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Pharmacokinetic– 
pharmacodynamic modeling of  
maintenance therapy  
for childhood acute lymphoblastic  
leukemia
Anna Gebhard 1*, Patrick Lilienthal 1, Markus Metzler 2, Manfred Rauh 2, Sebastian Sager 1, 
Kjeld Schmiegelow 3,4, Linea Natalie Toksvang 3,5 & Jakob Zierk 2,5

In the treatment of childhood acute lymphoblastic leukemia (ALL), current protocols combine initial 
high-dose multiagent chemotherapy with prolonged oral therapy with 6-mercaptopurine (6MP) 
and low-dose methotrexate (MTX) maintenance therapy. Decades of research on ALL treatment 
have resulted in survival rates of approximately 90%. However, dose-response relationships vary 
widely between patients and insight into the influencing factors, that would allow for improved 
personalized treatment management, is insufficient. We use a detailed data set with measurements 
of thioguanine nucleotides and MTX in red blood cells and absolute neutrophil count (ANC) to 
develop pharmacokinetic models for 6MP and MTX, as well as a pharmacokinetic–pharmacodynamic 
(PKPD) model capable of predicting individual ANC levels and thus contributing to the development 
of personalized treatment strategies. Here, we show that integrating metabolite measurements in 
red blood cells into the full PKPD model improves results when less data is available, but that model 
predictions are comparable to those of a fixed pharmacokinetic model when data availability is not 
limited, providing further evidence of the quality of existing models. With this comprehensive model 
development leading to dynamics similar to simpler models, we validate the suitability of this model 
structure and provide a foundation for further exploration of maintenance therapy strategies through 
simulation and optimization.

Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy and is characterized by the path-
ological proliferation of malignant lymphoblasts with consecutive displacement of the normal  hematopoiesis1, 2. 
Combination chemotherapy is the mainstay of treatment, and consists of induction, consolidation, and reinduc-
tion cycles, which are followed by oral maintenance therapy with low-dose methotrexate (MTX) and 6-mercap-
topurine (6MP) until two years after start of treatment. During maintenance therapy, the doses of MTX and 6MP 
are adjusted according to patients’ blood counts, including the white blood cell count (WBC) or the absolute 
neutrophil count (ANC)3, 4. Even though survival rates of ALL have reached about 90%1, 2, understanding the 
pharmacokinetics (PK) and pharmacodynamics (PD) during maintenance therapy remains an unmet challenge. 
One promising approach is deriving a comprehensive mathematical model and predicting the effect of MTX 
and 6MP on individual patients as well as personalizing treatment schedules during maintenance therapy. This 
is especially important as WBC shows natural variation between patients, indicating a need for individualized 
target ranges for maintenance  therapy3, 4.

Developing models for treatment personalization in oncology by using mathematical modeling is an 
increasingly important  approach5–7, and in the field of leukemia treatment, several models have already been 
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 constructed8, including the models in Le et al., Jost et al. and Jayachandran et al. in terms of ALL  treatment9–11. 
But the literature still lacks a model that is able to adjust the pharmacokinetics to individual patient meas-
urements, which is extremely relevant as both MTX and 6MP display large interindividual pharmacokinetic 
 variability3, 12–14, resulting in widely different concentrations. We build on the model of Jost et al.10 to fill this 
gap by using a data set that does not only include observations of the ANC, but also of thioguanine nucleotides 
(E-TGN) and methotrexate (E-MTX) in the red blood cells. While the model of Jost et al.10 builds on ANC 
observations only and therefore does not estimate the pharmacokinetic parameters, but fixes them population 
wide, the more detailed data set used here allows for the additional estimation of individual pharmacokinetic 
parameters describing the drug concentration in the red blood cells. Our aim is to investigate if this can provide 
more accurate predictions for individual patients and to what extent the treatment dynamics are already mod-
eled in sufficient detail.

