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Statistical inferences under step 
stress partially accelerated life 
testing based on multiple censoring 
approaches using simulated 
and real‑life engineering data
Ahmadur Rahman 1, Mustafa Kamal 2, Shahnawaz Khan 3, Mohammad Faisal Khan 4, 
Manahil SidAhmed Mustafa 5, Eslam Hussam 6*, Mintodê Nicodème Atchadé 7 & 
Aned Al Mutairi 8

Evaluating the lifespan distribution of highly reliable commodities under regular use is exceedingly 
difficult, time consuming, and extremely expensive. As a result of its ability to provide more failure 
data faster and at a lower experimental cost, accelerated life testing has become increasingly 
important in life testing studies. In this article, we concentrate on parametric inference for step stress 
partially life testing utilizing multiple censored data based on the Tampered Random Variable model. 
Under normal stress circumstances, the lifespan of the experimental units is assumed to follow the 
Nadarajah–Haghighi distribution, with and being the shape and scale parameters, respectively. 
Maximum likelihood estimates for model parameters and acceleration factor are developed using 
multiple censored data. We build asymptotic confidence intervals for the unknown parameters 
using the observed Fisher information matrix. To demonstrate the applicability of the different 
methodologies, an actual data set based on the timings of subsequent failures of consecutive air 
conditioning system failures for each member of a Boeing 720 jet aircraft fleet is investigated. Finally, 
thorough simulation studies utilizing various censoring strategies are performed to evaluate the 
estimate procedure performance. Several sample sizes were studied in order to investigate the finite 
sample features of the considered estimators. According to our numerical findings, the values of mean 
squared errors and average asymptotic confidence intervals lengths drop as sample size increases. 
Furthermore, when the censoring level is reduced, the considered estimates of the parameters 
approach their genuine values.

Today’s modern goods are incredibly trustworthy and reliable due to recent scientific advances, innovation, and 
developments based on computers, automation, and simulations. When a product is very reliable, obtaining 
failure data through an ordinary life test takes a long time; however, accelerated life testing (ALT) may be used 
to get a product’s dependability life in a short amount of time. This type of test entails submitting test objects to 
stress settings that shorten its lifetime in comparison to what it would be under normal circumstances. Increased 
stress speeds up the failure time in ALTs. This means that the amount of time it takes for a product to fail is 
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influenced by the stress.  Nelson1, Meeker et al.2,  Kamal3, Saxena et al.4, El-Din et al.5, Rahman et al.6 and Han 
and  Bai7 provide further information about ALTs.

In general, the acceleration factor in ALT should be well-known, or there should be a well-established model 
indicating the relationship between life and stress levels. For new things or goods, however, these models do 
not exist. In such instances, engineers have successfully used partially ALTs to compute the acceleration fac-
tor, allowing them to extrapolate accelerated data to normal conditions. Constant-stress and step-stress PALTs 
(abbreviated as CSPALT and SSPALT) are the two most common categories of PALTs (abbreviated as CSPALT 
and SSPALT) are depending on how a stress is imposed. In a CSPALT model, each sample of items is subjected to 
both normal and accelerated levels of constant stress until all units fail or the test is terminated for some reason, 
such as a censoring method. In SSPALT, a sample of products is first evaluated under regular usage settings for 
a pre-set amount of time, and then the surviving items are examined under accelerated test conditions until the 
test is ended for some reason, such as a censoring scheme. Several authors have tackled SSPALT analysis thus 
far; for example,  Goel8 proposed the tampered random variable (TRV) model for SSPALT. DeGroot and  Goel9 
investigated SSPALT under Bayesian decision framework based on the TRV model. Bai and  Chung10, Bai et al.11, 
and Rahman et al.12 all examine SSPALT when using alternative life distribution and censoring methods.

The exponential distribution is used as a reference model in statistics, reliability, and life testing assessments 
due to its lack of memory property. The exponential distribution, on the other hand, is limited to describing 
only the constant hazard rate. To get around these constraints, Nadarajah and  Haghighi13 proposed the Nadara-
jah–Haghighi (NH) distribution, which is an extension of the exponential distribution. In their investigation, 
they determined that the density function of the NH distribution always has a zero mode. Furthermore, its haz-
ard function can be increasing, decreasing, or constant, and its density function can be monotonically lowering 
while the hazard rate function is increasing. Because of all of these enticing qualities, the NH distribution may 
indeed be considered a feasible alternative to the Weibull, Gamma, and exponentiated exponential distribu-
tions. In a recent work based on the NH distribution, MirMostafaee et al.14 produced the best unbiased linear 
estimates of the parameters of the NH distribution using moments of upper record values.  Selim15, Sana and 
 Faizan16 offered a brief overview and comparison of frequentist estimating strategies, as well as Bayesian estimates 
(BE) generated from various loss functions and gamma priors. Kamal et al.17 studied a variety of statistical and 
mathematical features, as well as the maximum likelihood estimation (MLE) technique for parameter estima-
tion, after expanding the NH distribution to a four-parameter distribution.  Minic18 examined many methods 
for estimating parameters, based on their biases and mean square errors (MSEs). Kamal et al.19 used SSALT to 
estimate the MLEs of NH distribution parameters.

