
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12026  | https://doi.org/10.1038/s41598-023-38563-2

www.nature.com/scientificreports

Evapotranspiration estimation 
using Surface Energy Balance 
Model and medium resolution 
satellite data: An operational 
approach for continuous 
monitoring
S. Pareeth * & P. Karimi 

Monitoring spatial and temporal trends of water use is of utmost importance to ensure water and food 
security in river basins that are challenged by water scarcity and climate change induced abnormal 
weather patterns. To quantify water consumption by the agriculture sector, continuous monitoring 
is required over different spatial scales ranging from field (< 1 ha) to basin. The demand driven 
requirement of covering large areas yet providing spatially distributed information makes the use of 
in-situ measurement devices unfeasible. Earth observation satellites and remote sensing techniques 
offer an effective alternative in estimating the consumptive use of water (Actual EvapoTranspiration 
(ETa) fluxes) by using periodic observations from the visible and infrared spectral region. Optical 
satellite data, however, is often hindered by noises due to cloud cover, cloud shadow, aerosols and 
other satellite related issues such as Scan Line Corrector (SLC) failure in Landsat 7 breaking the 
continuity of temporal observations. These gaps have to be statistically filled in order to compute 
aggregated seasonal and annual estimates of ETa. In this paper, we introduce an approach to develop 
a gap-filled multi-year monthly ETa maps at medium spatial resolution of 30 m. The method includes 
two major steps: (i) estimation of ETa using the python based implementation of surface energy 
balance model called PySEBAL and (ii) temporal interpolation using Locally Weighted Regression 
(LWR) model followed by spline based spatial interpolation to fill the gaps over time and space. 
The approach is applied to a large endorheic Lake Urmia Basin (LUB) basin with a surface area of 
~ 52,970 km2 in Iran for the years 2013–2015 using Landsat 7 and 8 satellite data. The results show 
that the implemented gap filling approach could reconstruct the monthly ETa dynamics over different 
agriculture land use types, while retaining the high spatial variability. A comparison with a similar 
dataset from FAO WaPOR reported a very high correlation with R2 of 0.93. The study demonstrates 
the applicability of this approach to a larger basin which is extendible and reproducible to other 
geographical areas.

Water scarcity is one of the most critical global issues of the twenty-first century which has affected the daily 
livelihood of millions. An estimated forty percent of the global population are experiencing water scarcity at 
different magnitudes1,2. In Asia and the Middle East region, water scarcity is mainly driven by climate change, 
improper water use, and growing population3. Many studies have reported a rapid decrease in the level of 
groundwater table in the semi-arid regions of Asia and the Middle East mainly due to the overuse of water to 
meet irrigation needs4–6. Therefore, there is a great need to establish monitoring systems to facilitate timely 
interventions ensuring sustainable management of land and water resources. One of the Sustainable Develop-
ment Goal (SDG)—SDG 6 targets to substantially reduce the number of people suffering from water scarcity by 
improving water use efficiency by the year 20307. The biggest share of water (around 70%) in Asia is allocated 
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for irrigation8. Hence, to improve water use efficiency it is crucial to monitor the water use from the basin scale 
where water allocation to different sectors takes place9,10 to the field scale where the water saving interventions 
are often deployed11. The requirement of covering large geographical areas, yet providing very fine resolution 
information makes the use of in-situ measurement devices unfeasible due to technological limitations as well as 
the large commitment required in terms of equipment costs and maintenance.

Remotely sensed information from satellites plays a crucial role in hydrology and water resources manage-
ment, allowing for monitoring and assessment of surface water bodies, land and water use, precipitation patterns, 
and soil moisture levels over large spatial scales. It is considered as a viable alternative to in-situ data for moni-
toring land and water use in agriculture12. Frequent observations of satellite data in visible and infrared spectral 
region has been developed to be a cost-effective, scalable, and reliable data source for measuring ETa

13. In recent 
decades, the utilization of remote sensing has significantly expanded in terms of spectral and temporal resolution. 
This growth can be attributed to the launch of new satellite/sensor missions, the adoption of open data policies by 
agencies, and the advancement of algorithms used to accurately extract land use and geophysical parameters14. In 
agriculture, there is an increasing demand to use remotely sensed information to monitor and assess water use 
and irrigation performances at different scales from basin to field level9. Remote sensing can be used as a valuable 
source of information for water resource planners to conduct water accounting15 and for irrigation managers to 
estimate the spatial distribution of water use and productivity16. Satellite data offers unique spatial and temporal 
coverage with sensors like Moderate Resolution Imaging Spectroradiometer (MODIS) (with ~ 250–1000 m spatial 
and daily temporal resolution) which is ideal for basin scale studies and multiple Landsat missions (30–100 m 
spatial and 16 days temporal) suitable for field level studies14,17. It is feasible now to setup operational monitoring 
systems across various scales from field to the basin and from districts to national and continental levels with 
daily, weekly, and biweekly temporal coverage using products derived from satellite data10,16.

