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Long‑ and short‑term history 
effects in a spiking network model 
of statistical learning
Amadeus Maes 1,2*, Mauricio Barahona 3 & Claudia Clopath 2

The statistical structure of the environment is often important when making decisions. There are 
multiple theories of how the brain represents statistical structure. One such theory states that 
neural activity spontaneously samples from probability distributions. In other words, the network 
spends more time in states which encode high‑probability stimuli. Starting from the neural 
assembly, increasingly thought of to be the building block for computation in the brain, we focus 
on how arbitrary prior knowledge about the external world can both be learned and spontaneously 
recollected. We present a model based upon learning the inverse of the cumulative distribution 
function. Learning is entirely unsupervised using biophysical neurons and biologically plausible 
learning rules. We show how this prior knowledge can then be accessed to compute expectations 
and signal surprise in downstream networks. Sensory history effects emerge from the model as a 
consequence of ongoing learning.

There is an ever-increasing body of evidence indicating that the brain takes the statistical regularities in the 
environment into  account1–3. It might do so in a number of ways. Firstly, a priori knowledge of sensory stimuli 
influences perception. For example, an expected stimulus might be encoded faster than an unexpected  stimulus4,5, 
conversely, low-probability stimuli might trigger a stronger response to signal novelty or  surprise6–9. Secondly, 
knowledge of the statistics of a relevant variable influences decisions, potentially leading to  biases10–14. For the 
brain to take prior statistical structure into account, it needs a way to learn and recollect such structure.

One line of investigation studies the neural ensemble as a building block for processing and computations 
in the brain, in line with Hebb’s  postulate15. Stimuli that are repeatedly presented, could be encoded in groups 
of neurons and be spontaneously replayed in the absence of the stimuli. Recently, experimental studies have 
started to explore these ideas in detail. It was found that neural ensembles are coactive transiently both during 
evoked activity and spontaneous  activity16 and can be developed by repeated  stimulation17,18. Additionally, such 
neural ensembles can affect behavior, elucidating their functional  relevance19,20. In parallel, experimental and 
computational work has studied the plasticity mechanisms needed to develop neural ensembles in networks 
by stimulating the network repeatedly with a set of  stimuli21–26. The connectivity pattern which emerges from 
repeated stimulations is clustered, i.e. the excitatory neurons are strongly recurrently connected within the same 
cluster, and weakly connected between  clusters27. Such connectivity reverberates the activity within the same 
cluster and leads to random switching dynamics, i.e. the clusters switch between high and low activity states 
at  random28,29. While spontaneous reactivations can be interpreted as a recollection of the previously applied 
stimuli, they do not depend on the probability by which the stimuli were applied. Hence, current models fail to 
incorporate the statistical structure of the stimuli.

Here, we propose a way in which the spontaneous activity of the network depends on the probabilities of the 
stimuli exposure, i.e. the network activity samples from the prior stimulus distribution. Specifically, we imple-
ment inverse transform sampling in the model and learn by repeatedly applying stimuli to the model, using 
biophysically realistic neurons and plasticity mechanisms. We then explore how this representation can be useful 
for computations. Firstly, sampling lends itself to performing Monte Carlo-type calculations. By reading out and 
integrating samples we show it is easy to compute expectations over functions. A specific example where the brain 
might compute expectations is when doing perceptual decision-making. In this context, the model exhibits long- 
and short-term history effects. These history effects originate from the plasticity in the model, slowly forgetting 
old stimuli and biasing decisions on a short time scale. Finally, we show how we can transform the representation 
into a more instantaneous code, potentially relevant for fast sensory processing and predictive coding.
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Results
A model designed to learn statistical structure. We design spiking networks to perform inverse 
transform sampling. Consider the random variable X, the cumulative distribution function F(x) and probability 
density function p(x) = dF(x)

dx  . A sample x can be drawn from p(x), by the following textbook procedure: (1) take 
a sample from the uniform distribution u ∼ U[0, 1] ; (2) transform the sample using the inverse of the cumulative 
distribution function, i.e. x = F−1(u) . When both the uniform and cumulative distributions are discretized, this 
amounts to stacking blocks taken from the uniform distribution to build p(x) (Fig. 1A). We first show that this 
procedure can be implemented using two spiking networks. One network samples from the uniform distribu-
tion, using random dynamics. We call this first network the uniform sampler network. The second network rep-
resents the random variable and is driven by the first network. The weights from the first to the second network 
correspond to the inverse of the cumulative distribution function and change using simple biologically plausible 
learning rules (Fig. 1B). We call the second network the sensory network.

