs. 8, 9 and 10, we have compiled a comparison of the average
program runtime and average TPS for the three communication technologies in Tables 3 and 4, respectively.
Table 3 presents the comparison of the average program runtime for the three communication technologies from
10 threads with request counts of 100, 300, and 500, respectively, up to 990 threads. RPCX employs a caching
mechanism to store target servers, remote services, and other information locally during program initialization,
as described in the annotation configuration rules of the RPCX section. To further enhance the performance
of RPCX, time-consuming operations such as traversing and parsing annotation classes are performed during
program initialization, and the information of annotation classes is stored in the local cache pool for rapid data
access during program execution. RPCX uses the non-blocking IO Netty network model and the binary data
model protobuf for data transmission in the network communication model, and asynchronously transmits
requests and response results, which are stored in the local cache pool in key-value format for local asynchronous
calls. These design approaches greatly improve the performance of RPCX. As shown in Table 3, RPCX outper-
forms gRPC and OpenFeign by 55.9–88.9% in terms of time performance from low threads to high threads.
Correspondingly, Table 4 presents the comparison of TPS for the three communication technologies from 10
threads with request counts of 100, 300, and 500, respectively, up to 990 threads, and RPCX outperforms gRPC
and OpenFeign by 126.9–802.8% in terms of TPS from low threads to high threads.

Conclusions
We designed a new microservice service communication technology called RPCX and compared it with gRPC
and OpenFeign in terms of stress performance. According to the results, RPCX exhibits good service commu-
nication time and TPS performance. The novel method proposed in this study can improve the performance of
communication technology in the field of service communication in the microservice architecture and can help
future researchers further improve the communication performance, ease of use of microservices and promote
development in the field of microservices IPC technology. In the future, experiments should be extended to
multiple cloud hosts and across hosts, and more complex experimental plans should be developed.

Table 4.   Comparison of average TPS between RPCX and the OTHER TWO TECHNOLOGIES. IR
improvement rate of average TPS.

Average PTPS

Requests = 100 Requests = 300 Requests = 500

RPCX gRPC

IR to
gRPC
(%) OpenFeign

IR to
OpenFeign
(%) RPCX gRPC

IR to
gRPC
(%) OpenFeign

IR to
OpenFeign
(%) RPCX gRPC

IR to
gRPC
(%) OpenFeign

IR to
OpenFeign
(%)

Threads

 10 570.7 154.2 270.2 226.2 152.3 828.7 152.0 445.2 182.1 355.2 1118.8 158.3 606.7 204.1 448.2

 100 488.9 152.4 220.8 215.4 126.9 811.8 143.4 466.3 173.4 368.2 1104.0 130.5 746.0 185.5 495.0

 200 483.9 147.2 228.8 207.2 133.6 789.9 141.6 458.0 162.0 387.5 1102.7 122.1 802.8 160.0 589.4

 300 478.5 146.1 227.6 199.2 140.2 726.4 137.4 428.7 147.3 393.1 922.9 107.5 758.4 119.0 675.5

 400 472.2 143.7 228.5 170.8 176.4 648.6 137.0 373.2 133.4 386.2 886.4 103.8 753.7 99.6 790.0

 500 444.0 135.3 228.2 165.9 167.7 643.9 133.5 382.3 132.1 387.6 748.4 96.8 673.5 97.6 666.5

 600 425.1 134.5 216.1 161.0 164.0 627.8 129.4 385.2 131.0 379.1 702.2 93.8 649.0 93.9 648.0

 700 421.2 131.5 220.4 153.4 174.6 605.5 124.3 387.1 130.4 364.5 694.7 91.7 657.4 92.0 654.7

 800 419.2 125.1 235.2 148.1 183.0 579.5 114.4 406.4 129.8 346.4 674.1 90.0 648.6 89.7 651.6

 900 409.8 114.9 256.7 147.2 178.5 568.4 106.0 436.0 122.3 364.7 568.3 85.3 565.9 84.3 573.9

 990 384.0 106.1 261.8 145.7 163.5 502.3 105.4 376.7 110.5 354.6 562.9 84.4 566.9 76.7 634.3

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request.