Many approaches have been developed over the past four decades to estimate ETa from remotely sensed satel-
lite data18. One of the most commonly used, albeit a complex approach, is to use physically based Surface Energy 
Balance (SEB) models which require a combination of meteorological and satellite data as inputs19–21. There are 
many variants of SEB models including Atmosphere-Land Exchange Inverse (ALEXI)22, Mapping EvapoTran-
spiration at high Resolution with Internalized Calibration (METRIC)23, Surface Energy Balance Model for land 
(SEBAL)19, operational Simplified Surface Energy Balance (SSEBop)24, Simplified Surface Energy Balance Index 
(S-SEBI)25 etc, which have been successfully implemented at various scales from basin to global to encompass 
all scales in which SEB type models have been used. METRIC and SSEBop are successfully implemented in the 
United States and other countries reporting high accuracies with R2 reported ranging from 85 to 95% against 
field observations obtained from Lysimeter26. The SEBAL model used in this study is implemented in various 
studies that reported higher accuracies ranging from 85 to 96% respectively on daily to seasonal time scales27.

Implementing SEBAL model over a large area is often challenging due to complexity in data requirements, 
the need for internalized calibration, and geospatial big data processing28. Hence SEBAL applications have been 
mostly spatially limited to smaller geographical areas, e.g. Irrigation districts or sub-basins, and temporally 
to processing a handful of images in one growing season or a year29. However, with the development of cloud 
computing infrastructures there are community driven efforts such as OpenET aiming at increasing access to 
remote sensing based ETa estimations irrespective of the models30. SEBAL implementation in Google Earth 
Engine called geeSEBAL automates the ETa estimation using Landsat data31. The most important input data 
required from remote sensing is thermal radiation data from satellite sensors. Currently, thermal data acquired 
from Landsat and MODIS sensors are being used extensively for ETa estimation at 30 m and 1 km respectively26. 
Note that the Landsat thermal bands are acquired at 100 m spatial resolution and resampled to 30 m by the data 
provider using cubic convolution method. However, the data obtained in the optical spectrum is often contami-
nated due to clouds leaving large gaps which makes it difficult to do monthly/seasonal aggregations. Statistical 
interpolation over spatial domain while applied to fill larger gaps results in over smoothing. Hence biophysical 
parameters following annual unimodal or multimodal cyclic patterns have been successfully gap-filled using a 
combination of temporal and spatial interpolations. Time series reconstruction and gap filling have been suc-
cessfully implemented on daily NDVI using Fourier transform32, daily lake surface water temperature using the 
Harmonic ANalysis of Time Series (HANTS)33, daily Land Surface Temperature (LST) using weighted temporal 
averaging34 and Locally Weighted Regression (LWR) followed by spline based spatial interpolation35. Data fusion 
approach Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM)36,37 and time series smoothening 
using Savitzky-Golay filter38, were used to reconstruct daily ETa from combining Landsat ad MODIS spectral 
datasets. In this study, 30 m gap-filled monthly ETa maps for two crop years from October 2013 to September 
2015 over the large basin LUB in Iran was developed. An open source python based SEBAL implementation 
called PySEBAL library was used to compute ETa from all the Landsat 7 and 8 images in the study years. A new 
approach based on temporal and spatial interpolation was developed to derive gap-filled monthly ETa maps at 
high resolution over LUB in Iran.

Study area
Lake Urmia Basin (LUB) is located in the North-West region of Iran with a total surface area of ~ 52,970 km2. 
Mean annual precipitation in the semi-arid basin is 350 mm and the mean annual temperature is 11.2 °C. The 
basin is an endorheic basin where no surface water outflow occurs. However, groundwater seepage and evapora-
tion are the primary mechanisms of water loss from the basin. Lake Urmia is a terminal lake that is situated in 
this basin. All the runoff generated in the basin ends in this terminal lake through a network of rivers.

The past two decades have seen a staggering decline in the surface area of Lake Urmia. Once the world’s 
second-largest hypersaline lake with a surface area of nearly 5000 km2, the lake is now reduced to below 2000 km2. 
This phenomenon had significant impact on the livelihood of millions of people living in the basin and causing 
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far reaching regional ecosystem and health consequences due to issues such as loss of biodiversity and salt 
storms. The large magnitude of the issues caused by the desiccation of Lake Urmia has triggered the scientific 
community to study the long-term land and water use in the basin thereby understanding the reasons behind 
such a phenomenon. Several terminal lakes such as Lake Chad in Africa39, the Aral Sea in central Asia40, and 
Lake Poopo in South America41, have been affected in the recent past and have witnessed significant shrinkages.

While the main reason behind the decline of the Lake Urmia remains a matter of dispute between 
scientists42,43, it is plausible that a combination of natural factors e.g. reduced precipitation44 and anthropogenic 
changes e.g. expansion of irrigated agriculture45 are the drivers behind the lake shrinkage. Whatever the causes 
may be, the only way out is to significantly curb water consumption in the basin. The main burden is on agricul-
ture that at the moment claims more than 90% of renewable water resources and reduces the groundwater storage 
causing a significant drop in the water table in the aquifers46. Recognizing this, top-down strategies were drawn 
up by the government47 including targeting a 40% reduction of agricultural water use centered around reducing 
surface water allocation to agriculture accompanied by investing in a shift to drip irrigation and proposing a 
cropping pattern change. These interventions have been successful in bringing fragile stability in an otherwise 
catastrophic situation48. An important missing piece is, and has been, a detailed understanding of spatial and 
temporal variations in consumptive water use, i.e. ETa, in the basin especially in irrigated areas. Such information 
is crucial for pinpointing hotspots for water savings and making targeted investments in scaling solutions that are 
proven useful by means of measurements. Furthermore, given the fragility of the gains, continuous monitoring 
of the water use in the basin remains pivotal for any prosperous future outlook.

