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On the equivalence 
between squeezing 
and entanglement potential 
for two‑mode Gaussian states
Bohan Li  1,5, Aritra Das  1,5, Spyros Tserkis  2, Prineha Narang  2, Ping Koy Lam  1,4 & 
Syed M. Assad  1,3*

The maximum amount of entanglement achievable under passive transformations by continuous-
variable states is called the entanglement potential. Recent work has demonstrated that the 
entanglement potential is upper-bounded by a simple function of the squeezing of formation, and 
that certain classes of two-mode Gaussian states can indeed saturate this bound, though saturability 
in the general case remains an open problem. In this study, we introduce a larger class of states that 
we prove saturates the bound, and we conjecture that all two-mode Gaussian states can be passively 
transformed into this class, meaning that for all two-mode Gaussian states, entanglement potential is 
equivalent to squeezing of formation. We provide an explicit algorithm for the passive transformations 
and perform extensive numerical testing of our claim, which seeks to unite the resource theories of 
two characteristic quantum properties of continuous-variable systems.

Entanglement is a non-classical property that can be considered as a resource for various quantum technology 
applications1. In continuous-variable (CV) systems2, e.g., systems consisting of bosonic modes, entanglement is 
connected with a more fundamental property called squeezing3. Squeezing constitutes a necessary condition for 
entanglement in CV Gaussian systems4–6 and finds applications in numerous areas of quantum optics and CV 
quantum information, including metrology7–9, secure quantum communication10–13, quantum teleportation14–16, 
cluster states17,18, heralded gates19 and quantum computation20,21.

Moreover, any multi-mode squeezed state can be transformed into an entangled state under passive 
operations22,23. Passive operations in CV systems are relatively easier to perform in the laboratory than active 
operations. There exist multi-mode quantum states that are not entangled, but have the potential to be entangled 
by simply mixing on a beam splitter24,25. Motivated by this, we study the entanglement potential of Gaussian 
states. Conceptually, the entanglement potential measures the maximum amount of entanglement obtainable 
under passive operations24. This potential depends on the way that entanglement is measured, e.g., in Ref.24, loga-
rithmic negativity26 was selected for this purpose, whereas in Ref.25, the entanglement of formation27 was chosen.

Focusing on the entanglement of formation, some of us have previously derived analytic expressions for the 
entanglement potential of a few specific classes of two-mode Gaussian states: symmetric states and balanced cor-
related states25. These analytic expressions were shown to be directly connected to the squeezing of formation28—a 
measure that quantifies the amount of squeezing in a quantum state. In Ref.25, an explicit derivation of the passive 
operations needed to achieve this potential was provided. Further, it was shown that for general two-mode Gauss-
ian states, a monotonic function, h0(·) , of the squeezing of formation upper-bounds the entanglement potential.

In this work, we extend that analysis in two ways: first, we analytically show that for a larger, six-parameter 
class of two-mode Gaussian states, the entanglement potential is equal to h0(·) of the squeezing of formation. 
Henceforth, we shall refer to all states having entanglement equal to entanglement potential as potential-saturat-
ing states. Second, we conjecture that any two-mode Gaussian state can be passively transformed into a potential-
saturating state from the six-parameter class of states, and present numerical evidence supporting this conjecture. 
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If our conjecture holds true, then the entanglement potential of all two-mode Gaussian states is exactly equal 
to h0(·) of the squeezing of formation. In other words, we find that linear passive optics can always maximise 
the entanglement of a state up to a threshold value decided by the amount of squeezing present in the state. Our 
result, thus, connects the resource theories of squeezing and entanglement for two-mode Gaussian states and is 
primely relevant to quantum information and communication protocols, where squeezed states play a major role.

Our paper is arranged as follows: In Sect. "Background", we discuss some preliminaries of Gaussian quantum 
information. Then, in Sect. "Saturating the EOF potential" we introduce a special class of potential-saturating 
Gaussian states, and propose an algorithm to passively transform arbitrary two-mode Gaussian states into poten-
tial-saturating states. We present numerical simulations of our algorithm in Sect. "Numerical simulations" to 
support our conjecture. Finally we conclude in Sect. "Discussion" with a discussion of our results and remarks 
on future scope.