The uniform sampler network consists of excitatory and inhibitory neurons. We group the excitatory neurons 
in C disjoint clusters. The clusters are one way to implement experimentally observed neural ensembles, i.e. 
excitatory neurons are strongly connected to other excitatory neurons in the same cluster and weakly connected 
to all other excitatory neurons. The inhibitory neurons act as a single stabilizing pool. This connectivity structure 
leads to transiently active clusters, where each cluster activated at random silences the other clusters through 
lateral  inhibition29. Here, we fix this connectivity structure, but previous work has shown that such a structure 
can be learned using biologically plausible  rules21,22,24,30. The random switching dynamics in this network can 
be interpreted as sampling from the uniform distribution, where the amount of probability in a single cluster 
amounts to 1/C. The sensory network encodes the external variable. The network is organized in the same way 
as the uniform sampler network. The number of clusters in the sensory network is 8 throughout the paper. This 
means that the sensory network discretizes the external variable of interest in 8 intervals. While the activity in 
the sensory network reverberates due to the recurrent clustered connectivity, the input from the uniform sampler 
controls the switches between sensory clusters. The probability that a cluster in the sensory network is active 
is as such determined by how many uniform clusters drive it strongly. To summarize, the architecture leads to 
two approximations: (1) discretization of the uniform space in parts of 1/C; (2) discretization of the encoded 
external variable.

To train the model, we present samples of the external variable X sequentially. At each observation, an external 
current activates the cluster in the sensory network encoding the observed sample. The first plasticity mechanism 
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Figure 1.  A model designed to learn statistical structure. (A) Cartoon of the model. Inverse transform sampling 
is mapped to two spiking networks. Uniform samples (top) are transformed through weights (middle) to 
facilitate sampling from the variable x (bottom). (B) There are two plasticity mechanisms, Hebbian potentiation, 
and depression by normalization of the output (see Section “Methods” for details).
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is a potentiation through the Hebbian ‘fire together wire together’ rule. The cluster in the uniform sampler that 
happens to be active at the moment of the observation will potentiate its connections to the cluster in the sensory 
network. In this way, the model attributes an amount of 1/C probability to the observation. The second plastic-
ity mechanism is a normalization, leading to the depression of the connections from the active cluster in the 
uniform sampler to non-active clusters in the sensor network. This mechanism ensures that each cluster in the 
uniform sampler projects only to a single cluster in the sensory network. In summary, the potentiation attributes 
an amount of probability to the new observation and the normalization removes the same amount of probabil-
ity from an older observation (Suppl. Fig. 1). Repeated observations will shape the weights from the uniform 
sampler network to the sensory network, approximating the inverse of the cumulative distribution function. 
The approximation depends on the sensory history and the network parameters, as we explore later. Different 
versions of both the Hebbian rule and normalization are commonly used to model synaptic  plasticity22,23,31,32. The 
role of normalization in this model is not to stabilize the dynamics nor to prevent runaway activity in the sensory 
network, which is typically the case for postsynaptic normalization. Here, the presynaptic output is normalized 
to guarantee that the probability of activation of all sensory clusters sums to one.

The model learns through repeated observations. We first show how the inverse transform F−1(u) 
can be learned and analyze the accuracy. Learning is unsupervised: samples from the target distribution are 
observed by interacting with the external world (Fig. 2A). We assume that the network has already learned a 
previous distribution p(x). However, to emphasize the learning abilities of the model, we now show a new target 
distribution (Fig. 2B). Samples from the target distribution are observed at a rate of 5 Hz so that every 200 ms we 
apply an external input to the sensory network (Suppl. Fig. 2A). The plastic weights projecting from the uniform 
sampler network to the sensory network will change to reflect the inverse of the cumulative distribution func-
tion of the target distribution (Suppl. Fig. 2B). We obtain learning curves by taking the L1 error between the 
normalized weight matrix and the target inverse transform (see Section “Methods”) (Fig. 2C). Learning is faster 
when there are fewer clusters in the uniform sampler network, however, there are larger fluctuations in the error 
(Fig. 2D and Suppl. Fig. 2C). This trade-off is a result of the discretization of the uniform distribution scaling as 
1/C. We conclude that the model is able to learn the inverse transform by repeated observations of the variable.

The model performs sampling during spontaneous dynamics. We then verified the sampling 
behavior of the model. From the theory, we expect the sensory network to sample from the target distribution. 
Simulations of spontaneous dynamics of the model show that, over a sufficiently long time, the clusters in the 
uniform sampler network are activated uniformly, while retaining typical interspike interval irregularity (Suppl. 

Figure 2.  The model learns through repeated observations. (A) The sensory network receives external input 
from observing samples xk of the variable X. (B) An initial distribution is encoded in the weights, and samples 
from the target distribution are presented. (C) Learning curves for a uniform sampler with 24 (red) and 48 
(green) clusters. The L1 error is computed between the normalized weight matrix and the target distribution. 
(D) The change in error is measured after every fifth sample presentation and the resulting values plotted in 
a histogram. The error fluctuations are higher for a lower number of clusters in the uniform sampler network 
(Mann-Whitney U-test on the absolute values, p < 10

−4).
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Fig. 2D,E). Additionally, activations of clusters in the sensory network with a higher target probability are more 
likely to occur (Fig. 3A). Quantitatively, we can measure the KL-divergence between the neural activity and the 
target distribution as a function of time (Fig. 3B). We construct an empirical distribution from the neural activity 
by counting the fraction of time that each cluster is active (see Section “Methods” for details). The KL-divergence 
decreases with increasing sampling time, indicating a time frame of seconds to obtain an empirical distribution 
close to the target distribution. The sampling behavior of the model is close to the behavior of a random number 
generator. Samples drawn from the target distribution, using a random number generator at 8 Hz, i.e. at about 
the switching rate in the uniform sampler, yield very similar KL-divergence curves. To conclude, we show that in 
practice the neural activity of the sensory network approximately samples from the target distribution.