Received: 26 January 2023; Accepted: 24 July 2023

References
	 1.	 Hasselbring, W. Microservices for scalability: Keynote talk abstract in proceedings of the 7th ACM/special international conference

on performance engineering. Acad. Med. 20, 133–134 (2016).
	 2.	 Kumar, P. K., Agarwal, R. & Shivaprasad, R. Performance Characterization of Communication Protocols in Microservice Applications,

International Conference on Smart Communications and Networking (SmartNets) (IEEE, 2021).
	 3.	 Cloud, J. Decomposing twitter: Adventures in service-oriented architecture. Q. ConNY 20, 20 (2013).
	 4.	 Dragoni, N. et al. Microservices: Yesterday, today, and tomorrow. In Present and Ulterior Software Engineering (eds Mazzara, M.

& Meyer, B.) (Springer, 2017). https://​doi.​org/​10.​1007/​978-3-​319-​67425-4_​12.
	 5.	 Hauswald, J. et al. Sirius: An open end-to-end voice and vision personal assistant and its implications for future warehouse scale

computers. In Proceedings of the 20th International Conference SIGPLAN Notices, Vol. 50, 223–238 (2015).
	 6.	 Xia, Y. et al. Boosting inter-process communication with architectural support. ACM Trans. Comput. Syst. 39, 1–35. https://​doi.​

org/​10.​1145/​35328​61 (2022).
	 7.	 Richardson, C. Microservices Patterns: With Examples in Java (Manning Publications, 2019).
	 8.	 Newman, S. Building Microservices: Designing Fine-Grained Systems, 1st ed (2015).
	 9.	 Lazarev, N., Adit, N., Xiang, S., Zhang, Z. & Delimitrou, C. Dagger: Towards efficient RPCs in cloud microservices with near-

memory reconfigurable NICs. IEEE Comput. Arch. Lett. 19, 134–138. https://​doi.​org/​10.​1109/​LCA.​2020.​30200​64 (2020).
	10.	 Hasselbring, W. & Steinacker, G. Microservice architectures for scalability, agility and reliability. In e-commerce Conf. Software

Architecture Workshops, IEEE 1 243–246 (IEEE Int, 2017).
	11.	 Li, L. & Chou, W. Design and describe REST API without violating REST: A Petri net-based approach. In IEEE International

Conference on Web Services, 508–515 (2011).
	12.	 Pautasso, C. & Wilde, E. RESTful web services: Principles, patterns, emerging technologies. In Proceedings of the 19th International

Conference on World Wide Web—WWW​ 10, 1359–1360 (2010).
	13.	 Li, L. & J. Xu, J. Outdoor air quality real-time monitoring system for sports athletes. In 2021 IEEE 5th Advanced Information

Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 719–722 (2021). https://​doi.​org/​10.​1109/​
IAEAC​50856.​2021.​93911​20.

	14.	 Kumar, P. K., Agarwal, R., Shivaprasad, R., Sitaram, D. & Kalambur, S. Performance Characterization of Communication Protocols
in Microservice Applications. In 2021 International Conference on Smart Applications, Communications and Networking (Smart-
Nets), Glasgow, United Kingdom, 1–5 (2021). https://​doi.​org/​10.​1109/​Smart​Nets5​0376.​2021.​95554​25.

	15.	 Zaragoza, P. et al. Materializing microservice-oriented architecture from monolithic object-oriented source code. In Software
Technologies ICSOFT 2021 Communications in Computer and Information Science, Vol. ***1622 (eds Fzill, H. G. et al.) (Springer,
2022). https://​doi.​org/​10.​1007/​978-3-​031-​11513-4_7.

	16.	 Kalia, A. K. et al. Mono2Micro: A practical and effective tool for decomposing monolithic Java applications to microservices. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, August 2021, 1214–1224. https://​doi.​org/​10.​1145/​34682​64.​34739​15.