Using the aforementioned data set, we first develop and analyze solely pharmacokinetic models for MTX and 
6MP which are able to predict the concentrations of E-MTX and E-TGN for individual patients. Following Jost 
et al.10, these models are then used in combination with the Friberg et al.15 model to construct a full pharma-
cokinetic–pharmacodynamic (PKPD) model replicating the effect of low-dose MTX and 6MP on ANC during 
maintenance therapy. This model is then compared to an estimation with the model by Jost et al.10, identifying 
scenarios where differences in model prediction accuracy occur.

Patients and methods
Data. The data used for modeling is a subset of the data set described in Schmiegelow et al.16, which was part 
of the Nordic Society for Paediatric Haematology and Oncology (NOPHO) ALL-92  study17. The protocol was 
approved by the ethical committee of Copenhagen (no. V.200.2080/91) as well as by the local ethical committees, 
and participants gave informed consent. All methods were performed in accordance with the relevant guidelines 
and regulations. Patients with precursor–B-cell childhood ALL were treated according to the NOPHO ALL-92 
protocol with a combination of daily oral 6MP, weekly low-dose oral MTX, oral Prednisone, intravenous Vin-
cristine, high-dose intravenous MTX and intrathecal MTX during maintenance therapy. Observations include 
regular measurements of the concentration of E-TGN and E-MTX in the red blood cells (both approximately 
monthly), and the ANC (approximately every other week). The 6MP and low-dose MTX treatment started with 
dosages of 75 mg/m2/day (6MP) and 20 mg /m2/week (MTX), which were reduced (increased) in the control 
group if the WBC count was below (above) the target range of 1.5 to 3.5 G/L, and suspended if either the WBC 
was less than 1.0 G/L or the thrombocyte count was below 100 G/L. The pharmacology group’s treatment was 
additionally adjusted according to the product of E-TGN and E-MTX measurements, with an increase in dos-
age if the product of E-TGN and E-MTX fell below 1,350 (nmol/mmol hemoglobin [Hb])2. Our model focuses 
similar to Jost et al. on the ANC, leading to a target range of 0.5 to 2.0 G/L, although different ANC targets are 
used in other  studies10.

Since 6MP and low-dose MTX constitute the foundation for current protocols for maintenance  therapy3, 4, we 
focused on modeling the effect of both and therefore excluded the time period with high-dose intravenous MTX. 
Additionally, our model depends on observations of E-TGN and E-MTX as initial values. The data set of each 
patient thus begins with the first measurement of E-TGN and E-MTX 28 days after the last high-dose intravenous 
MTX treatment. Further exclusion of data occurred in the following three cases in which parameter estimation 
would not have been possible: i) patients with less than two E-TGN or E-MTX observations, ii) patients with no 
6MP or MTX dose, and iii) patients with no height, weight, or ANC observation. After these adjustments, the 
data set consisted of 452 patients with 4624 E-TGN, 4192 E-MTX, and 9808 ANC observations (Table 1). In the 
original data, both E-MTX and E-TGN were measured in nmol/mmol Hb. For unit consistency in our model, 
we converted both observations to µmol/L by assuming a molecular weight for hemoglobin of 64458 g/mol and 
a concentration of hemoglobin in erythrocytes of 330 g/L18.

Population pharmacokinetic–pharmacodynamic modeling. The overall aim of our approach is to 
develop a model that is able to replicate the effects of low-dose MTX and 6MP on the individual patient’s ANC. 
We build two PK models for MTX and 6MP that predict the concentrations of E-TGN and E-MTX in the red 
blood cells, which are then used as input for the effect function that models a decreasing renewal rate of prolif-
erating cells in response to an increase in E-TGN or E-MTX. The full PKPD model is then able to predict the 

Table 1.  Demographic and clinical characteristics of the patient population.