The model can provide samples for the computation of expectations. We showed the ability of 
the model to learn the inverse transform and sample from the target distribution. We next wondered how this 
representation can be useful for downstream computations. A natural first idea is to use these samples to com-
pute expectations of functions. Specifically, we can implement simple Monte Carlo approximations to compute 
integrals of the following type:

where f(i, x) is a function of the variable X and other inputs i. Because the samples xk become available over 
time, there has to be an integration mechanism updating the expectation over time. Defining rt to be the inte-
gration variable at time t which approximates the expectation E[f], we implement the integration as follows: 
rt = (1− �t

τr
)rt−1 +

�t
τr
f (i, xt) (forward Euler). xt is the sample produced by the model at time t, �t is the 

simulation time step and τr is the time constant of integration (see also Section “Methods”). This way of comput-
ing expectations is modular and flexible compared to a system that integrates the sampling and function in one 
network. Expectations using arbitrary distributions may be computed in this way, where the distributions can be 

(1)E[f ] =

∫

f (i, x)p(x)dx ≈
1

N

K
∑

k=1

f (i, xk) with xk ∼ p(x),

Figure 3.  The model performs sampling during spontaneous dynamics. (A) Spike raster of the uniform sampler 
network (top) and sensory network (bottom). Red dots are spikes of excitatory neurons and blue dots are spikes 
of inhibitory neurons. The spike raster shows that the clusters in the uniform sampler switch randomly (at about 
∼ 8 Hz), and the clusters in the sensory network are active according to the stored distribution. (B) We measure 
the KL-divergence. The KL-divergence at time t takes into account all the neural activity from zero seconds to 
t seconds (see Section “Methods” for details). The red full lines are the KL-divergence between neural activity 
in the uniform sampler and the uniform distribution (top) and the KL-divergence between neural activity and 
target distribution of Fig. 2B (bottom). The shaded area indicates one standard deviation from the mean (25 
simulations). The red and brown dashed lines show the mean of the KL-divergence over 100 simulations when 
using a random number generator (rng) to draw samples from the target distribution and uniform distribution 
respectively, rather than using the model to generate samples.
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relearned while the function remains unchanged (Fig. 4A). Here, the model generates the samples by simulating 
spontaneous dynamics. The other steps are computed mathematically.

As an example, we consider the following indicator function: f (i, x) = 1 if i > x and f (i, x) = −1 if i < x . 
This function may be relevant to perceptual decision-making involving a binary choice. There are two categories 
( +1/− 1 ), and a choice between the categories is made based on a stimulus i. It is as of yet unclear how such 
decisions are made. One way in which a decision could be made is by taking the statistics of the stimulus p(x) 
into account rather than a decision  boundary13. In this case, we assume the input is held in working memory 
while it is compared to multiple samples generated by the model. We assume the input only briefly stimulates 
the sensory network itself, after which the network starts generating samples. We test 4 different distributions 
by setting the weights that project from the uniform network to the sensory network in 4 different models. Next, 
we simulate a decision by drawing an input i ( i = [0.5, 8.5] ) and computing and integrating f (i, xt) . First, we 
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Figure 4.  The model can provide samples for the computation of expectations. (A) Cartoon of computation, 
samples are internally generated by simulating spontaneous dynamics in the model (top right in the cartoon). 
The samples are then combined with input by a downstream network that computes a function. This function 
is then integrated and generates an approximation of the expectation. (B) An input i is given, i = 0.5 to i = 8.5 
in steps of one, and for each input, the output is computed. (C) Psychometric curves after 2 s of simulating the 
system for varying distributions (averaged over 20 such simulations). (D) Psychometric curve after 200 ms 
of simulating the system, for the unimodal distribution. The shaded area is one standard deviation from the 
mean on each side (100 simulations). The horizontal dotted line indicates the maximum output at i = 8.5 (used 
for normalization). The dotted and full vertical lines indicate the standard deviations at i = 2.5 and i = 4.5 
respectively. (E) The normalized mean of the slope as a function of simulation time remains constant (see 
Section “Methods”). (F) The normalized standard deviation of the output reduces with simulation time.
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simulate each model for 2 seconds for varying inputs (Fig. 4B,C) and obtain psychometric curves by plotting the 
output r after 2 s as a function of the input i (Fig. 4C). Psychometric curves show the relationship between input 
and output and are often used to summarize and compare behavior in decision experiments. We observe clear 
differences in the psychometric curves, as a consequence of the different distributions p(x). Indeed, the output 
r is proportional to how likely the input i is larger than the random variable X: r ∝ p(X < i) =