Data
All the Landsat 7 and 8 images acquired between 1 October 2013 and 30 September 2015, were processed to 
estimate ETa for the days of acquisition. This includes two tiles from path 167 and 169, and three tiles from path 
168 (Fig. 1), and a total of 626 Landsat scenes were processed. Figure 2 shows the Landsat acquisitions in the 
study period used for applying SEBAL algorithm. The Landsat Collection 1 Level-1 data in Tier 1(T1) inventory 
were used for this study, acquired from Google cloud public storage using gsutil python library. The Landsat data 
provided in the T1 inventory are terrain corrected with well characterized radiometry and are inter-calibrated 
across different Landsat sensors49,50. For topography and elevation, Shuttle Radar Topography Mission (SRTM) 
data at 30 m spatial resolution obtained from the United States Geological Survey (USGS) repository were used.

Further, meteorological data at the time of satellite data acquisition (instantaneous) and 24 h average of 
the day of acquisition were required. The meteorological data required for SEBAL implementation are listed 
in Table 1. These data were extracted for the LUB from NASA Global Land Data Assimilation System (GLDAS 
v2.1), a global product developed by assimilating data from satellite and ground based observations51. GLDAS 
data is offered at 0.25 degree spatial resolution at 3 h interval. For comparison, Actual EvapoTranspiration and 
Interception (AETI—hereafter “ETa” for consistency) data at Level 1 (250 m resolution) obtained from Food and 
Agriculture Organisation (FAO) portal to monitor WAter Productivity through Open-access of Remotely sensed 
derived data (WaPOR) was used (url: https://​wapor.​apps.​fao.​org). FAO WaPOR is a remote sensing based spatial 
database on water productivity related indicators including ETa which offer open data for African and near East 
countries. The ETa data in WaPOR is computed using ETLook model based on the Penman–Monteith equation, 
which is modified to incorporate remote sensing input data and computes the combined rate of evaporation 

Figure 1.   Study area—LUB boundary and Landsat tiles used for this study. The red box in the inset map shows 
the location of basin in Iran. Map created in QGIS 3.28.8 LTR software (https://​www.​qgis.​org/).

https://wapor.apps.fao.org
https://www.qgis.org/
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and transpiration52. It provides the highest available spatial resolution of 250 m for an operational open-access 
ETa product at the continental scale9.

Methods
In this section, the implemented methodology grouped into (i) pre-processing of data, (ii) PySEBAL theory and 
(iii) the gapfilling approach are explained in detail.

Pre‑processing satellite and meteorological data.  The acquired Landsat 7 and 8 data were pre-pro-
cessed to compute cloud masked Top Of Atmosphere (TOA) reflectance bands at 30 m spatial resolution. The 
pre-processing included conversion from Digital Number (DN) to TOA reflectance, cloud removal using the 
Quality Assessment (QA) band and mosaicking the images acquired on the same day over a single path. The 
QA band contains 16-bit integers representing certain atmospheric conditions. All the bit combinations show-
ing medium or high cloud confidence were used to create cloud masks. The pre-processing of meteorological 
data included the following steps (i) extracting the required variables as listed in Table 1 from the three hourly 
data, (ii) clipping the global data to the extent of LUB, (iii) converting the units of air temperature from Kelvin 
to °C, pressure from Pascal (Pa) to Millibar (mb), (iv) specific humidity in kg/kg to relative humidity in % and 
(v) extracting instantaneous and daily average meteorological variables. The instantaneous data corresponding 
to the Landsat acquisition time (7:30 A.M. UTC) was estimated by averaging the 6H and 9H UTC data, while all 
the 8 three hourly data in a day were averaged to estimate daily averages.

To efficiently process the Landsat data for a large basin such as LUB entire processing chain was implemented 
in a High Performance Computing (HPC) infrastructure. The entire processing chain was implemented by using 
multiple open source libraries, to deploy multi-core jobs like processing satellite data and to implement SEBAL 
model. All the spatial and temporal processing were performed in GRASS GIS 7.4.0 software53 which is open 
source under GNU General Public License (GPL).

The Landsat data processing for each path (167, 168 and 169) were performed in different nodes in parallel. 
This approach resulted in substantial reduction of the processing time. The data processing was divided into 
three Processing Units (PU) based on the Landsat path and row. Since the adjacent tiles in the same path have 
same acquisition date, we chose each path as a processing unit. Thus, data for each path were processed in parallel 

Figure 2.   Available Landsat 7 and 8 over the study period from October 2013 to September 2015 separated by 
different paths covering LUB.

Table 1.   Input meteorological data required for PySEBAL model.

Parameter Symbols Unit

Downward shortwave radiation SWdown W/m2

Wind speed Ws m/s

Air temperature Tair °C

Pressure P Mb

Relative humidity Rh %
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in the HPC. Figure 3 shows the bounding box of the three defined PUs for LUB (see Fig. 1 for complete view 
of Landsat tiles covering LUB). The PU’s are designed to incorporate minimum overlapping “rectangular” area 
between the respective Landsat path and the LUB. While processing in each PU, only those pixels inside the LUB 
boundary were considered further optimizing the efficiency in computing over larger area.