Characteristic Median Range (min-max)

Age (years) 5.9 2.4–16.9

Weight (kg) 21.5 10.3–105.5

Height (cm) 114.0 81.5–180.0

6MP daily dose (mg/m2) 57.1 5.4–175.0

MTX weekly dose (mg/m2) 15.0 1.3–45.0

E-TGN (µmol/L) 0.83 0–7.6

E-MTX (µmol/L) 0.026 0–0.10

ANC (G/L) 1.6 0–22.5
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ANC depending on the MTX and 6MP dose. Along the lines of Schmiegelow et al.19 we derive the MTX and 
6MP PK models to replicate the metabolism and interaction of MTX and 6MP (cf. Supplementary Figures S1–S3 
online for a comparison to Figure 3 in Schmiegelow et al.19 and Figure 1 in Toksvang et al.3). An overview of all 
investigated model variants can be found in Supplementary Table S3 online.

Methotrexate pharmacokinetics. In line with previously published  models9, 20–22, our PK compartment model 
for MTX describes the concentration of MTX including plasma and intracellular concentrations.

Panetta et al. use the data of MTX plasma levels and MTX and methotrexate polyglutamate (MTXPG) 
observations in leukemia cells of 194 patients with newly diagnosed ALL to model the concentration of MTX 
and MTXPG in leukemia cells during the treatment of childhood ALL with high-dose MTX  infusions20, 21. The 
2-compartment model describing the plasma concentrations is complemented by two compartments modeling 
the intracellular kinetics with influx being described by Michaelis–Menten kinetics and the efflux by a linear 
elimination rate. The model by Korell et al. is based on MTXPG measurements in the red blood cells of 48 adult 
patients with rheumatoid arthritis treated with low-dose oral or subcutaneous  MTX22. The parameters of the 
2-compartment plasma PK model with first-order absorption were fixed for all patients, the parameter estima-
tion was limited to a subset of those of the five compartments describing the intracellular kinetics with the influx 
from the plasma being modeled using a linear rate, and the elimination from the red blood cells being described 
by a clearance parameter. Le et al. build their model on the work of Panetta et al., while replacing the 2-compart-
ment plasma PK model with a 1-compartment model with first-order absorption and fixed  parameters9, 20, 21.

With these three models as a starting point, we analyzed different model variants to find the best fit for our 
data. The two major components we modified were the plasma PK model and the intracellular kinetics. Since 
our data included no plasma levels of MTX, we followed Korell et al. and Le et al. and fixed the parameters of 
the plasma PK model for all  patients9, 22. The different models we tested were a 2-compartment model with first-
order absorption and the parameter values based on Panetta et al. and Le et al.9, 20, 21, the same plasma PK model 
with dose-dependent bioavailability calculated according to Ogungbenro et al.23 and a plasma PK model based 
on Medellin–Garibay et al. with covariate-dependent parameter  values24. An overview of the parameter values 
(Supplementary Table S1 online) and a summary of the calculation of the parameter values can be found in the 
supplementary information online. The intracellular kinetics were estimated as fixed effects with interindividual 
variability and either modeled as linear or Michaelis–Menten influx kinetics combined with a linear elimina-
tion rate. The influx of MTX into the red blood cells is typically based on the central compartment describing 
the plasma  concentrations9, 20–22, but there is also evidence that the integration of MTX into the red blood cells 
occurs in the bone  marrow25–28. To account for this possibility, we also included model variants with the influx of 
MTX into the red blood cells based on the peripheral compartment. Supplementary Figure S4 online illustrates 
the resulting structurally different compartment model variants with the corresponding system of ordinary dif-
ferential equations (ODEs) below:

Pharmacokinetic-Pharmacodynamic Modeling of Maintenance Therapy 

for Childhood Acute Lymphoblastic Leukemia
Anna Gebhard, Patrick Lilienthal, Markus Metzler, Manfred Rauh, Sebastian Sager, Kjeld Schmiegelow, Linea Natalie Toksvang, Jakob Zierk

452 patients              6MP and MTX treatment           18,624 observations                      PKPD modeling             Personalized trajectories              Cross-validation

Conclusion:
Usually mathematical myelosuppression models are trained with absolute

neutrophil count (ANC) data. For the first time we evaluated the impact of

additional measurements of drug concentration in the red blood cells.

The results are better model-data fits for sparse intracellular and ANC data.