∫ i
−∞

p(x)dx . 
We first compare the uniform distribution with a biased distribution. The biased distribution has more prob-
ability mass in the interval x = [1, 4] than in the interval x = [5, 8] , leading to an upward-biased psychometric 
curve compared to the uniform distribution. Then, we compare a unimodal and bimodal distribution. Here, 
the different distributions lead to a notable difference in the slopes of the psychometric curve. Interestingly, as 
the spontaneous dynamics generate independent samples, there is no problem related to jumping between the 
different modes in the bimodal distribution. In general, a lack of correlations between samples is desirable and 
yields psychometric curves with a smaller variability. These theoretical psychometric curves can act as a predic-
tion for future perceptual decision-making studies where the stimulus distribution is varied. Note, however, 
that we remain agnostic to the mechanism of the actual decision for one of the two categories. If the probability 
to choose category +1 is a monotonously increasing function of the output r, then the experimentally observed 
psychometric curves would be the result of transforming our theoretical psychometric curves by that function.

We wondered next to what extent the decision time affects the psychometric curve. The shape of the psy-
chometric curve is not dependent on the amount of decision time available, as long as the curve is averaged 
over many individual decisions (Fig. 4D,E). The sampling mechanism explains the independence of the shape 
on decision time. The samples are drawn independently, and an output r generated after a long decision time 
is equal to an average over multiple outputs r generated by short decision times. Unlike the average shape, the 
variability around the psychometric curve is affected by the decision time (Suppl. Fig. 3). When normalized, the 
variability reduces strongly with decision time (Fig. 4F). Moreover, we also show that a “simpler” input has a 
lower variability than a “more difficult” input. An input is “simpler” when it is further away from the mean of the 
distribution, in which case it is easier to classify the input into one of the two categories. The inverse relationship 
between decision time and variability means we need more data to make a good estimation of the choice behavior 
for short decision times. We conclude that the sampling mechanism can be useful for downstream networks in 
the context of computing expectations. Specifically, we predict differences between psychometric curves which 
are dependent on the stimulus distributions. The psychometric curves do not depend on the decision time but 
require more data to accurately estimate when decision times are shorter.

The model exhibits long‑ and short‑term history effects. We next wondered whether the model 
exhibits history effects. Recent work has shown sensory history-dependent biases in decision-making on both 
short (a few trials) and long time scales ( ∼100 trials)33,34. We expect history effects in the model, because the 
plastic weights adapt to newly observed samples, redistributing the probability mass continually (Suppl. Fig. 4). 
When we switch between target distributions, it takes about 100 samples to forget the old target distribution 
entirely (Fig. 5A). The psychometric curve, measured shortly after the switch takes place, is an interpolation 
of the psychometric curves of the old and new target distributions (Fig. 5B). The forgetting is affected by net-
work parameters, for example, a larger amount of clusters C will lengthen the forgetting time (Suppl. Fig. 4). 
On a shorter time scale, we look at the effect of the last five observed stimuli on the output, given input i = 4.5 
(Fig. 5C) when the same target distribution is presented (steady-state). We use here the bimodal target distribu-
tion to test for a short-term history effect and present 2000 samples sequentially in one long continuous trial. 
When regressing the mean of the last five samples on the normalized output, we observe a significant effect 
(Fig. 5D). The short-term history can bias the output up to around 5% . This is an attractive bias, in the sense 
that the short-term mean of stimuli pulls the mean of the stored distribution in the model towards it. The bias 
arises in the model because the short-term statistics of stimuli can substantially differ from the target distribu-
tion. Such attractive biases are observed empirically at different strengths and in a wide variety of tasks, from 
delayed comparison  tasks10, to the categorization of  sounds35 and rating the attractiveness of  faces36. When the 
plasticity in the model is frozen, the short-term history effect becomes insignificant, further confirming the bias 
emerges due to learning of the stimulus distribution (Fig. 5E). This short-term effect vanishes with increasing C, 
as expected, due to slower learning (Suppl. Fig. 4). Other contributions to choice bias, such as a tendency not to 
repeat recently unrewarded  decisions37, are likely to contribute substantially to a decision-making system, but 
are unrelated to the statistics of the stimulus and as such can not be captured by this model. To summarize, we 
uncovered history effects in the model that are due to statistical changes in the observed samples. The overall 
statistical structure adapts on a long timescale, while small biases can arise on a short time scale.

The model can recall the probabilities instantaneously. The model produces samples, according to 
the inverse transform stored into the weights from the uniform sampling network to the sensory network. The 
estimation of the probabilities is therefore only accurate after waiting for a few seconds (Fig. 3). This representa-
tion can, however, be transformed into a different, more instantaneous representation. We provide an example 
of how to encode the probability of a stimulus directly in the activity of a read-out network. First, a read-out 
network is connected to the sensory network (Fig. 6A). This read-out network is balanced, consisting of one 
pool of excitatory neurons and one pool of inhibitory neurons. All excitatory neurons from the sensory network 
connect to all excitatory neurons of the read-out network. These weights follow a short-term plasticity (STP) 
rule. Specifically, the weights depress when the presynaptic neuron is active (see Section “Methods”). This means 
that read-out weights depress more when a cluster of excitatory neurons in the sensory network is more active, 
leading to lower activity in the read-out network. This directly corresponds to the probability of the stimulus 
for which the cluster codes, i.e. there is an inverse relationship between the network activity of the read-out and 
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the probability of the stimulus. This can be interpreted as a novelty signal, where low-probability stimuli lead to 
high activity and vice versa. This relationship between read-out network activity and input probability need not 
be linear for the entire range of probabilities, as varying STP parameters give different activity profiles (Suppl. 
Fig. 5A). When synapses facilitate instead of depress, we see the opposite behavior: the network activity of the 
read-out monotonously increases with the probability of the stimulus (Suppl. Fig. 5B). Importantly, we do not 
need regular input from the external world to recall its probability. Rather, the spontaneous reverberations in 