Results
Background.  Gaussian quantum information.  Gaussian quantum states, which are the focus of this work, 
can be fully described by the second statistical moments of the associated bosonic-field quadrature operators 
(assuming the first statistical moments, i.e., the mean values, to be zero). The quadrature field operators x̂j and p̂j 
are the real and imaginary parts, respectively, of the bosonic-field annihilation operator for the  jth mode. Ac-
cordingly, any N-mode Gaussian state admits a finite-dimensional representation via the covariance matrix σ of 
its quadrature field operators. This covariance matrix is a 2N × 2N real symmetric matrix satisfying the uncer-
tainty relation29 σ + i� ≥ 0 , where � is the symplectic form given in the Supplemental Material Sect. "Gaussian 
transformations and their matrix representations". Apart from the regular eigenvalues {�j} of σ , it is also useful 
to also define the symplectic eigenvalues {νj} of σ , which are the positive eigenvalues of i�σ . We denote the 
symplectic eigenvalues arranged in increasing order by ν↑j  , so that ν↑1 ≤ ν

↑
2 ≤ ν

↑
N . Then, the uncertainty relation 

for σ is equivalent to the condition ν1 ≥ 12.
In the symplectic representation, Gaussian transformations, which map Gaussian states to themselves, 

are given by symplectic matrices K ∈ Sp(2N,R) , such that K�K⊤ = � , and K acts on σ as σ  → KσK⊤ . 
Here Sp(2N,R) denotes the group of symplectic 2N×2N  matrices over real numbers. Typical Gaussian 
transformations include beam splitters Kbs(τ ) with transmissivity τ ∈ [0, 1] and phase rotations Krot(θ) with 
angle θ ∈ [0, 2π) ; these are both passive operations, meaning they do not introduce extra energy into the system 
and thus, leave the trace of the covariance matrix, Trσ invariant.

Active Gaussian transformations, on the other hand, include two local single-mode squeezers, 
denoted S1(r1, r2) , with real-valued squeezing parameters rj for mode  j ∈ {1, 2} or two-mode squeezers S2(r) 
for r the single real squeezing parameter; these transformations introduce extra energy into the system. We 
summarise these transformations and their matrix representations in the Supplemental Material Sect. "Gauss-
ian transformations and their matrix representations". We also list a few standard decompositions in Gaussian 
quantum optics in Sect. "Standard decompositions in Gaussian optics" of the Supplemental Material; these will 
be used later in Sects. "Saturating the EOF potential" and "Numerical simulations".

The covariance matrix π of a pure Gaussian state satisfies det π = 1 , whereas for a mixed Gaussian state σ , 
we have det σ > 1 . Such a mixed state σ can be decomposed into a pure state π and some positive definite 
matrix, φ > 0 , representing noise as σ = π + φ , but this decomposition is not unique. Owing to this non-
uniqueness, one way to extend some resource measure F  defined for pure states to mixed states is by optimising 
over all possible pure state decompositions as follows

where the minimisation is over all pure states π . Physically, this corresponds to the minimum amount of resource 
F(π) required to create the state σ . Below we discuss two resource measures defined in this way—the squeezing 
of formation S(σ ) and the entanglement of formation potential P(σ ) of a Gaussian state σ.

Squeezing of formation.  The process of squeezing a Gaussian state’s uncertainty below the standard quan-
tum limit30, along one quadrature, is an active transformation. Operational measures of squeezing have been 
proposed28 in order to quantify the amount of squeezing in a state. One such measure called the squeezing of 
formation (SOF), denoted S(σ ) , is defined as the minimum amount of local squeezing required to construct σ 
starting from vacuum28. For an N-mode pure Gaussian state π , this quantity is simply a function of the eigen-
values of π,

where �↑j (π) denotes the  jth lowest eigenvalue of π . Straightforwardly, the SOF of a two-mode locally-squeezed 
vacuum with squeezing parameters r1 and r2 is simply r1 + r2 . Finally, for mixed states σ , the SOF definition is 
then extended via

where the minimisation is over all pure states π.