Number of reasons including time limits, cost savings, and so on. Type-I and type-II censorship are the 
two most frequently used censoring strategies. In time censoring, also known as type-I censoring, the exam is 
cancelled after a specified amount of time. Failure censoring, also known as type-II censoring, allows the test-
ing process to be ended after a certain number of failure observations of items. Type-I and type-II censorings 
do not permit the removal of testing items from a test at any time other than the test completion time. Other 
censoring techniques, such as progressive censoring and multiple censoring strategies, can be used to address 
this problem. In progressive censoring, during the test, numerous surviving units are constantly removed at 
each pre-determined time or failure point until the greatest pre-determined time or failure point is achieved. 
Multiply censoring is a generalization of traditional and progressive censoring that allows all units in a life test to 
be removed at any time throughout the test for any reasons, making it more convenient,  Wang20. This scenario is 
prevalent in situations when many censoring levels are logically present, as is often the case in many applications 
in life assessment and survival analysis.

So far, numerous researchers have investigated progressive censored data under SSPALT, but there has been 
relatively little work on multiply censored data. In SSPALT, Wang et al.21 used multiply censored data to produce 
MLEs of the parameters of the Weibull distribution and the AF. Jia et al.22 estimated the reliability using MLEs and 
Bayes parameter estimates and investigated how to generate confidence intervals for reliability under a multiple 
censoring scheme. In the presence of multiple censored data, Hassan and  Zaky23 and Bantan et al.24 estimated 
the Shannon entropy of the inverse Weibull and the inverse Lomax distribution respectively and then used 
the MLE approach to provide point and confidence interval estimates of parameters. On the basis of multiple 
censored data and a CSPALT, Alam et al.25 and Nassr and  Elharoun26 developed MLEs of unknown parameters 
of exponentiated exponential and exponentiated Weibull distributions respectively. For an ALT with k increas-
ing stress levels that is terminated by a progressive censoring strategy,  Kamal27 produced maximum likelihood 
estimates of the generalized Pareto distribution parameters. In partially constant-stress accelerated life tests with 
multiple Type-II censored data,  Abushal28 used maximum likelihood and Bayes estimation methods to estimate 
the exponentiated Weibull life time distribution. Using the MLE approach to estimate the parameters of the NH 
distribution under SSPALT using AT-II PHCS, Kamal et al.29 proposed two optimum test procedures based on 
the A and D optimality. Alam and  Ahmed30 used AT-II PHCS to explore the MLEs of a Generalized Inverted 
Exponential distribution under SSPALT.  Kamal31 explored a hybrid system and employing the MLE approach to 
estimate parameters of the power linear hazard rate distribution from progressive hybrid censored masked data. 
For more details see Abd-Elfattah et al.32, Nassar et al.33, Yousef et al.34 and Hassan et al.35.

Censoring is the termination of a life experiment before all of the units have failed.
Nonetheless, despite its relevance, the estimation of NH distribution and acceleration factor (AF) parameters 

under SSPALT for multiple censored data remains an unexplored problem, as far as we know. This work addresses 
that gap by examining the problem of SSPALT in the context of multiple censored data. Rest of the paper is organ-
ized as: In “Modeling SSPALT with MCS” section, we describe the TRV model under basic SSLT and establish the 
NH baseline lifespan CDF, PDF and RF. In “Inferences under SSPALT with MCS” section, using multiple censored 
data, in our statistical framework, we compute the MLEs of the parameters α,β and θ , where, θ > 1 denotes the 
AF. Based on the observed Fisher information matrix, the two-sided approximate confidence intervals (ACIs) of 
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the parameters α,β and θ are then addressed. To demonstrate the applicability of the various methodologies, an 
actual data set based on air conditioning system failure times for each member of a Boeing 720 jet aircraft fleet 
is evaluated in “Real engineering application” section. A thorough numerical analysis is performed, illustrating 
the positive behavior of the derived estimates over a wide range of sample sizes in “Simulation study” section.

Modeling SSPALT with MCS
Let Y  is a nonnegative random variable distributed according to NH distribution with scale parameter β and 
shape parameter α , denoted as NH ( α,β ), then its probability density function (PrDF), cumulative distribution 
function (CDF) and the survival function (SF) are as follows:

Different shapes of PrDF, CDF, and SF that were created using different input values of parameters are dis-
played in Fig. 1.

As a special instance of the NH distribution, when α = 1 , an exponential distribution can be produced. It 
offers closed versions of survival and hazard rate functions, such as that of the Weibull distribution, which makes 
it an excellent alternative for lifetime data investigators.

In SSPALT, all testing items are first allocated to be tested under ordinary usage settings until a pre-set 
stress change time τ , following which any remaining survivals that have not failed by time τ are moved to be 
tested under accelerated conditions. The effect of stress transition from normal to accelerated condition may 
be explained by multiplying the remaining lifetime by the inverse of the acceleration factor. The following is a 
theoretical calculation of the item’s total lifetime T under accelerated conditions:

where Y  denotes the item’s lifespan under ordinary usage settings and θ > 1 denotes the AF, which is often 
depending on applied stress. We can now explain the PDF, CDF, and RF of total life T of the objects using the 
model provided in Eq. (4) as follows:
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Figure 1.  PrDF, CDF, and SF of NH ( α,β).
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Assume we’re dealing with an SSPALT based on MCS. Assume the test is based on only two stress levels, X1 
representing regular working conditions and X2 representing accelerated conditions, where X2 is larger than X1 . 
This life testing consists of n objects that are both identical and independent in nature. Under each of the stress 
levels X1 and X2 , at least one failure should occur. The failure times of the items at each of the stress levels X1 and 
X2 are determined by the NH ( α,β ) presented by (1). All items in the sample of size n are now allocated to be 
tested at stress level X1 with a known number r1 of failures and a corresponding number m1 of multiply censored 
items till time τ . The test will now be continued by testing all of the items from n that have not failed or been 
censored up to time τ at the stress X2 with the pre-requisite r2 number of failures and the associated number of 
multiply censored items m2 until all of the test items have failed or been censored.