Figure 5.  The model exhibits long- and short-term history effects. (A) The target distribution presented for 
the first 300 samples is unimodal (as in Fig. 4C). The target distribution presented for the last 300 samples 
is bimodal (as in Fig. 4C). The slope of the psychometric curve is measured every fifth sample. The shaded 
area indicates the standard deviation computed from 10 simulations. The horizontal dashed lines indicate 
the slope of the psychometric curves of the unimodal (top) and bimodal (bottom) target distributions. (B) 
The psychometric curves at three time points, indicated by arrows in panel (A), are shown (averaged over 20 
simulations). (C) Cartoon of simulation. After every fifth sample, we simulate a decision using the input i = 4.5 , 
which is the long-term mean of the target distribution. There is no switch between target distributions, we are at 
steady-state and providing samples from the bimodal distribution only (as in Fig. 4C). We look at the effect of 
the last five samples on the output r. (D) The blue circles indicate simulation results. The output r is normalized 
to the interval [0, 1] and plotted as a function of the mean of the last five samples. The red line is a result of 
linear regression, the slope is significantly non-zero (p-value 0.026). (E) The same plot as in (D), but plasticity is 
frozen. The slope is not significantly non-zero (p-value 0.56).
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Figure 6.  The model can recall the probabilities instantaneously. (A) A read-out network with STP in the read-
out weights can encode probabilities instantaneously. (B) There is an inverse relationship between probability 
and average read-out activity when using short-term depression in the read-out weights. Shaded area indicates 
one standard deviation from the mean on each side (25 simulations).
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the uniform sampler and the sensory network keep the memory of the external world alive. We conclude that 
the sampling representation can be accessed in different ways. Not only can we compute expectations over func-
tions, but we can also transform the representation and use it for instantaneous coding.

Discussion
Summary. We presented a model which learns the probability distribution of an external variable. The 
model takes samples from the distribution during spontaneous dynamics, using inverse transform sampling. 
This representation can compute expectations over functions in downstream networks. Specifically, we studied 
a possible relationship with perceptual decision-making. The model predicts that the shape of the psychometric 
curves depends on the stimulus distribution. Additionally, sensory history effects emerge due to the ongoing 
plastic changes. Finally, we explored a way in which the representation can be transformed: it is possible to trans-
form the samples into an instantaneous coding of the probability of the external variable.

Learning with clustered networks. The substrate we used for learning statistical structure is the clus-
tered network. The clustered network is a particular implementation of a neural ensemble, experimentally 
observed as highly synchronous activity. Recent experimental work has uncovered neural ensembles in multiple 
cortical brain  regions5,38,39. Interestingly, many neural ensembles remain stable over long time  frames40. While 
theoretical work has provided insights into how individual neural ensembles may be formed (for a review  see26), 
it is an open question how to learn and compute in networks consisting of multiple ensembles. In general, a 
clustered code has interesting properties, such as robust error correction, that make it a candidate to underlie 
computations in the  brain41–43. It has also been shown to enhance reinforcement learning in a recent  study44. 
Here, one clustered network serves as a backbone and projects to a second network which encodes the variable. 
The plastic weights learn the correct transformation, in this case, the inverse of the cumulative distribution func-
tion F−1(u) . This is related to previous work on learning and generating  sequences24,45,46. In this previous work, 
the backbone consists not of randomly switching clusters but clusters active sequentially in a chain. Instead of 
encoding the uniform distribution, it encodes time. The plastic weights to the network encoding the variable 
learn a function of time f(t), using similar plasticity rules. In both models, the architecture is identical, leading 
to comparable design features: for example, the accuracy and speed of learning depend to a large extent on the 
number of clusters in the backbone.

Modularity leads to flexibility. A strength of the model is its large flexibility, stemming from its 
 modularity47. Once the statistical structure is stored, it can be accessed in several ways. Separating the storage of 
the statistical structure from performing downstream computations is also observed in the experimental litera-
ture in the context of working-memory  tasks10,38,48. In particular, when the downstream computation does not 
change, but the statistical structure does change, it may be sufficient to have unsupervised learning to update the 
stored distribution. When the computation itself changes, a form of reward-based or supervised learning could 
act in the downstream networks leaving the statistical structure unchanged. It is an open question of exactly 
how the stored statistical structure can be integrated with working memory for more complex decision-making. 
A recent model of working memory has, however, proposed a model relying on integrators that can explain 
observed history biases without any need for explicit learning of the statistical  structure49.