(1)F(σ ) := min
π

{F(π) | σ − π ≥ 0 , det π = 1},

(2)S(π) := −
1

2

N
∑

j=1

ln
(

�
↑
j (π)

)

=
1

2

2N
∑

j=N+1

ln
(

�
↑
j (π)

)

,

(3)S(σ ) := min
π

{S(π) | σ − π ≥ 0 , det π = 1},
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Entanglement of formation potential.  A two-mode Gaussian σ is separable if and only if its partial transpose, 
denoted σŴ , is also a valid state, i.e.,

a result known as the PPT condition31. In this case, σ has zero entanglement irrespective of which entangle-
ment measure is employed. However, for mixed entangled states, the various measures of entanglement, includ-
ing logarithmic negativity26, entanglement of formation27, distillable entanglement27, and relative entropy of 
entanglement32, are all in general inequivalent33,34.

We limit our scope to two-mode Gaussian states, which can be treated as a bipartite system, and we choose the 
entanglement of formation (EOF), denoted E(σ ) , as our entanglement measure27. Conceptually, E(σ ) quantifies 
the minimum amount of entanglement required to produce the state σ , assisted only by local operations and 
classical communication (LOCC). For pure states π, E(π) is defined to be the entropy of entanglement33,35, i.e.,

where h[·] is an auxiliary function defined in the Supplemental Material Sect. "De-cross-correlated pure states 
saturating the EOF potential". Then, for mixed states σ , the definition is extended via Eq. (1) to36–39

Note that Eq. (6) technically defines the Gaussian-EOF39, which, in general, upper-bounds the EOF for multi-
mode states, but coincides with the EOF for two-mode Gaussian states40.

Next, the EOF potential P is defined as the maximum EOF a state can attain when transformed only by pas-
sive linear optics25. Specifically, starting from a two-mode Gaussian state σ , with access to two ancillary vacuum 
modes, and four-mode passive transformations K, the EOF potential is defined as

so that E(σ ) ≤ P(σ ) always. In Eq. (7), the 12 denotes two ancillary vacuum modes and the tr2 denotes tracing 
out these modes. Intuitively, the EOF potential denotes the maximum EOF we can get from the state σ by rear-
ranging it between the four modes, two original modes plus two ancillary modes. Interestingly, P(σ ) is upper-
bounded by a simple function of S(σ )25,

where h0[·] is a monotonic auxiliary function defined in the Supplemental Material Sect. "De-cross-correlated 
pure states saturating the EOF potential". However, the saturability of the bound in Eq. (8) for arbitrary σ remains 
an open problem. In this work, we provide an algorithm that aims to saturate this bound for arbitrary two-mode 
Gaussian states and then establish this saturability via extensive numerical testing.

Saturating the EOF potential.  In this section, we first introduce a special class of potential-saturating 
two-mode Gaussian states, σsp ( sp for special), which have E(σsp) = P(σsp) = h0

[

S(σsp)
]

 , and thus saturate the 
bound in Eq. (8). We state this claim as a proposition and then prove it in Sect. " A special class of states". Then, in 
Sect. " Extension to all two-mode Gaussians", we conjecture that any arbitrary two-mode Gaussian state can be 
passively transformed into this special class. In Sect. " Algorithm: Passive operations to maximise EOF" we pro-
vide an explicit algorithm to perform this transformation. If our conjecture holds true, then P(σ ) = h0[S(σ )] 
for all two-mode Gaussian states.