Inferences under SSPALT with MCS
In this section, the MLE method is utilized to estimate the model parameters and the acceleration factor. This 
method is more consistent and efficient, providing estimates with greater statistical precision and expressing 
uncertainty using confidence limits.

Assume that t1,f , t2,f , . . . , tr1,f  are the failure timings of r1 units that have failed under normal condition X1 , as 
well as m1 censored units at periods t1,s , t2,s , . . . , tm1,s . We further suppose that t1,f , t2,f , . . . , tr2,f  are the r2 failure 
times at accelerated condition X2 with m2 censored units with censoring times t1,s , t2,s , . . . , tm2,s . Now, for multiply 
censored data, the likelihood function under SSALT may be stated as follows Wang et al.21:

The log-likelihood function l = L(t,α,β , θ) based on MCS under SSPALT corresponding to Eq. (8) after 
substituting the values of f

(
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(
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 can be expressed as:

where (τ + θ(−τ + tk)) = Ak and (τ + θ(−τ + tl)) = Al . Now, the likelihood equations may be derived by 
calculating partial derivatives of Eq. (9) with respect to α,β and θ as:
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α,β and θ respectively. These equations are extremely complex, and they cannot be solved analytically. To solve 
these simultaneous equations, a numerical iteration approach such as a generic method named as Nelder–Mead 
Method is advised. In this paper, we utilized the Optim() function of R Software.
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Because the precise sample distribution of the ML estimates cannot be determined in closed form, the esti-
mated confidence intervals for the parameters α,β and θ  are derived by utilizing the approximate distributions 
of their ML estimates, which is required to compute the Fisher information matrix. Because the predicted 
information matrix is excessively complex and necessitates numerical integration, the observed information 
matrix is produced. The asymptotic distribution of ML estimates of α,β and θ is given as 
(

(

α̂ − α
)

,
(

β̂ − β

)

,
(

θ̂ − θ

))

→ N
(
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in the following equation and the elements of I are given in the below.
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Real engineering application
In this section, we employ real data supplied by  Proschon36 to demonstrate the real engineering application of the 
estimation approaches offered in this paper. The data set provides the times of successive failures of sequential 
air conditioning system failures for each member of a Boeing 720 jet aircraft fleet. This data is also saved in R’s 
npsurv package under the name acfail  Wang37. The recorded data is given as follows:

1 1 2 3 3 3 3 4 5 5 5 5 5 7 7 7 9 9 10 11 11 11 11 12 12 12 12 13 14 14 14 14 14 14 14 14 15 15 15 16 16 16 18 18 
18 18 18 18 20 20 21 21 22 22 22 23 23 23 24 24 25 26 26 27 27 29 29 29 29 30 31 31 32 33 33 34 34 34 35 35 36 
36 37 39 39 41 42 43 44 44 44 46 46 47 47 48 49 50 50 51 52 54 54 55 56 56 57 57 57 58 59 59 59 60 61 61 62 62 
62 63 65 66 67 67 68 70 70 71 71 72 74 76 77 79 79 80 82 84 85 87 88 90 90 91 95 97 97 98 100 100 101 102 102 
104 104 104 106 111 118 118 120 120 130 130 130 134 139 141 142 152 153 156 163 169 176 181 182 184 186 
188 191 194 197 201 206 208 208 209 210 216 220 225 230 230 239 246 246 254 261 270 283 310 320 326 359 
386 413 438 447 487 493 502 603.

To assess the data’s goodness-of-fit to the NH distribution, we first calculated the NH distribution’s param-
eters and then the K–S test was utilized. The K-S statistic and their p value are then calculated and reported in 
Table 1 as follows:

The K-S distance is determined to be 0.04613, with an associated p value of 0.7552. Since the p value is more 
than 0.05, we cannot reject the null hypothesis, which states that both the theoretical and sample distributions 
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Table 1.  The K–S statistic, p value and estimates of the NH distribution’s parameters.

Model α̂ β̂ K–S Statistics p value

NH distribution 0.7296426 0.0185777 0.04613 0.7552
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are same. Furthermore, multiple plots are analyzed for the goodness-of-fit test to check further if the data fits 
the NH distribution. We also illustrate the fitting of the distribution by plotting the estimated cdf, Q–Q and 
P–P plots of the NH distribution for the supplied real data set. Figure 2 compares the theoretical CDF of the 
NH distribution to the empirical CDF and histogram. The Q–Q and P–P plots of the supplied actual data set 
are shown in Fig. 3. The figures and KS test results suggest that the real data set under consideration fits the NH 
distribution pretty well.

Now, under SSPALT, we assume that the test runs under normal operating condition until the high stress is 
applied, and then the stress is raised to make the test operate at accelerated condition. We assume that the stress 
change time τ is 57 and various censoring levels (CL) are 20%, 30%, and 40%. To reflect multiple censoring 
strategy, we now delete 20%, 30%, and 40% of data at both stress levels, and the observed data under standard 
and accelerated stress with the assumed censoring levels are provided in Table 2.