Computing expectations and transforming the representation. We focused on a model of sam-
pling in spiking neural networks. We illustrated the use of the representation in downstream networks in two 
examples. Many different mechanisms could work complementary to our model, both when performing deci-
sion-making and when encoding surprise or novelty in a network. The generated samples might be one of many 
inputs to a hierarchical decision-making system, relying on more than temporal  integration34,50,51. Furthermore, 
novelty signals have been theorized to emerge from various sources. Previous studies have proposed, similarly, 
plasticity mechanisms in feedforward excitatory  synapses52,53. Other mechanisms however are also likely to be 
involved, for example, inhibitory plasticity onto excitatory neurons could suppress non-novel  stimuli54,55. More 
work has to be done to reveal all the mechanisms underlying this phenomenon and how they interact together.

Other types of statistical structure. Our work focuses on one type of statistical structure: a prior prob-
ability distribution. The brain may extract other types of structure to influence behavior. One other such type is 
Markov statistics. Certain events may precede other events with a high or low probability, potentially informing 
our predictions and decisions. A conceptual model was outlined  before56, and recently a model was proposed 
using a similar substrate of discrete excitatory clusters of  neurons57.

Other types of sampling. Interpreting neural activity as samples from a distribution is not new in itself. 
Many different studies have investigated this  idea58–62 and have implemented sampling into spiking  networks63–66. 
Our work shows how to implement a well-known mechanism, inverse transform sampling, in a biophysically 
realistic network. Additionally, we show how it is possible to learn from observations. Inverse transform sam-
pling is a form of direct sampling, where there are no autocorrelations between the samples since the uniform 
samples are independently drawn. This is in contrast to sampling techniques such as Markov Chain Monte 
Carlo (MCMC), where correlations between subsequent samples are unavoidable during the stochastic walk 
in the probability landscape. Our proposed way of sampling is particularly useful when the distributions have 
a low dimensionality. But, when the dimensionality increases and the curse strikes, MCMC algorithms become 
beneficial. Previous work has focused on versions of MCMC, in the context of sampling from high-dimen-
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sional posterior  distributions65,67,68. This makes sense, especially when investigating sensory processing, where 
a high-dimensional input, such as an image, has to be processed in noisy circumstances. Another recent study 
in this context implemented a distinct type of sampling by optimizing the recurrent connectivity of a network, 
minimizing a cost  function69. We focus here, however, on learning and computing with clusters. External vari-
ables that are more salient and cognitively relevant are capable of activating a cluster, and, as such, are of much 
lower dimensionality. Yet other work has explored mental sampling in the context of foraging and free-recall 
 experiments70, proposing more complex hierarchical sampling than is done in either our model or standard 
MCMC.

Conclusion. We studied a model capable of learning to sample from a target prior distribution by mapping 
inverse transform sampling into a clustered spiking network architecture. We propose that the sampling rep-
resentation can serve as a basis for downstream computations, and provide testable predictions in the case of 
perceptual decision-making.

Methods
Excitatory neurons (E) are modelled with the adaptive exponential integrate-and-fire  model71. A classical inte-
grate-and-fire model is used for the inhibitory neurons (I).

Model architecture. Sensory network. The sensory network encodes the external variable, and consists 
of 8 clusters of 100 excitatory neurons and a pool of 200 inhibitory neurons. The connection strengths in the 
sensory network are found in Table 1, with a scaling factor f = 1 . These connection strengths roughly corre-
spond to values found  in22,24, where the E to E and I to E synapses are plastic. There is no all-to-all connectivity; 
rather two neurons are connected with a probability of p. The synaptic connections within the same cluster are 
multiplied by a factor of 10.

Uniform sampler network. The uniform sampler network is a network that spontaneously switches activity 
between C clusters of excitatory neurons. Each cluster consists of 100 excitatory neurons and there is a pool of 
25C inhibitory neurons. In our study, we simulate uniform sampler networks of different sizes. We use the net-
work parameters of the smaller sensory network and scale those parameters by a scaling factor f, proportional to 
the square root of the relative network sizes. The synaptic connections within the same cluster are multiplied by 
a factor of 10

√

C
6  . Network connectivities are found in Table 1.

Table 1.  Network and neural dynamics parameters.

Constant Value Description

f 1 Scaling factors for sensory and read-out networks

f
√

8

C
Scaling factor for network with C clusters

p 0.2 Probability of non-zero connection

wEE
u 5f pF Baseline E to E synaptic strength

wIE
u 5f pF E to I synaptic strength

wEI
u 175f pF I to E synaptic strength

wII
u 35f pF I to I synaptic strength

τE 20 ms E membrane potential time constant

τI 20 ms I membrane potential time constant

τabs 5 ms Refractory period of E and I neurons

EE 0 mV excitatory reversal potential

EI −75 mV inhibitory reversal potential

EEL −70 mV excitatory resting potential

EIL −62 mV inhibitory resting potential

Vr −60 mV Reset potential (both E and I)

C 300 pF Capacitance

�E
T

2 mV Exponential slope

τT 30 ms Adaptive threshold time constant

VT −52 mV Membrane potential threshold

AT 10 mV Adaptive threshold increase constant

τa 100 ms Adaptation current time constant

α 4 nS Adaptation current factor

β 100 pA Adaptation current increase constant, uniform sampler

β 0.805 pA Adaptation current increase constant, other networks
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Read‑out network. The read-out network receives input from the sensory network. It consists of 800 excitatory 
neurons and 200 inhibitory neurons, all the excitatory neurons receive input from all the excitatory neurons 
in the sensory network. The connection strengths in the network are the same as the connections strengths in 
Table 1, with f = 1.