A special class of states.  Consider the two-mode Gaussian state

where πd(r1, r2) represents a locally-squeezed two-mode pure state in diagonal form with squeezing parameters 
r1 and r2 (matrix representation in Supplemental Material Sect. "Gaussian transformations and their matrix repre-
sentations"). Here Kbs denotes a balanced beam splitter operation with τ = 1/2 , �2 ≥ �1 ≥ 0 are two non-negative 
constants, and φ1 = |φ1��φ1| and φ2 = |φ2��φ2| are two orthogonal, positive semidefinite, rank-one matrices with

In Eq. (10), α is a real parameter satisfying |α| ≤ e−r1−r2 and θ ∈ [0, 2π) is an angle. The term �1φ1 + �2φ2 can be 
thought of as correlated noise, parameterised by �1 , �2 , α and θ , added to the pure two-mode squeezed state πd . 
The terms �1 and �2 denote the strength of the noise terms φ1 and φ2 , respectively. The parameter α determines 
the ratio between the added noise in the first and the second modes in the same quadrature, whereas the angle θ 
determines the ratio between the added noise in the x̂ and p̂ quadratures in the same mode. When �1 = �2 , the 
form of the added noise �1φ1 + �φ2 is special in the sense that the state σsp becomes passively de-cross-correlat-
able, i.e., can be passively transformed into a de-cross-correlated state (recall that de-cross-correlated states have 

(4)ν
↑
1 (σ

Ŵ) ≥ 1,

(5)E(π) := max
{

0, h
[

ν
↑
1 (π

Ŵ)

]}

,

(6)E(σ ) := min
π

{E(π) | σ − π ≥ 0 , det π = 1}.

(7)P(σ ) := sup
K

{

E(σ ′)

∣

∣

∣

∣

σ ′ = tr2

[

K(σ ⊕ 12)K
⊤
]

}

,

(8)P(σ ) ≤ h0[S(σ )],

(9)σsp = Kbs

(

πd(r1, r2)+ �1φ1 + �2φ2
)

K⊤
bs ,

(10)|φ1� =







α cos θ
sin θ
cos θ
α sin θ






and |φ2� =







α sin θ
cosθ
sin θ

−α cos θ






.
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no correlations between the x̂ and p̂ quadratures, i.e., �x̂i p̂j + p̂i x̂j� = 0 for i, j ∈ {1, 2} , see Supplemental Material 
Sect. "Gaussian transformations and their matrix representations" for details). Overall, the state σsp has 6 free 
parameters {r1, r2, �1, �2,α, θ} and thus may be thought of as an element from a six-parameter family of states.

As we shall show in the following proposition, the state σsp is special in the sense that: σsp has the same SOF 
as πd , the EOF of σsp saturates its EOF potential and σsp has the same EOF potential as πd:

Moreover, the EOF and SOF properties of a pure state πd are simply

In other words, the upper bound for EOF in Eq. (8) is saturated for all such σsp . We now formally state and prove 
this claim.

Proposition  For any state σsp of the form in Eq. (9), the EOF upper bound in Eq. (8) is saturated, i.e.,

Proof  The outline of our proof is as follows. By adding classical correlations in the form of noise to σsp , we get a 
state σdcc that is de-cross-correlated. We then lower-bound E(σdcc) , which serves as a lower bound for E(σsp) and 
thus P(σsp) . Finally, we upper-bound S(σsp) and show that this upper bound coincides with the lower bound 
for P , which along with Eq. (8) implies that P(σsp) = h0

[

S(σsp)
]

 . The proof presented below is broken up into 
three steps, and is illustrated in Fig. 1 as a circuit diagram.

Step 1: We first add some noise along Kbsφ1K
⊤
bs to σsp to get a de-cross-correlated state σdcc,

As adding noise cannot increase entanglement, we have

Step 2: Next, we consider the least amount of two-mode squeezing, r0 , required to un-squeeze σdcc into a sepa-
rable state, i.e.,

Then h0[2r0] is a lower bound to E(σdcc) . By checking the necessary and sufficient conditions for separability 
(see Sect. “Background”), we find that the state S2(r)σdccS⊤2 (r) is separable when

so that r0 = (r1 + r2)/2 . Moreover, for the interval in Eq. (16) to be valid, we must have |α| ≤ e−r1−r2 . The lower 
bound h0[2r0] = h0[r1 + r2] ≤ E(σdcc) from Eq. (16), when combined with Eq. (14), results in

(11)S(σsp) = S(πd) and E(σsp) = P(σsp) = P(πd).