SEBAL implementation in Python—PySEBAL.  SEBAL work on the basic principle of solving the 
energy balance model as shown in Eq. (1) where latent heat flux (LE), the energy consumed through evapotran-
spiration, is computed as residual energy from net radiation (Rn), ground heat flux (G) and sensible heat flux 
(H).

Instantaneous ETa (mm/day) is then calculated using Eq. (2) where LE is divided by the latent heat of vapori-
zation (L) and the water density (ρw).

PySEBAL is a python library to implement SEBAL using spectral reflectance values from satellite data, climatic 
parameters and topography as input to estimate the surface energy balance components. The outputs include 
parameters related to vegetation, energy balance, biomass, evapotranspiration, and water productivity. Currently, 
PySEBAL supports data from MODIS, Landsat, and Proba-V satellite sensors which facilitate the production of 
daily and seasonal ETa maps. PySEBAL have been used for estimating water use in agriculture by54–56.

Figure 4 shows the workflow of computing seasonal ETa using PySEBAL.The steps 1 and 2 in the workflow 
diagram cover the pre-processing of Landsat data and cloud masking as explained in the previous section. In 
step 3, each spectral band of Landsat are patched/mosaicked to respective PU’s. Step 4 is to create intermediate 
input layers that are required for closing energy balance equation which includes Normalized Difference Veg-
etation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Leaf Area Index (LAI) and Surface Albedo (α) 
from Landsat spectral data. Step 5 computes the energy balance components Rn, G, and H as shown in Eq. (1).

The equations used behind computing the major energy balance components in SEBAL is well explained 
in19,20,57. The computation of these components in PySEBAL is demonstrated in54,55. The net radiation flux (Rn) 
represents the actual radiant energy available at the surface. Rn (W/m2) is the difference between all incoming 
radiant fluxes and outgoing radiant fluxes using Eq. (3)23.

where RS↓ is the incoming solar radiation in W/m2, RL↓ and RL↑ is the incoming and outgoing longwave radiation 
respectively in W/m2, α is surface albedo (dimensionless) and ε0 is the thermal emissivity in W/m2.

Ground heat flux (G) is the rate of heat storage into the soil and vegetation due to conduction. In PySEBAL, 
G in W/m2 is computed using Eq. (4) as function of surface temperature (Ts), surface albedo (α), and NDVI19 
after applying a water mask.

(1)LE = Rn− G −H

(2)ETa =
LE

L ∗ ρw

(3)Rn =
[

RS↓ + RL↓
]

−
[

αRS↓ + RL↑ + (1− ε0)RL↓)
]

(4)G = Ts(0.0038+ 0.0074α)
(

1− 0.98NDVI4
)

Figure 3.   (a) Processing Units (PU) covering LUB; black rectangle—PU1 covering path 167; red rectangle—
PU2 covering path 168; yellow rectangle—PU3 covering path 169, background satellite image source: Google 
Satellite API. (b) Mosaicked false colour composite from three paths acquired on three different dates. black 
rectangle—path 167; red rectangle—path 168; yellow rectangle—path 169, background satellite image source: 
Landsat 8. Maps created in QGIS 3.28.8 LTR software (https://​www.​qgis.​org/).

https://www.qgis.org/
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Sensible heat flux (H) is the rate of heat loss to the air by convection and conduction, due to a temperature 
difference and it is computed using the Eq. (5).

where ρair is air density, Cp is the specific heat of air at constant pressure, and dT is near-surface air temperature 
difference for each pixel and rah is the aerodynamic resistance. As the actual absolute values for air temperatures 
above each pixel are unknown, dT is computed by assuming a linear relationship between dT and altitude cor-
rected surface temperature. To define the slope and offset of this linear model, SEBAL uses the two “anchor” 
pixels where a value for H can be reliably estimated. For each satellite image, these “anchor” pixels are selected 
by picking hot and cold pixels over the driest surface in the satellite scene and wettest surface such as water 
body or irrigated area respectively. The PySEBAL library facilitates automation of the entire process including 
the estimation of the hot and cold pixels from a satellite image. The cold pixels are usually selected from water 
bodies or crop areas with well-developed vegetation, whereas hot pixels are selected from completely dry soil 
surfaces. In PySEBAL, cold pixels are automatically identified based on thresholds (2nd and 5th percentiles) 
applied to distribution of surface temperature estimated from the Landsat thermal data, while hot pixels are 
identified from the distribution of NDVI, where 1st and 3rd percentiles are used as thresholds. The instantane-
ous latent heat flux (LE) and Evaporative Fraction (EF) at the time of satellite data acquisition is then computed 
from the energy balance components. The instantaneous EF is converted to the daily evaporative fraction (EF24) 
by incorporating an advection factor, which takes into consideration the vapor pressure deficit and accounts for 
the rise in ET during the afternoon period55. The daily ETa is then computed by multiplying EF24 with 24-h net 
radiation where negligible ground heat flux over 24 h is avoided. The PySEBAL is capable of processing multiple 
satellite scenes in a single run. The optimal way is to set up and run PySEBAL for an entire season. Steps 6 to 8 
in Fig. 4 represents the gap filling procedure which is explained in detail in the next section.