We now estimated the MLEs and loglikelihood function values with stress change time τ = 57 and various 
censoring levels using the real data set reported in Table 2. The findings are computed using the R software, 
and Table 3 summarizes the resulting MLEs and loglikelihood function values. As per the results in Table 3, the 
estimates perform better at a 20 percent censoring level than at 30 percent and 40 percent filtering levels. This is 
apparent since larger data sets yield better results with more precision.
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Figure 2.  Theoretical CDF of the NH distribution vs the empirical CDF and histogram.
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Figure 3.  The Q–Q and P–P plots of the supplied actual data set.
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We have now raised the stress change duration from 57 to 71 while keeping the same censoring levels of 
20%, 30%, and 40% to test the model’s flexibility. Table 4 shows the observed data under standard and acceler-
ated stress, as well as the censoring levels after eliminating 20%, 30%, and 40% of the data for both stress levels.

Subsequently, we estimated the MLEs and loglikelihood function values with stress change time τ = 71 and 
various censoring levels using the real data set reported in Table 4. The findings are again computed using the 
R software,  Team38 and Table 5 summarizes the resulting MLEs and loglikelihood function values. As per the 
results in Table 5, we again observed that the estimates perform better at a 20% censoring level than at 30%, and 
40% filtering levels.

Simulation study
This section provides a simulation study to investigate the performance of MLEs of parameters for NH distribu-
tion under SSPALT based on multiply censored data. The mean squared error (MSE) is used to compare the 
performance of point estimates, whereas the CPs are used to compare the performance of ACIs. The data were 
derived from Eq. (2) using the inverse CDF approach. The quantile function that has been utilized for this task 
is defined as t =

(

(

1− log(1− u)
)1/α

− 1
)

/β , where u is generated from uniform distribution, i.e., u ∼ U(0, 1) . 
We selected five different sample sizes n = 80, 90, 100, 110, and 120 in order to analyse the nature of the estimates 
as the sample size increased. We also considered the NH distribution in order to produce data with starting 
values of the shape parameter α = 0.2 and the scale parameter β = 1.6 . The value of acceleration factor is set to 
θ = 2.5 , with two distinct values of stress change time τ = 5, 8 and three different censoring levels (CL) of 20%, 
30%, and 40%. The simulation study is developed based on 8,000 multiply censored samples under SSPALT to 
observe changes in parameter values. The complete steps of the algorithm are detailed below:

 i. Using the pre-specified parameter values, generate n random samples from the NH distribution. To do 
so, first generate u from a uniform distribution with the command u = runif (n, 0, 1) , and then use the 
quantile function t =

((

1− log(1− u
)

)1/α − 1
)

/β to generate the values of t = (t1, t2, . . . , tn) from an 
NH distribution.

 ii. Now select the number of failures before the stress change time τ and denote it as n1 . The generated sample 
up to time τ is t1s =

(

t1, t2, . . . , tn1
)

. Also select the number of failed items at accelerated condition and 
denote it as n2 , where n1 + n2 = n and the generated sample is given as t2s =

(

tn1+1, tn1+2 . . . , tn1+n2

)

Table 2.  Multiply censored data at both stress level with τ = 57 and CLs of 20%, 30%, and 40%.

Stress CL (%) Data

Normal 20
Observed 1 1 2 3 3 3 3 4 5 5 5 5 5 7 7 7 9 9 10 11 11 11 11 12 12 12 12 13 14 14 14 14 14 14 14 14 15 15 15 16 16 16 18 18 18 18 18 18 20 20 21 21 22 22 22 

23 23 23 24 24 25 26 26 27 27 29 29 29 29 30 31 31 32 33 33 34 34 34 35 35 36 36 37 39 39

Censored 41 42 43 44 44 44 46 46 47 47 48 49 50 50 51 52 54 54 55 56 56

Accelerated 20
Observed

58 59 59 59 60 61 61 62 62 62 63 65 66 67 67 68 70 70 71 71 72 74 76 77 79 79 80 82 84 85 87 88 90 90 91 95 97 97 98 100 100 101 102 102 104 
104 104 106 111 118 118 120 120 130 130 130 134 139 141 142 152 153 156 163 169 176 181 182 184 186 188 191 194 197 201 206 208 208 209 
210 216 220

Censored 225 230 230 239 246 246 254 261 270 283 310 320 326 359 386 413 438 447 487 493 502 603

Normal 30
Observed 1 1 2 3 3 3 3 4 5 5 5 5 5 7 7 7 9 9 10 11 11 11 11 12 12 12 12 13 14 14 14 14 14 14 14 14 15 15 15 16 16 16 18 18 18 18 18 18 20 20 21 21 22 22 22 

23 23 23 24 24 25 26 26 27 27 29 29 29 29 30 31 31 32 33 33

Censored 34 34 34 35 35 36 36 37 39 39 41 42 43 44 44 44 46 46 47 47 48 49 50 50 51 52 54 54 55 56 56

Accelerated 30
Observed 58 59 59 59 60 61 61 62 62 62 63 65 66 67 67 68 70 70 71 71 72 74 76 77 79 79 80 82 84 85 87 88 90 90 91 95 97 97 98 100 100 101 102 102 104 

104 104 106 111 118 118 120 120 130 130 130 134 139 141 142 152 153 156 163 169 176 181 182 184 186 188 191

Censored 194 197 201 206 208 208 209 210 216 220 225 230 230 239 246 246 254 261 270 283 310 320 326 359 386 413 438 447 487 493 502 603