(12)S(πd) = r1 + r2 and P(πd) = h0[S(πd)].

(13)E(σsp) = P(σsp) = h0
[

S(σsp)
]

.

σdcc = σsp + (�2 − �1)Kbsφ1K
⊤
bs = Kbs(πd + �2(φ1 + φ2))K

⊤
bs = Kbs






πd + �2







α2 0 α 0
0 1 0 α

α 0 1 0
0 α 0 α2












K⊤
bs .

(14)E(σdcc) ≤ E(σsp).

(15)r0 := min
r

{

r
∣

∣

∣
S2(r)σdccS

⊤
2 (r) separable

}

.

(16)
r1 + r2

2
≤ r ≤

1

4

2
∑

j=1

log

[

�2 + e2rj

1+ �2α2e2rj

]

,

(17)h0[r1 + r2] ≤ E(σdcc) ≤ E(σsp) ≤ P(σsp).

Figure 1.   Schematic of the procedure to compute the EOF potential P for a state σsp in the special form given 
in Eq. (9). Steps 1 and 2 from the proof of our proposition are also indicated. After adding a particular correlated 
noise to σsp (step 1), the de-cross-correlated state σdcc is then two-mode-squeezed to produce a separable state 
(step 2). The minimum value r0 of the two-mode squeezing parameter, such that the output state is separable, 
yields the lower bound h0[2r0] to P(σsp) , as in Eq. (17).



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11722  | https://doi.org/10.1038/s41598-023-38572-1

www.nature.com/scientificreports/

Step 3: Finally, we observe that σsp can clearly be produced with r1 + r2 amount of squeezing, so that 
S(σsp) ≤ r1 + r2 . The monotonicity of h0(·) and Eq. (8) then allows us to upper-bound E(σsp) as

Combining Eqs. (17) and (18), we get

thus proving the proposition. 	� �

The proposition above says that for states in the special form of Eq. (9), the upper bound h0[S(·)] (intro-
duced in Ref.25) on the EOF potential P(·) is actually the true value of P(·) . In other words, all states in this 
six-parameter family saturate the inequality in Eq. (8). Notably, previously, only two three-parameter families of 
two-mode Gaussian states were known to possess this property: symmetric states and balanced correlated states25.

Extension to all two‑mode Gaussians.  Let us now denote by G the set of all states in the special form of Eq. (9). 
Suppose a state σ ′ is not in this set G, but on applying some passive transformation K ′ transforms into the special 
form, i.e.,

As passive transformations by definition do not change the EOF potential of a state25, we must have

Moreover, passive transformations also leave the SOF invariant28, so S(K ′σ ′K ′⊤) = S(σ ′) . Thus, we have

indicating that σ ′ too saturates the inequality in Eq. (8) despite not being in the set G. By a similar line of rea-
soning, it follows that for any state σ ′ �∈ G , if we can add some noise φ′ such that its SOF remains unchanged, 
i.e., S(σ ′) = S(σ ′ + φ′) , and the resulting state is in the special form, i.e., σ ′ + φ′ ∈ G , then σ ′ must also satisfy 
Eq. (22).

It is then evident that any state that can be transformed into G by either passive transformations, or the addi-
tion of noise that keeps the SOF constant, or both, must also saturate the upper bound in Eq. (8). We conjecture 
that all two-mode Gaussian states can be transformed into G in this way.

Conjecture  Any two-mode Gaussian state σin can be transformed into some element σout in G, without increasing 
its SOF, via only passive transformations, the addition of noise and access to ancillary vacuum modes.