Gap filling of ETa maps.  For every month, Landsat has 4 observations, two from Landsat 7 and two from 
Landsat 8, 16 days being re-visit time of both satellites. It is possible to have up to 4 observations per month 
per pixel, but often this is not the case due to cloud cover in the region especially during the winter season. All 
available scenes from Landsat 7 and 8 are incorporated in the processing, in order to increase the probability of 
having maximum valid pixels over a year. First step in the gap-filling procedure (step 6 in Fig. 4) is to patch all 
the ETa maps by averaging them per month. The monthly ETa maps were then converted from mm/day to mm/
month by multiplying each map by number of days in the respective month. The remaining gaps were then filled 
using a temporal and spatial interpolation.

A temporal interpolation based on LWR was applied to the monthly ETa maps to reconstruct missing values 
and identify outliers35,58. For each time series observation (pixel) in the map, a polynomial model of second order 
is computed using a set of neighboring pixels in the temporal dimension. Distance based weight is applied to the 
values in such a way that the observation farther away in time gets lower weights. All the observations in the time 
series were interpolated, as long as there were enough non-null observations. To keep the interpolated values 
within the seasonal limits, a maximum gap of 3 observations in the time series were interpolated, otherwise 
retained as NULL. The weight function used for LWR was Tricube which determines the influence of neighboring 
values in time to the current observation. High and low outliers in model fitting were ignored and extrapolation 
was avoided. The LWR addon in GRASS GIS 7.4.0 (r.series.lwr) was used to implement temporal interpolation.

Due to the insufficient valid observations in the time series meeting the LWR conditions there were remain-
ing gaps in the monthly ETa maps (less than 10% of the surface area). These gaps were then reconstructed using 
bicubic spline spatial interpolation. This step is applied only to the NULL pixels using the neighboring valid 
pixels, which means the observations and the temporally interpolated values were kept unchanged. Bicubic spline 

(5)H =
ρairCpdT

rah

Figure 4.   Work flow diagram showing all the steps included in the method including input data, PySEBAL 
model and gap filling process.
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interpolation is a 2-dimensional approach to the linear spline. In this case, a minimum of neighboring 16 valid 
pixels are used to interpolate the null pixels using a cubic function. For each pixel, the interpolation takes into 
consider the function itself, the gradients determined by one-dimensional splines and the cross derivatives. The 
values of the function and the derivatives are reproduced exactly at the pixels and they change continuously with 
the moving window crossing one pixel to another. The bicubic approach ensures the continuation of derivatives 
to the adjacent grids thereby reducing the artefacts. The interpolation module in GRASS GIS 7.4.0 (r.fillnulls) 
was used to implement spatial interpolation in each monthly map.

After the gap-filling process applied to all the monthly maps from October 2013 to September 2015, the 
monthly maps were aggregated to create annual maps (mm/year) for the years 2013/2014 and 2014/2015. To 
assess the performance of this gap-filling approach, the gap-filled ETa maps were compared with data obtained 
from FAO WaPOR over the LUB. The data from WaPOR were resampled from 250 to 30 m using nearest neighbor 
algorithm to match the gap-filled ETa maps. Further to check the spatial and temporal consistency of the gap-filled 
maps, ETa dynamics over different agricultural land use types and its response to bio-physical parameters like 
NDVI were investigated. The monthly ETa estimates were compared to aggregated monthly precipitation obtained 
from rainfall stations in the LUB to understand the influence of irrigation in driving the water use in the basin.

Results
Gap filled monthly ETa maps (24 maps) at 30 m resolution for LUB were developed and analyzed. To demonstrate 
the different steps of gap-filling process, results obtained after each step is explained over the month of October 
2014 as an example. Table 2 lists the available Landsat data for each PU (path) for October 2014 (see Fig. 2 for 
availability of Landsat 7 and 8 over the study period). There were total 10 Landsat scenes available in October 
2014 (Four Landsat 7 and Six Landsat 8).

Figure 5 shows the individual 10 ETa maps computed using PySEBAL from Landsat acquisitions of October 
2014 for the three PU’s. These 10 maps were then aggregated by averaging and clipped to LUB (see the last map 
of Fig. 5).

Figure 6 shows the gap filled ETa map of October 2014 (mm/month) before and after the gap filling. Similarly, 
for each month from October 2013 to September 2015, there were a maximum of 12 observations per month 
for the basin and computed gap-filled monthly ETa maps at 30 m spatial resolution. The variation of gaps in 
the ETa maps over LUB after each step in the gap filling procedure was analyzed to understand the pattern of 
reconstructing the maps. The results show that, by combining Landsat 7 and 8 data substantially reduced the 
cloud coverage when aggregated to monthly maps. After monthly aggregation by averaging of all the individual 
ETa maps the maximum cloud cover was 70% over entire LUB in January 2014 followed by 42% cloud cover in 
January 2015. After LWR interpolation majority of the gaps in the winter months were statistically filled to 90%, 
while all the summer months were completely gap-filled. Figure 7 shows the variation in gaps due to cloud cover 
over 24 months before and after the gap filling steps.