Normal 40
Observed 1 1 2 3 3 3 3 4 5 5 5 5 5 7 7 7 9 9 10 11 11 11 11 12 12 12 12 13 14 14 14 14 14 14 14 14 15 15 15 16 16 16 18 18 18 18 18 18 20 20 21 21 22 22 22 

23 23 23 24 24 25 26 26 27 27

Censored 29 29 29 29 30 31 31 32 33 33 34 34 34 35 35 36 36 37 39 39 41 42 43 44 44 44 46 46 47 47 48 49 50 50 51 52 54 54 55 56 56

Accelerated 40
Observed 58 59 59 59 60 61 61 62 62 62 63 65 66 67 67 68 70 70 71 71 72 74 76 77 79 79 80 82 84 85 87 88 90 90 91 95 97 97 98 100 100 101 102 102 104 

104 104 106 111 118 118 120 120 130 130 130 134 139 141 142 152

Censored 153 156 163 169 176 181 182 184 186 188 191 194 197 201 206 208 208 209 210 216 220 225 230 230 239 246 246 254 261 270 283 310 320 326 
359 386 413 438 447 487 493 502 603

Table 3.  The MLEs and loglikelihood function values with τ = 57 and CLs of 20%, 30%, and 40%. Significant 
values are in [bold].

Model CL (%)  − Loglikelihood α̂ β̂ θ̂

NH distribution

20 944.8238 0.3006398 0.0547679 2.7774441

30 839.7492 0.22741321 0.07540592 4.16437398

40 726.1117 0.1701904 0.1048783 6.3930727
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 iii. Choose the CL at 20%, 30% and 40% respectively at both normal and accelerated condition. At 20% CL, 
we have 80% failed items and 20% censored items. So, we have number of failures at normal and acceler-
ated stress level r1 = n1(1− CL) and r2 = n2(1− CL) respectively.

 iv. Let δ1s,i =
{

1, i = 1, 2, . . . , r1
0, i = r1 + 1, r1 + 2, . . . , n1

 and δ2s,j =
{

1, j = 1, 2, . . . , r2
0, i = r2 + 1, r2 + 2, . . . , n2

 v. Now set y1,i = δ1s,i × t1s and y2,j = δ2s,j ×
(

(t2s−τ)
α

+ τ

)

 , thus the generated multiply censored data set 
is given as: Y =

{

y1,i , y2,j , i = 1, 2, ..., n1, j = 1, 2, ..., n2
}

 vi. Estimate the parameters using the Optim() function and the data obtained in steps (i–v).
 vii. Repeat the process N times.
 viii. Now calculate the mean MLEs, mean MSEs, 95% ACIs and its CPs by using the following formulae.

α̂ =
1

N

N
∑

i=1

αi; β̂ =
1

N

N
∑

i=1

βi; θ̂ =
1

N

N
∑

i=1

θi;CP
(

α̂, β̂ , θ̂
)

= No. of ACI includes
(

α̂, β̂ , θ̂
)

/N

MSE
(

α̂
)

=
1

N

N
∑

i=1

(α̂i − α)2; MSE
(

β̂

)

=
1

N

N
∑

i=1

(β̂i − β)2;

MSE
(

θ̂

)

=
1

N

N
∑

i=1

(θ̂i − θ)2

Table 4.  Multiply censored data at both stress level with τ = 71 and CLs of 20%, 30%, and 40%.

Stress CL (%) Data

Normal 20
Observed

1 1 2 3 3 3 3 4 5 5 5 5 5 7 7 7 9 9 10 11 11 11 11 12 12 12 12 13 14 14 14 14 14 14 14 14 15 15 15 16 16 
16 18 18 18 18 18 18 20 20 21 21 22 22 22 23 23 23 24 24 25 26 26 27 27 29 29 29 29 30 31 31 32 33 33 
34 34 34 35 35 36 36 37 39 39 41 42 43 44 44 44 46 46 47 47 48 49 50 50 51 52 54 54

Censored 55 56 56 57 57 57 58 59 59 59 60 61 61 62 62 62 63 65 66 67 67 68 70 70

Accelerated 20
Observed

72 74 76 77 79 79 80 82 84 85 87 88 90 90 91 95 97 97 98 100 100 101 102 102 104 104 104 106 111 
118 118 120 120 130 130 130 134 139 141 142 152 153 156 163 169 176 181 182 184 186 188 191 194 
197 201 206 208 208 209 210 216 220 225 230 230 239

Censored 254 261 270 283 310 320 326 359 386 413 438 447 487 493 502 603

Normal 30
Observed

1 1 2 3 3 3 3 4 5 5 5 5 5 7 7 7 9 9 10 11 11 11 11 12 12 12 12 13 14 14 14 14 14 14 14 14 15 15 15 16 16 
16 18 18 18 18 18 18 20 20 21 21 22 22 22 23 23 23 24 24 25 26 26 27 27 29 29 29 29 30 31 31 32 33 33 
34 34 34 35 35 36 36 37 39 39 41 42 43 44 44 44

Censored 46 46 47 47 48 49 50 50 51 52 54 54 55 56 56 57 57 57 58 59 59 59 60 61 61 62 62 62 63 65 66 67 67 68 
70 70

Accelerated 30
Observed

72 74 76 77 79 79 80 82 84 85 87 88 90 90 91 95 97 97 98 100 100 101 102 102 104 104 104 106 111 
118 118 120 120 130 130 130 134 139 141 142 152 153 156 163 169 176 181 182 184 186 188 191 194 
197 201 206 208 208