	17.	 Shafabakhsh, B., Lagerström, R. & Hacks, S. Evaluating the impact of inter process communication in microservice architectures.
In 8th International Workshop on Quantitative Approaches to Software Quality (QuASoQ) (2020).

	18.	 Hong, X. J., Sik Yang, H.-S. & Kim, Y. H. Performance analysis of RESTful API and RabbitMQ for microservice web application.
In International Conference on Information and Communication Technology Convergence (ICTC). IEEE Publications (2018).

	19.	 Gan, Y. & Delimitrou, C. The architectural implications of cloud microservices. IEEE Comput. Arch. Lett. 17, 155–158 (2018).
	20.	 Georgiou, S. & Spinellis, D. Energy-delay investigation of remote inter-process communication technologies. J. Syst. Softw. 162,

110506 (2020).
	21.	 Gan, Y. et al. An open-source benchmark suite for microservices and their hardware-software implications for cloud and edge

systems. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems Academic Medicine, 3–18 (2019).

	22.	 Sriraman, A. & Wenisch, T. F. 12 IEEE International Symposium on Workload Characterization (IISWC), IEEE 1 (2018).
	23.	 Ueda, T., Nakaike, T. & Ohara, M. Workload characterization for microservices. In 10 IEEE International Symposium on Workload

Characterization (IISWC), IEEE 1 (2016).
	24.	 Perdanaputra, A. & Kistijantoro, A. I. Transparent Tracing System on gRPC based Microservice Applications Running on Kuber-

netes. In 2020 7th International Conference on Advance Informatics: Concepts, Theory and Applications (ICAICTA), Tokoname,
Japan, 1–5 (2020). https://​doi.​org/​10.​1109/​ICAIC​TA498​61.​2020.​94290​54.

	25.	 Zhong, C., Zhang, H., Li, C., Huang, H. & Feitosa, D. On measuring coupling between microservices. J. Syst. Softw. 200, 111670.
https://​doi.​org/​10.​1016/j.​jss.​2023.​111670 (2023).

Acknowledgements
We thank Editage for English language editing. This work was supported by the Tianjin Science and Technology
Plan project [Grant number 20YDTPJC00890]. The funding source had no role in the study design, collection,
analysis, and interpretation of data, writing of the report, or decision to submit the article for publication.

Author contributions
All authors contributed to the study conception and design. Material preparation, data collection, and analysis
were performed by L.Z., K.P., and B.N. The first draft of the manuscript was written by L.Z. The manuscript was
reviewed and edited by J.X., and all authors commented on previous versions of the manuscript. All authors
read and approved the final manuscript.

Funding
This work was supported by the Tianjin Science and Technology Plan project [Grant number 20YDTPJC00890].
The funding source had no role in the study design, collection, analysis, and interpretation of data, writing of
the report, or decision to submit the article for publication.

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1145/3532861
https://doi.org/10.1145/3532861
https://doi.org/10.1109/LCA.2020.3020064
https://doi.org/10.1109/IAEAC50856.2021.9391120
https://doi.org/10.1109/IAEAC50856.2021.9391120
https://doi.org/10.1109/SmartNets50376.2021.9555425
https://doi.org/10.1007/978-3-031-11513-4_7
https://doi.org/10.1145/3468264.3473915
https://doi.org/10.1109/ICAICTA49861.2020.9429054
https://doi.org/10.1016/j.jss.2023.111670

17

Vol.:(0123456789)

Scientific Reports | (2023) 13:12141 | https://doi.org/10.1038/s41598-023-39355-4

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	High performance microservice communication technology based on modified remote procedure call
	Related work
	RPCX
	Overall structure of RPCX technology.
	Key components.
	Dynamic proxy.
	Annotation configuration rules.
	Network communication model.
	Transmission data format.

	Experiment
	Experimental environment.
	Experimental platform.
	Service communication technology.
	Experimental architecture.

	Performance experiment method.
	Experimental data analysis.

	Conclusions
	References
	Acknowledgements