Neural and synaptic dynamics. All neurons in the model are either excitatory (E) or inhibitory (I). The 
parameters of the neurons do not change depending on which network they belong to. Parameters are taken 
 from21,22,24,46,71.

Membrane potential dynamics. The membrane potential of the excitatory neurons ( VE ) has the following 
dynamics:

where τE is the membrane time constant, EEL is the reversal potential, �E
T is the slope of the exponential, C is 

the capacitance, gEE , gEI are synaptic inputs from excitatory and inhibitory neurons respectively and EE ,EI are 
the excitatory and inhibitory reversal potentials respectively. When the membrane potential exceeds 20 mV, the 
neuron fires a spike and the membrane potential is reset to Vr . This reset potential is the same for all neurons 
in the model. There is an absolute refractory period of τabs . The parameter VE

T  is adaptive for excitatory neurons 
and set to VT + AT after a spike, relaxing back to VT with time constant τT:

The adaptation current aE for excitatory neurons follows:

where τa is the time constant for the adaptation current. The adaptation current is increased with a constant 
β when the neuron spikes. The constant β is larger in the uniform sampler network. This makes the switching 
dynamics less random in time, i.e. the switching happens reliably at about 8 Hz.

The membrane potential of the inhibitory neurons ( VI ) has the following dynamics:

where τ I is the inhibitory membrane time constant, EIL is the inhibitory reversal potential and EE ,EI are the 
excitatory and inhibitory resting potentials respectively. gEE and gEI are synaptic input from excitatory and 
inhibitory neurons respectively. Inhibitory neurons spike when the membrane potential crosses the threshold 
VT , which is non-adaptive. After this, there is an absolute refractory period of τabs . There is no adaptation current 
(see Table 1 for the parameters of the membrane dynamics).

Synaptic dynamics. The synaptic conductance, g, of a neuron i is time dependent, it is a convolution of a kernel 
with the total input to the neuron i:

where X and Y can be either E or I. WXY
ij  is the synaptic strength from presynaptic neuron j to postsynaptic neuron 

i, and sYj (t) is one when the presynaptic neuron j spikes and zero otherwise. K is the difference of exponentials 
kernel:

with a decay time τd and a rise time τr dependent only on whether the neuron is excitatory or inhibitory. The 
conductance is a sum of recurrent input and external input. The externally incoming spike trains sXext are generated 
from a Poisson process with rates rXext . The excitatory external input to the uniform sampler network depends on 
the number of clusters, tuned to give a similar rate of switching between the clusters. The excitatory external input 
to the sensory network is slightly lower because it also receives excitatory input from the uniform sampler. The 
externally generated spike trains enter the network through synapses WX

ext . Parameters for the synaptic dynamics 
are found in Table 2. Parameters were not fine tuned. They are set to match similar activities across the different 
networks, and are taken  from22,24,46.

Plasticity. The synaptic weight from excitatory neuron j in the uniform sampler network to excitatory neu-
ron i in the sensory network is changed according to the following differential equation:

(2)
dVE(t)

dt
=

1

τE

(

EEL − VE(t)+�E
T exp

(

VE(t)− VE
T

�E
T

))

+ gEE
EE − VE(t)

C
+ gEI

EI − VE(t)

C
−

aE

C

(3)τT
dVE

T

dt
= VT − VE

T .

(4)τa
daE

dt
= −aE + α(VE

− EEL ).

(5)dVI (t)

dt
=

EIL − VI (t)

τ I
+ gIE

EE − VI (t)

C
+ gII

EI − VI (t)

C
.

(6)gXYi (t) = KY (t) ∗



WX
ext s

X
i,ext +

�

j

WXY
ij sYj (t)



.

KY (t) =
e−t/τYd − e−t/τYr

τYd − τYr
,
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where yi(t) = 1 if the postsynaptic neuron i fired in the last 15 ms and zero else. Similarly for the presynaptic 
neuron yj(t) = 1 if the presynaptic neuron j fired in the last 15 ms and zero else. Ap is the amplitude of synaptic 
potentiation and should be sufficiently large to ‘one-shot’ learn newly incoming stimuli. The second term is a 
“soft” normalization. The normalization ensures that probability mass can be smoothly re-attributed, specifically, 
it ensures that each cluster of neurons in the uniform sampler network connects to a single cluster in the sensory 
network. τn is the time constant of the normalization and K the normalization constant. Weights vary between 
[Wmin,Wmax] . Parameters are found in Table 2.