Censored 209 210 216 220 225 230 230 239 246 246 254 261 270 283 310 320 326 359 386 413 438 447 487 493 
502 603

Normal 40
Observed

1 1 2 3 3 3 3 4 5 5 5 5 5 7 7 7 9 9 10 11 11 11 11 12 12 12 12 13 14 14 14 14 14 14 14 14 15 15 15 16 16 
16 18 18 18 18 18 18 20 20 21 21 22 22 22 23 23 23 24 24 25 26 26 27 27 29 29 29 29 30 31 31 32 33 33 
34 34 34

Censored 35 35 36 36 37 39 39 41 42 43 44 44 44 46 46 47 47 48 49 50 50 51 52 54 54 55 56 56 57 57 57 58 59 59 
59 60 61 61 62 62 62 63 65 66 67 67 68 70 70

Accelerated 40
Observed 72 74 76 77 79 79 80 82 84 85 87 88 90 90 91 95 97 97 98 100 100 101 102 102 104 104 104 106 111 

118 118 120 120 130 130 130 134 139 141 142 152 153 156 163 169 176 181 182 184 186

Censored 188 191 194 197 201 206 208 208 209 210 216 220 225 230 230 239 246 246 254 261 270 283 310 320 
326 359 386 413 438 447 487 493 502 603

Table 5.  The MLEs and loglikelihood function values with τ = 71 and CLs of 20%, 30%, and 40%. Significant 
values are in [bold].

Model CL (%)  − Loglikelihood α̂ β̂ θ̂

NH distribution

20 955.8221 0.37524261 0.04355366 1.77960490

30 856.5320 0.27304217 0.06320305 2.58774850

40 745.2779 0.20317581 0.08857279 3.91300152
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In Tables 6, 7, 8, 9, 10 and 11 summarizes MLEs, MSEs, Lower 95% ACI Limit (L95%CL), Upper 95% ACI 
Limit (U95%CL), 95% ACI length (95%ACIL) and 95% ACI Coverage Probability (95%ACICP) under multiply 
censored data based on MLE method are presented with (α = 0.2,β = 1.6, θ = 2.5) , τ = (5, 8) and different CL 
of 20%, 30%, and 40% based on N = 10,000 simulations respectively. Figures 3, 4, 5 and 6 provides the plots for 
simulated samples and the histogram of the parameters based on N = 10,000 simulations respectively based on 
different initial values of parameters and distinct values of stress change time.

Based on the results in Tables 6, 7, 8, 9, 10 and 11 and Figs. 7, 8 and 9, we can observe that:

 i. The MLEs of the parameters α,β and θ based on multiply censored data are moving closer to their true 
values with decreasing MSEs in all cases as n grows.

 ii. The values of MSEs and the average length of 95%ACIs fall as n grows for fixed values of α,β , θ and τ while 
the related 95%ACI coverage probabilities approach 95%.

 iii. For fixed values of α,β and θ , the average values of MSEs and the average length of 95%ACIs increase as 
τ grows.

 iv. For fixed values of α,β and θ , the average values of MSEs and the average length of 95%ACIs increase as 
CL increases.

Table 6.  MLEs, MSEs, lower 95% ACI limit (L95%CL), upper 95% ACI limit (U95%CL), 95% ACI 
length (95%ACIL) and 95% ACI coverage probability (95%ACICP) under multiply censored data with 
(α = 0.2,β = 1.6, θ = 2.5,CL = 0.20, τ = 5).

n Parameters MLEs MSEs L95%CL U95%CL 95%ACIL 95%ACICP

80

α 0.1674595 0.0205570 0.1271677 0.2077513 0.080583 95.33905

β 1.769901 0.737674 0.32406 3.215742 2.891653 95.19905

θ 2.769546 0.7580471 1.283774 4.255319 2.971515 94.73905

90

α 0.1658654 0.0193200 0.1279981 0.2037327 0.075734 95.17905

β 1.688259 0.6639709 0.3868759 2.989642 2.60274 95.68904

θ 2.810845 0.7488733 1.343053 4.278637 2.935555 94.94905

100

α 0.1641433 0.0181911 0.1284886 0.199798 0.071309 95.12905

β 1.695375 0.6315235 0.4575886 2.933161 2.475548 95.41905

θ 2.870894 0.7401584 1.420184 4.321605 2.901392 95.42905

110

α 0.1658051 0.0175181 0.1314695 0.2001406 0.06867 94.97905

β 1.687168 0.6067909 0.4978576 2.876478 2.378597 95.71904

θ 2.871401 0.7416124 1.41784 4.324961 2.907092 95.65904

120

α 0.164657 0.0167029 0.1319192 0.1973949 0.065475 95.24905

β 1.7164 0.5776405 0.5842243 2.848575 2.264328 95.64904

θ 2.876607 0.7224927 1.460521 4.292693 2.832144 95.55904

Table 7.  MLEs, MSEs, lower 95% ACI Limit (L95%CL), upper 95% ACI limit (U95%CL) 
and 95% ACI coverage probability (95%ACICP) under multiply censored data with 
(α = 0.2,β = 1.6, θ = 2.5,CL = 0.30, τ = 5).