Figure 8 shows the final gap-filled annual ETa maps for two crop years over LUB. The annual average ETa 
estimated from the gap-filled monthly maps was 302 mm and 346 mm in the crop years of 2013/2014 and 
2014/2015 respectively. The annual rainfall reported was 306 mm and 368 mm in the crop years 2013/2014 and 
2014/2015 respectively. Correlation analysis between monthly gap filled ETa and FAO WaPOR reported a coef-
ficient of determination (R2) of 0.93, Root Mean Square Deviation (RMSD) of 9 mm/month, Mean Absolute 
Deviation (MAD) of 7 mm/month and Mean Absolute Percentage Deviation (MAPD) of 36% over agriculture 
area. The land use map used to select agriculture area for correlation analysis is shown in Fig. 9.

Comparison statistics between gap filled ETa and FAO WaPOR data over different agriculture land use types—
irrigated wheat and barley, irrigated summer crops, orchards and rainfed are listed in Table 3. The scatter plot 
between gap filled ETa and FAO WaPOR data is shown in Fig. 10 fitting the linear models over four agriculture 
land use types. Correlation of these two datasets over orchards was reported to be the highest with R2-0.97. RMSD 
and MAD over orchards were 6 and 4 mm/month respectively. For irrigated wheat and barley and irrigated 
summer cropped area the R2 reported were 0.91 and 0.95 respectively showing very high correlation between 
the datasets. While the RMSD reported over these land use types were 7 and 8 mm/month, estimated MAD was 
5 mm/month. Correlation over rainfed area was reported to be lowest with R2—0.84, RMSD—7 mm/month and 
MAD – 5 mm/month. MAPD ranged from 30 to 46% for irrigated wheat and barley and rainfed area respectively. 
Table 3 also lists the comparison statistics between ETa before gap filling and WaPOR data. The results shows 
that gap filling didn’t improve the ET values over irrigated wheat and Barley (winter season) and rainfed, while 
it improved substantially over the summer irrigated crops and orchards. In case of winter irrigated crops and 
rainfed, the RMSD increased from 4 to 6 mm/month. For orchards and irrigated summer crops the deviation 

Table 2.   List of Landsat 7 and 8 data available and processed for the month of October 2014.

Landsat 7 Landsat 8

PU1 (path 167)
02-10-2014 10-10-2014

18-10-2014 26-10-2014

PU2 (path 168) 09-10-2014
01-10-2014

17-10-2014

PU3 (path 169) 16-10-2014
08-10-2014

24-10-2014
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Figure 5.   Individual ETa maps from October 2014; the last block shows the aggregated average ETa map for the 
same month. Unit is mm/day. Map created in GRASS GIS 7.8.4 software (https://​grass.​osgeo.​org/).

Figure 6.   Monthly ETa map for the month October 2014 (a) after aggregation of individual ETa maps, (b) after 
LWR interpolation, (c) gap-filled ETa monthly map after spatial interpolation; red circles shows the gaps due to 
clouds. Maps created in QGIS 3.28.8 LTR software (https://​www.​qgis.​org/).

https://grass.osgeo.org/
https://www.qgis.org/


9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12026  | https://doi.org/10.1038/s41598-023-38563-2

www.nature.com/scientificreports/

between gapfilled ETa and WaPOR reduced substantially. RMSD improved from 25 to 8 mm/month for irrigated 
summer crops, while it improved from 19 to 6 over orchards. Further the response of gap-filled ETa to NDVI 
showed a linear correlation with R2 of 0.88 and an exponential fit with R2 0.93 over irrigated wheat and barley, 
irrigated summer crops and orchards. Figure 11 shows the scatter plot between gap-filled ETa and NDVI with 
fitted regression models.

The monthly ETa and Precipitation (P) were compared to analyze the underlying drivers of the seasonal trend 
of water use over different land use types. Figure 12 shows the temporal variation of monthly ETa (gapfilled and 

Figure 7.   Percentage of valid monthly observations after monthly mean aggregation and LWR interpolation.

Figure 8.   Top: Gap-filled annual ETa maps of LUB for the years 2013/14 and 2014/15, background satellite 
image source: Sentinel-2 cloudless 2016 by EOX IT Services GmbH; Bottom: zoomed into an irrigated area in 
Miandoab irrigation scheme, this area is indicated in red box above. Map created in QGIS 3.28.8 LTR software 
(https://​www.​qgis.​org/).

https://www.qgis.org/
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Figure 9.   Land use map of Lake Urmia Basin (source: Tarbiat Modares University, Iran). Background satellite 
image source: Sentinel-2 cloudless 2016 by EOX IT Services GmbH. Map created in QGIS 3.28.8 LTR software 
(https://​www.​qgis.​org/).

Table 3.   Comparison statistics reported comparing monthly before and after gap filled ETa and FAO WaPOR 
data over two study years.