Numerical simulations. Protocol. During learning, samples from the target distribution are drawn 
xk ∼ p(x) every 200 ms. A high external input (30 kHz) is given to the cluster k of excitatory neurons cor-
responding to sample xk , for 50 ms. During spontaneous activity, the baseline external input is given (Table 2).

Learning curve. Learning curves can be obtained using the weights from the uniform sampler network to the 
sensory network. All the weights to cluster k of the sensory network are summed and divided by the total sum 
of all the plastic weights. This gives an empirical distribution, which can directly be compared with the target 
distribution. The weights were saved every fifth sample presentation. The MATLAB function ranksum is used to 
perform the Mann-Whitney U-test in Fig. 2D.

KL‑divergence. The KL-divergence is a measure of distance between two probability distributions. Consider 
the spike trains in the sensory network until time t. At each moment in time, only one of the clusters is active. 
The active cluster is determined by convolving the spike trains with a Gaussian of width 20 ms, averaging over 
the clusters, and taking the maximum. The amount of time that each cluster is active, divided by the total time 
t is the empirical probability that a cluster is active. Denote qk(t) as the empirical probability of cluster k at time 
t. The KL-divergence is then:

where pk is the target probability for cluster k. The KL-divergence decreases with time, indicating a better match 
between empirical and target distributions as more samples are accumulated. The dashed lines in Fig. 3B are 
computed in the exact same way. The difference is that the samples are not obtained from the neural activity in 
the sensory network, but by using the random number generator of MATLAB (built-in function rand).

Computing expectations. Nine inputs i are given, i = 0.5, . . . , 8.5 . To compute f (i, xt) , samples xt are obtained 
in continuous time by running the spontaneous dynamics of the model. At each time t, the neural activity in the 
sensory network is averaged over clusters. The index of the cluster which is the most active at time t gives xt . For 
example, if cluster 3 is the most active at time t we have xt = 3 . The output r integrates the function with a time 
constant τr = 1000 ms. This time constant is chosen to be on the order of typical perceptual decision-making 
tasks. A longer time constant means more samples can be integrated, i.e. the variability reduces. However, to 
reach the same output level more time is needed (Suppl. Fig. 3). We assume the eventual decision to be a function 

(7)
dWij(t)

dt
= Apyi(t) yj(t)+

1

τn

(

K −
∑

i

Wij

)

.

(8)DKL(t) =
∑

k

qk(t) log

(

qk(t)

pk

)

,

Table 2.  Synaptic dynamics and plasticity parameters.

Constant Value Description

τEd 6 ms E decay time constant

τEr 1 ms E rise time constant

τ Id 2 ms I rise time constant

τ Ir 0.5 ms I rise time constant

WE
ext 1.6 pF External input synaptic strength to E neurons

rEext 5 kHz Rate of external input to E neurons of uniform sampler

rEext 4 kHz Rate of external input to E neurons of sensory network

WI
ext 1.52 pF External input synaptic strength to I neurons

rIext 2.25 kHz Rate of external input to I neurons

Ap 0.5 pFHz Potentiation amplitude

K 500 pF Normalization constant

τn 100 ms Time constant of normalization

Wmin 0 pF Minimum weight

Wmax 5 pF Maximum weight
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of the output r. However, we do not implement the actual decision in a neural circuit as we are agnostic about the 
precise way the evaluation and integration of f (i, xt) happens. Mechanistic implementations have been proposed 
before, for example using attractor network  models72,73.

Slopes of psychometric curves are computed for Fig. 4E and Suppl. Fig. 4A. The slopes are computed by saving 
the outputs r when given input i = 5.5 and input i = 3.5 . The resulting outputs r are subtracted and divided by 
two. In Fig. 4E, the slope is also normalized by the output r when given an input i = 8.5 ; this normalization is 
important to be able to compare the slopes for varying simulation time lengths. The MATLAB function fitlm is 
used to fit linear regression and compute the p-value for the short-term history effect in Fig. 5D,E.

Short‑term plasticity. Short-term plasticity is implemented for the instantaneous decoding of probability (see 
Fig. 6). All excitatory neurons in the sensory network are connected to all excitatory neurons in the read-out 
network. For all these read-out weights, we have a baseline connectivity strength of w = 4 pF. Weights wj from 
neuron j in the sensory network to all neurons in the read-out network are depressed when neuron j fires, by an 
amount of 0.05wj , bounded at zero. Depressed weights return exponentially back to baseline strength with a time 
constant of 2 s. The same constants are used for the simulation using facilitation (see Suppl. Fig. 5B). The strength 
of the read-out weight increases by an amount of 0.05wj at every presynaptic spike (maximum is w = 6 pF) and 
decays to zero with a time constant of 2 s. The constants are chosen to be on the same order of magnitude as 
studied in standard short-term plasticity  models74,75. The time constant should be sufficiently slow, on the order 
of seconds rather than milliseconds, to be able to accumulate samples.

Simulations. The code used for the training and testing of the spiking network model is built in Matlab. For-
ward Euler discretisation with a time step of �t = 0.1 ms is used.

Data availability
The code is available on ModelDB: http:// model db. yale. edu/ 267144.
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