n Parameters MLEs MSEs L95%CL U95%CL 95%ACIL 95%ACICP

80

α 0.171446 0.0213531 0.1295938 0.2132982 0.083704 95.18905

β 1.962471 0.820904 0.3534995 3.571443 3.217911 95.50904

θ 2.725251 0.7837417 1.189118 4.261385 3.072236 95.00905

90

α 0.1766426 0.0208124 0.1358502 0.217435 0.081584 95.45905

β 1.841277 0.7137327 0.4423609 3.240193 2.797804 95.57904

θ 2.682347 0.7729612 1.167344 4.197351 3.029977 94.69905

100

α 0.1772288 0.0203246 0.1373925 0.2170652 0.079672 95.40905

β 1.837299 0.6865213 0.4917177 3.182881 2.691136 95.35905

θ 2.694221 0.7757881 1.173676 4.214765 3.041059 95.10905

110

α 0.1750145 0.0189565 0.1378596 0.2121695 0.074309 95.47905

β 1.85638 0.6671368 0.5487923 3.163969 2.615151 95.58904

θ 2.742036 0.7588724 1.254647 4.229426 2.974749 95.16905

120

α 0.175405 0.0181038 0.1399213 0.2108886 0.070967 95.42905

β 1.845531 0.6238778 0.6227309 3.068332 2.445577 95.51904

θ 2.735305 0.7447443 1.275606 4.195004 2.919369 95.11905
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 v. The average value of estimates for β and θ increases as the value of CL increases for fixed values of α,β 
and θ , whereas the average value of estimates for α decrease.

 vi. For fixed values of α,β and θ , the mean result of estimates for β and θ increase as the value of t rises, but 
the mean values of estimates for α decrease.

Conclusions and suggestions for further studies
In this article, we used TRV modeling for SSPALT to estimate the unknown model parameters of the NH distri-
bution using the MLE technique. It has been discovered that the MLEs for all unknown parameters cannot be 
derived explicitly. As a result, we utilized R software to compute MLEs numerically using the Optim() function. 
Using the observed Fisher information matrix, ACIs for the unknown parameters were also computed. An actual 
data set based on the timings of subsequent failures of sequential air conditioning system failures for each mem-
ber of a Boeing 720 jet aircraft fleet was analyzed to illustrate the applicability of the different techniques. Finally, 
extensive simulation tests with various censoring mechanisms were carried out to evaluate the performance of 

Table 8.  MLEs, MSEs, lower 95% ACI limit (L95%CL), upper 95% ACI limit (U95%CL) 
and 95% ACI coverage probability (95%ACICP) under multiply censored data with 
(α = 0.2,β = 1.6, θ = 2.5,CL = 0.40, τ = 5).

n Parameters MLEs MSEs L95%CL U95%CL 95%ACIL 95%ACICP

80

α 0.1842316 0.0234016 0.1383644 0.2300987 0.091733 95.26905

β 2.018154 0.8621193 0.3284004 3.707908 3.379474 95.46905

θ 2.548723 0.803562 0.9737411 4.123704 3.149931 94.88905

90

α 0.1884445 0.0230097 0.1433454 0.2335436 0.090197 95.41905

β 2.028738 0.8237137 0.4142595 3.643217 3.228925 95.39905

θ 2.507637 0.7935419 0.952295 4.062979 3.110653 95.21905

100

α 0.1878581 0.0220437 0.1446523 0.2310639 0.086411 95.44905

β 2.044117 0.789722 0.4962623 3.591973 3.09568 95.52904

θ 2.510402 0.7776811 0.9861468 4.034657 3.04848 95.00905

110

α 0.1878068 0.0210943 0.1464619 0.2291517 0.082689 95.42905

β 2.003293 0.7248494 0.5825885 3.423998 2.841381 95.39905

θ 2.497154 0.7693558 0.9892164 4.005091 3.015844 95.04905

120

α 0.1844116 0.0193433 0.1464987 0.2223245 0.075825 95.24905

β 2.011573 0.6981329 0.6432326 3.379914 2.736654 95.54904

θ 2.569823 0.7482025 1.103346 4.0363 2.932925 94.98905

Table 9.  MLEs, MSEs, lower 95% ACI limit (L95%CL), upper 95% ACI limit (U95%CL) 
and 95% ACI coverage probability (95%ACICP) under multiply censored data with 
(α = 0.2,β = 1.6, θ = 2.5,CL = 0.20, τ = 8).

n Parameters MLEs MSEs L95%CL U95%CL 95%ACIL 95%ACICP

80

α 0.1695727 0.0213753 0.127677 0.2114684 0.083791 95.25905

β 1.642838 0.681189 0.307708 2.977969 2.670234 95.56904

θ 2.709395 0.7676959 1.204711 4.214079 3.009338 94.47906

90

α 0.1707 0.0204468 0.1306242 0.2107757 0.080151 95.31905

β 1.62826 0.641043 0.3718155 2.884704 2.512863 95.61904

θ 2.727482 0.7656334 1.22684 4.228123 3.001253 95.09905

100

α 0.167875 0.0189223 0.1307873 0.2049628 0.074175 95.31905

β 1.618495 0.5924418 0.4573089 2.779681 2.322349 95.56904

θ 2.746631 0.7499382 1.276752 4.21651 2.939729 94.83905

110

α 0.1694406 0.0185174 0.1331465 0.2057348 0.072588 95.23905

β 1.607871 0.5645694 0.5013148 2.714427 2.21309 95.41905

θ 2.747332 0.7473003 1.282623 4.21204 2.929388 94.78905

120

α 0.1703368 0.0177683 0.1355109 0.2051626 0.069651 95.30905

β 1.5948 0.5427752 0.5309605 2.658639 2.127657 95.56904

θ 2.74297 0.7431093 1.286476 4.199464 2.912959 95.08905
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the estimate procedure. In particular, MSEs, ACIs, and corresponding average interval lengths were used as 
benchmarks. According to our numerical findings, the values of MSEs and average lengths drop as sample size 
increases. Furthermore, when the censoring level is reduced, the considered estimates of α,β and θ approach to 
their real values. As a future research, researchers may use rank set sampling to examine the NH distribution for 
hybrid censored data under SSPALT. A Bayesian analysis may be performed and compared with present study 
for the multiple censoring technique. Same has been added in the “Conclusion” section.