R2 RMSD (mm/month) MAD (mm/month) MAPD (%)

Before gapfilling After gapfilling Before gapfilling After gapfilling Before gapfilling After gapfilling Before gapfilling After gapfilling

Irrigated Wheat and 
Barley 0.97 0.92 4 7 2 5 13 30

Irrigated Summer 
crops 0.72 0.96 25 8 18 5 82 35

Orchards 0.8 0.97 19 6 14 4 76 34

Rainfed 0.8 0.8 4 7 3 5 39 46

Figure 10.   Scatter plot between monthly gap filled ETa and FAO WaPOR AETI with best fitting linear 
regression lines over four agricultural land use types.

https://www.qgis.org/
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WaPOR) and P over the LUB and also the monthly gapfilled ETa over the agricultural land use types for the two 
crop years from October 2013 to September 2015. The rainfall during the second cropping year (mean rainfall 
of 368 mm) was greater than the previous year (mean rainfall of 306 mm). It also reflects in the estimated ETa 
with a higher average reported in the second year (346 mm) than first year (302 mm). There were extremely high 
rainfall events reported in the month of October 2014 (~ 95 mm) which also triggered the higher ETa range in 
the second cropping year.

The land use based ETa and P estimates over the study period are illustrated in Fig. 13. The higher ETa values 
reported during the summer months from April to September in both cropping years were contributed by the 
irrigation events and evaporation from water bodies. To understand further the land use based dynamics of 
ETa and P, mean ETa based on land use types were extracted. Over the two crop years highest ETa (except water 
bodies) of 800 mm was reported for the irrigated summer crops land use type followed by orchards with mean 
ETa of 751 mm. The lowest average ETa of 199 mm was reported for the barren land. Agriculture related land use 
types were reported to have highest ETa over the study period as expected.

Discussion
Quantifying water use by agriculture land use types is of utmost importance to take actionable measures to 
avoid overuse of resources. The study demonstrates the use of publicly available earth observation satellite data 
acquired by Landsat 7 and 8 to monitor water use over a large basin at different temporal scales. The approach 
implemented over a large basin covered by 7 Landsat tiles could efficiently reconstruct the gaps in data due to 
clouds and stripes on Landsat 7 due to the scan line corrector failure. The parallelization of the process with 
the implementation of processing units covering tiles of same path substantially reduced the processing time.

The inclusion of data from both Landsat 7 and 8 increased the availability of observations in space–time 
domain thus reducing the gaps after step 6 of monthly aggregation in methodology (Fig. 4). This is reflected 

Figure 11.   Scatterplot between monthly NDVI and ETa (a) over the entire basin except water bodies; (b) over 
the irrigated wheat and barley, irrigated summer crops and orchards.

Figure 12.   Monthly P and ET variations in LUB.
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in the cloud dynamics after monthly aggregation (Fig. 7) where most of the months other than January have 
good observations for more than 60% of the basin. The possibility to use both Landsat 7 and 8 in PySEBAL and 
the inter-calibration of reflectance values by the Landsat data provider makes it possible to combine data from 
Landsat 7 and 8 (USGS, 2019).

The conversion of monthly ETa maps in mm/day to mm/month by multiplying number of days in respective 
month assumes that the ETa values are constant throughout that month. The ETa can vary significantly within 
a day or a month depending on the land cover type. This might influence the accuracy of ETa measured using 
sparse observations from Landsat. The LWR is able to capture the short-term fluctuations in the time series 
compared to approaches like harmonic analysis35. This is useful while planning interventions based on short 
term water use of crops within a season. LWR in this case could fill the majority of the gaps even after applying 
stricter constraints especially in the number of samples per regression (limited to 3), thus avoiding overfitting 
of the predictions. After the time series smoothening using LWR, the gaps were reduced to less than 10% in all 
the months. For a diverse terrain like LUB, the time series reconstruction at high resolution allows the capturing 
of ETa temporal dynamics for different land use types as demonstrated in this study.

The variation of monthly ETa over agriculture land use types—irrigated wheat and barley, irrigated summer 
crops, orchards and rainfed showed distinctive seasonal variations in response to the rainfall and cropping 
patterns. For the irrigated wheat and barley, the ETa is highest in April and declines gradually by late June. This 
match with the cropping calendar for winter wheat and barley in the region. For orchards, ETa showed peak 
values during summer months (May to Aug) and lower values were observed from September onwards and in 
the winter season. As expected, the water consumption by orchards were much higher than irrigated wheat and 
barley and lower than Irrigated summer crops59. This could be attributed to inclusion of young orchards in this 
land use class and also the fact that orchards besides irrigation schemes are present in the valleys in the vicinity 
of surface streams throughout the basin where irrigation is not as intensive as in the schemes.

The non–irrigated land use types showed much lower ETa compared to the irrigated classes. The peak ETa 
was observed in months of May at an average value of about 2 mm/day for rainfed crops and 1.5 mm/day for 
rangelands. Similar study reported an average ETa of 736 ± 42 mm for over the irrigated agriculture in the basin 
in 2014, the average ETa for irrigated agriculture in our assessment was 696 mm59. It demonstrates the usability 
of such maps in comparison with rainfall to give us an overall account on critical water availability versus water 
consumption over managed landscapes and water deficit. The linear correlation between ETa and NDVI over the 
entire basin as shown in Fig. 11a is influenced by the rangeland pixels which forms major land cover in the basin 
(64% of total area). While the scatterplot as shown in Fig. 11b over the irrigated area which is a managed land 
cover type shows an exponential relation representing the yield response to water applied for the irrigated crops.