From the discussion in Sect. "A special class of states" we know that our conjecture, if true, would imme-
diately imply that P(σin) = h0[S(σin)] for all two-mode Gaussian states σin . In this work, we do not formally 
prove our conjecture—instead, we provide evidence for the conjecture in the following way. First we present 
the transformation σin  → σout mentioned in the conjecture as an algorithm (Algorithm 1 in Sect. "Algorithm: 
Passive operations to maximise EOF"). Algorithm 1 takes σin as input, and after performing passive operations, 
adding noise, and adding and then discarding an ancillary vacuum mode, the algorithm outputs the transformed 
state σout ∈ G . Next, we numerically ran our algorithm on 106 random inputs σin , and calculate the EOF of the 
output E(σout) and compare that to the SOF of the input S(σin) . We verify that  E(σout) = h0[S(σin)] holds true 
for every input state to within numerical tolerances.

Algorithm: passive operations to maximise EOF.  We now propose an algorithm that, starting from 
any arbitrary two-mode Gaussian  σin , outputs a potential-saturating two-mode Gaussian  σout such 
that E(σout) = P(σout) = h0[S(σout)] while keeping the SOF constant, i.e., S(σout) = S(σin) . In doing so, the 
algorithm only performs passive operations and adds noise to the input state so that P(σout) ≤ P(σin) . As a 
result, our algorithm establishes the fact that P(σin) = h0[S(σin)] for any arbitrary two-mode Gaussian σin . The 
fundamental idea behind the algorithm is to decouple the squeezing between the two modes of σin , and then mix 
the two modes on a balanced beam splitter. The resulting de-cross-correlated state, with two identical modes, 
is known to be potential-saturating and also saturates the EOF bound in Eq.  (8) (see Supplemental Material 
Sect. "De-cross-correlated pure states saturating the EOF potential").

The first step in the algorithm is to find an optimal pure state πopt that has the same SOF as σin from Eq. (3), 
i.e., S(σin) = S(πopt) ; in Algorithm 1, we denote this procedure as OptSOFState(σin)28. Next, BMDecomp(πopt) 
leverages the Bloch-Messiah decomposition to find a passive transformation KBM that that diagonalises πopt 
to πdiag (see Supplemental Material Sect. "Standard decompositions in Gaussian optics" for details). Apply-
ing KBM to the mixed state σin = πopt + φ yields the mixed state σdiag = πdiag + φdiag (note that σdiag and φdiag 
are not diagonal). In the second step, we calculate the eigenvalues {�j} (arranged in decreasing order) and 
eigenvectors {

∣

∣φj
〉

} of the matrix φdiag via the procedure Spectrum(φdiag) . Then we compute the extra noise 
term φextra = (�1 − �2)|φ2��φ2| , which, when added to σdiag , gives us the state σ ′ = σdiag + φextra.

(18)E(σsp) ≤ P(σsp) ≤ h0
[

S(σsp)
]

≤ h0[r1 + r2].

(19)E(σsp) = P(σsp) = h0[r1 + r2] and S(σsp) = r1 + r2 ,

(20)σ ′ �∈ G but K′σ ′K′⊤ ∈ G.

(21)P(σ ′) = P(K ′σ ′K ′⊤) = h0

[

S(K ′σ ′K ′⊤)

]

.

(22)P(σ ′) = h0
[

S(σ ′)
]

,
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Surprisingly, we find that the state σ ′ at this point in the algorithm can always be passively de-cross-correlated. 
This is not true, in general, for mixed Gaussian states. Nevertheless, for all σin , KBMσinK

⊤
BM + φextra becomes a 

passively de-cross-correlatable state—this is crucial because de-cross-correlated states are optimal for the EOF 
potential (see Supplemental Material Sect. "De-cross-correlated pure states saturating the EOF potential"). This 
passive transformation, which is simply a phase rotation on one mode, is calculated in the procedure DeCross-
Correlate(·) by numerically finding the angle θ∗ ∈ [0, 2π) and mode i∗ ∈ {1, 2} to be rotated to make σ ′ de-
cross-correlated. The last step in the algorithm comprises mixing one of the modes of the de-cross-correlated 
state σrot with a third ancillary vacuum mode on a beam splitter; this is done to remove noise from σrot . The 
transmissivity τ ∗ ∈ [0, 1] for this beam splitter operation K3,j∗

bs  and the mode j∗ ∈ {1, 2} to be mixed with vacuum 
are calculated numerically by maximising the EOF of the resulting state. Details of the numerical procedure for 
calculating EOF are presented in Sect. "Numerical simulations". This final state is output as σout by Algorithm 1, 
which we present below in full.