Table 10.  MLEs, MSEs, lower 95% ACI limit (L95%CL), upper 95% ACI limit (U95%CL) 
and 95% ACI coverage probability (95%ACICP) under multiply censored data with 
(α = 0.2,β = 1.6, θ = 2.5,CL = 0.30, τ = 8).

n Parameters MLEs MSEs L95%CL U95%CL 95%ACIL 95%ACICP

80

α 0.177812 0.022881 0.132965 0.22266 0.089694 95.30905

β 1.75734 0.751602 0.284201 3.230479 2.946249 95.80904

θ 2.56948 0.738227 1.122556 4.016405 2.89382 95.01905

90

α 0.178401 0.021554 0.136155 0.220648 0.084492 95.34905

β 1.73631 0.676127 0.411102 3.061518 2.650389 95.48905

θ 2.584085 0.738027 1.137552 4.030617 2.893036 95.24905

100

α 0.1792 0.020719 0.138591 0.219809 0.081217 95.40905

β 1.718056 0.641242 0.461222 2.97489 2.513643 95.81904

θ 2.565261 0.72391 1.146397 3.984125 2.8377 95.08905

110

α 0.175728 0.019147 0.1382 0.213255 0.075054 95.40905

β 1.764415 0.611778 0.565329 2.963501 2.398148 95.56904

θ 2.619841 0.712766 1.222819 4.016862 2.794015 95.03905

120

α 0.176476 0.01852 0.140177 0.212776 0.072598 95.04905

β 1.745166 0.589055 0.590618 2.899715 2.309074 95.45905

θ 2.601612 0.699721 1.230159 3.973065 2.742879 95.01905

Table 11.  MLEs, MSEs, lower 95% ACI limit (L95%CL), upper 95% ACI limit (U95%CL) 
and 95% ACI coverage probability (95%ACICP) under multiply censored data with 
(α = 0.2,β = 1.6, θ = 2.5,CL = 0.40, τ = 8).

n Parameters MLEs MSEs L95%CL U95%CL 95%ACIL 95%ACICP

80

α 0.1872706 0.0251297 0.1380162 0.236525 0.098508 95.48905

β 1.836654 0.6234703 0.6146522 3.058656 2.443979 95.62904

θ 2.469478 0.8019501 0.8976558 4.0413 3.143613 95.20905

90

α 0.1870743 0.0231267 0.1417459 0.2324027 0.090656 95.16905

β 1.847026 0.7307637 0.4147291 3.279323 2.864565 95.50904

θ 2.472528 0.7871014 0.9298092 4.015247 3.085407 95.32905

100

α 0.1866643 0.0222978 0.1429606 0.230368 0.087407 95.59904

β 1.905395 0.7147208 0.5045425 3.306248 2.801677 95.67904

θ 2.488021 0.7761908 0.9666865 4.009355 3.042638 95.03905

110

α 0.1866207 0.0212001 0.1450684 0.228173 0.083104 95.19905

β 1.861991 0.6653099 0.557984 3.165999 2.607989 95.39905

θ 2.4773 0.7553382 0.9968368 3.957763 2.960897 94.72905

120

α 0.1866518 0.0203459 0.1467736 0.2265299 0.079756 95.32905

β 1.873683 0.7921207 0.3211266 3.42624 3.105082 95.68904

θ 2.497773 0.7465648 1.034506 3.96104 2.926505 95.13905
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Figure 4.  The plots for simulated samples and the histogram of the parameters for (α,β , θ) with 
(α = 0.2,β = 1.6, θ = 2.5,CL = 0.20) for (a) τ = 5 and (b) τ = 8.
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Figure 5.  The plots for simulated samples and the histogram of the parameters for (α,β , θ) with 
(α = 0.2,β = 1.6, θ = 2.5,CL = 0.30) for (a) τ = 5 and (b) τ = 8.
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Figure 6.  The plots for simulated samples and the histogram of the parameters for (α,β , θ) with 
(α = 0.2,β = 1.6, θ = 2.5,CL = 0.40) for (a) τ = 5 and (b) τ = 8.
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Figure 7.  The plots of MSEs of the estimates for (α,β , θ) with (α = 0.2,β = 1.6, θ = 2.5) for (a) τ = 5 and (b) 
τ = 8.



17

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12452  | https://doi.org/10.1038/s41598-023-39170-x

www.nature.com/scientificreports/

Figure 8.  The plots of 95%ACICP of the estimate for (α,β , θ) with (α = 0.2,β = 1.6, θ = 2.5) for (a) τ = 5 and 
(b) τ = 8.
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Figure 9.  The plots of 95%ACIL of the estimate for (α,β , θ) with (α = 0.2,β = 1.6, θ = 2.5) for (a) τ = 5 and 
(b) τ = 8.
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