The comparative analysis between newly developed monthly gap-filled ETa and AETI from FAO WaPOR 
dataset reported R2 greater than 0.9 for irrigated wheat and barley and summer crops, while a R2 of 0.84 was 
reported in rainfed areas. The FAO WaPOR level 1 AETI data used in this study was developed using 8-day 
MODIS products at 250 m and the difference in spatial resolution could be a contributing factor for higher RMSD 
of 7–9 mm/month and MAPD greater than 30%. The correlation was worsened after gapfilling over the irrigated 
wheat and barley potentially due to multiple factors like higher percentage of gaps due to cloud cover during the 
winter months (see Fig. 7), undetected cloud and cloud shadow pixels, coarse spatial resolution and the difference 
in interpolation techniques used in WaPOR database. WaPOR level 1 data is reported to be underestimating 
the ETa values due to the coarse resolution of input land surface temperature data (1 km) from MODIS sensor 
which is used to derive moisture stress and thus affecting the spatial variation60. A recent study evaluating the 
consistency between different levels of WaPOR data found higher correlation between level 1 AETI and the field 
observations over Zankalon irrigated area in Egypt61.

Figure 13.   Annual P and ETa over different land use classes for two crop years left—2013/14 and right—
2014/15.
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Remote sensing based ETa mapping in many studies is performed by establishing direct empirical rela-
tion between NDVI and crop coefficient (Kc) instead of solving surface energy balance equitation62,63. Hence, 
investigating relation between aggregated ETa values derived from PySEBAL and the NDVI values directly 
acquired from satellites provide insights into the quality of derived ETa. It is expected that ETa and NDVI show 
a general correlation which could be stronger in land use classes that typically have higher vegetation growth 
such as orchards and summer crops. The linear relationship between ETa and NDVI over all the land use types 
demonstrates vegetation growth with increasing availability of water. The vegetation indices from multi-spectral 
satellite data can well describe the vegetation growth and thereby can explain the water use trend. Hence the 
expected response of ETa to the vegetation growth as indicated by the time series of NDVI would give us quality 
assurance of the developed monthly ETa maps.

For irrigated landscapes such as orchards and irrigated summer crops, seasonal prevalence of evaporation 
and transpiration play key role in formulating the relationship between ETa and NDVI. The models revealed that 
the vegetation growth in these land use types are not limited to availability of water. During the winter months 
and beginning of the growing season, a rapid response of vegetation growth with lower ETa values with prevalent 
contribution from evaporation was observed. After the vegetation growth is matured (corresponding to NDVI 
value of 0.43 and ETa of 60 mm—see Fig. 11), the response becomes slow which requires much more water to 
attain rest of the growth which are provided by irrigation.

The newly developed gap-filling approach can be used to monitor the water use estimation by different 
land use types in a larger basin like LUB. In LUB, periodic monitoring of land and water use will support the 
water management interventions to be taken in order to revive the Lake Urmia. This data can be further used 
for assessing water productivity, irrigation performance and computing water accounts at different scales from 
field to basin12. Validating the remote sensing based ETa data remains a challenge due to lack of wide network 
of in-situ flux data. Hence, the alternative is to perform inter-comparison with similar products and analyze 
the spatio-temporal trends of ETa in different land use types. There are multiple projects being carried out to 
improve this and to develop robust protocols to assess remote sensing based ETa products (see WaterPIP project; 
url: http://​water​pip.​un-​ihe.​org/).

Conclusion
The increasing availability of open access satellite data and new advances in remote sensing techniques are pav-
ing the way to systems which can monitor water use by different stakeholders near real time at various spatial 
scales. However, to implement an operational monitoring system based on earth observation data there needs 
to be established approaches with robust protocols to extract information at required spatio-temporal scale. In 
this study, a new approach was implemented to extract annual ETa at high spatial resolution of 30 m over a large 
basin—LUB in Iran. The established approach demonstrates how to compute ETa using a surface energy balance 
model over a large area covering multiple Landsat tiles of different acquisition dates and introduced a novel gap-
filling approach to fill the gaps due to clouds followed by aggregate to monthly and annual maps. The monthly 
maps thus developed for two crop years 2013/2014 and 2014/2015 were compared with AETI data from FAO 
WaPOR over agriculture land use types reporting R2 greater than 0.9.

To logically fill the gaps in satellite derived ETa maps due to clouds and stripes on Landsat 7 due to the scan 
line corrector failure, a combined approach of temporal interpolation followed by a spatial interpolation is recom-
mended. The approach should also work for gapfilling other bio-physical parameters like surface temperature, 
vegetation indices etc., which follows a cyclic change pattern over seasons. The LWR approach to fill the gaps 
over time captures the temporal dynamics of ETa over different agricultural land use types. This is validated by 
comparing with AETI data from FAO WaPOR. The approach can be extended to any other geographical area with 
Landsat coverage, but recommend to perform a validation analysis as demonstrated in this study before using 
the derived information for interventions. The open source code and documentation developed to implement 
this approach further facilitate the uptake by the community.

Data availability
The PySEBAL and the gap filling procedure developed in this study are available as an open “github” repository 
(url: https://​github.​com/​water​accou​nting/​PySEB​AL_​dev) with a detailed documentation provided in “Read the 
Docs” technical documentation repository (url: https://​pyseb​al.​readt​hedocs.​io/​en/​latest/). All datasets are dis-
seminated as Open Geospatial Consortium (OGC) services through the project web mapping link: http://​www.​
wa-​urmia.​org/.
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