We note that for states σin with both modes squeezed, steps 5 through to 13 may be skipped in Algorithm 1, 
and instead a final balanced beam splitter Kbs suffices to bring σin into G. More precisely,

Thus KbsKBM is the passive transformation that maximizes the EOF of σin , or, alternatively, transforms σin into 
the set G.

Numerical simulations.  In order to support our conjecture, we numerically apply Algorithm 1 to 106 ran-
domly generated two-mode Gaussian states. This random generation leverages Williamson’s decomposition (see 
Supplemental Material Sect. "Standard decompositions in Gaussian optics") by applying random active and pas-
sive operations on randomly generated two-mode thermal states. For each randomly generated instance, its SOF 
and the corresponding optimum pure state is computed numerically, based on an algorithm provided in Ref.28 
with a numerical accuracy of 10−8 . Then, this state is transformed according to Algorithm 1, and the EOF of the 
output state is calculated. For arbitrary two-mode Gaussian states, there are several equivalent approaches (but 
no simple analytical expression) to calculate the Gaussian EOF33,36,38,39,41. We used the approach from Ref.33 to 
compute Gaussian EOFs in this work.

By testing on 106 such randomly generated two-mode Gaussian states, we see that the difference between the 
EOF E(σout) and the upper bound h0[S(σin)] is always lower than numerical tolerance. The average absolute 
error |E − h0[S]| over a million runs is 1.93×10−9.

We also explicitly verify that Algorithm 1 does not change the SOF of the input state, i.e., S(σin) = S(σout) . 
The results from this test are shown in Fig. 2, where the straight line plot between E and h0[S] provides strong 
evidence supporting our conjecture.

Based on our proposition, and the numerical results supporting our conjecture shown in Fig. 2, it follows that 
the EOF potential of all two-mode Gaussian states is a monotonic function of the state’s SOF. Qualitatively, this 
means the maximum EOF, when restricted to linear passive optics, is completely determined by the minimum 
amount of local squeezing required for state preparation. Conversely, to increase EOF beyond this value, further 
squeezing operations are necessarily required.

(23)σout = KbsKBMσinK
⊤
BMK⊤

bs ∈ G.
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Discussion
In this work, we have studied the relation between the squeezing of formation and the maximum entangle-
ment of formation under passive operations for two-mode Gaussian states. We have characterised a special 
six-parameter family of two-mode states, which are potential-saturating and also saturate the SOF-EOF bound. 
Moreover, we have conjectured that any arbitrary two-mode Gaussian state can be passively transformed into 
the aforementioned family. In support of our conjecture, we have proposed an algorithm to passively transform 
arbitrary two-mode Gaussian states into this special class. Finally, we report numerical results from simulating 
this algorithm on a million random instances, which supports our conjecture.

In conclusion, we claim that the entanglement potential for all two-mode Gaussian states is completely 
determined by the minimum amount of squeezing required to construct the state. By connecting an operational 
measure for squeezing to one for entanglement, our work establishes a satisfying link between the resource 
theories of squeezing and entanglement. Furthermore, being restricted solely to passive linear optics, the steps 
in our proposed algorithm are practically feasible in experimental setups. As an example application, our results 
could be used to quantify and compare the entangling capabilities of different experimental setups.

Our work draws a natural conclusion to the line of research investigating the relationship between entan-
glement potential and squeezing for two-mode Gaussian states. As both these quantities can be extended to 
multi-mode states, the validity of the SOF-EOF bound and its saturability remain open problems in the greater-
than-two-mode case. Notably, in this case, the Gaussian EOF and the EOF do not coincide so the entanglement 
potential must be redefined carefully39,40.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Code availability
The codes that support the findings of this study are available from the corresponding author upon reasonable 
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