Figure 1.  Visual abstract displaying an overview of the modeling process, the resulting model and simulated 
trajectories.
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Linear kinetics, central compartment:

Michaelis–Menten kinetics, central compartment:

Linear kinetics, peripheral compartment:

Michaelis–Menten kinetics, peripheral compartment:

Following previously published models, we assumed the influx and efflux of MTX into and out of the red 
blood cells to not have any noticeable effect on the concentration in the central  compartment20–22. It was not 
possible to initialize all compartments with 0 as the data set for estimations includes only observations after 
the onset of maintenance therapy and MTX is accumulated in the red blood cells. We therefore initialized the 
compartments in the following way:

with INIMTX being the first observation in the data set at time point 0. For the most promising MTX 
PK model variant, we also tested an estimation of the initial value with XMTX

E (0) modeled as a patient-
specific parameter, and the possibility to let XMTX

E (0) vary according to the residual error model with 
XMTX
E (0) = (INIMTX − σMTX

2 · ηINIMTX
2 )/(1+ σMTX

1 · ηINIMTX
1 ).

6‑mercaptopurine pharmacokinetics. The starting point for constructing the 6MP pharmacokinetic model were 
the previously published models by Hawwa et al. and Jayachandran et al.11, 29 Hawwa et al. use data from 19 
children with ALL receiving 6MP during maintenance therapy to build a 3-compartment model with one com-
partment and first-order absorption describing the plasma levels of 6MP as well as two compartments modeling 
the intracellular 6MP metabolites 6-thioguanine nucleotides and 6-methylmercaptopurine nucleotides using 
linear  kinetics29. The parameters for the plasma PK model were fixed to values from the literature, while the 
parameters for the intracellular dynamics were estimated using NONMEM. Jayachandran et al. use the same 
structural model for their 6MP PK model as Hawwa et  al., but describe the influx in the red blood cells by 
Michaelis–Menten  kinetics11, 29. Data from the literature was used for estimation and most parameters were fixed 
to values from the literature, including Hawwa et al.29.

We follow both models in describing the plasma kinetics of 6MP with a 1-compartment model with first-order 
absorption and fixed parameter values but use mainly the results of Lennard et al. for calculating the  parameters30. 
Even though Lennard et al. perform a non-compartmental analysis of the data of 19 patients with childhood 
ALL during maintenance  therapy30, it is possible to determine the parameters of a 1-compartment model with 
the resulting values. Supplementary Table S2 online shows an overview of the parameters, the calculation is 
detailed in the supplementary information online. Similar to the MTX PK model, the intracellular kinetics of 
6MP were estimated as fixed effects with interindividual intervariability and either modeled as linear or Michae-
lis–Menten influx kinetics combined with a linear elimination rate, resulting in the model variants PK6MP
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PK6MP
lin  . Both compartment models are visualized in Supplementary Figure S5 online and are described by the 

following ODE system:

Linear kinetics:

Michaelis–Menten kinetics:

We again assume the influx and efflux of 6MP into and out of the red blood cells to not influence plasma 
kinetics and initialize the compartments similar to the MTX PK model with the first observation INITGN in 
the following way:

For the most promising 6MP PK model variant, we again also tested an estimation of the initial value with 
X6MP
E (0) modeled as a patient-specific parameter, and the possibility to let X6MP

E (0) vary according to the residual 
error model with X6MP

E (0) = (INITGN − σ 6MP
2 · ηINITGN2 )/(1+ σ 6MP

1 · ηINITGN1 ).

Pharmacodynamics. The full PKPD model was then built combining the two PK models with the state-of-
the-art myelosuppression model by Friberg et al.15 following Le et al. and Jost et al.9, 10 The additional part of 
the model consists of five compartments with one compartment describing the proliferating cells, three transit 
compartments, and one compartment modeling the mature cells circulating in the blood (cf. Supplementary 
Figure S6 online, where this part of the PKPD model is visualized). The PK and the PD parts of the model are 
linked by a linear effect function which models the effect of the concentrations of MTX and TGN in the red 
blood cells on the proliferating rate. We tested different effect functions based on either E-TGN alone or on 
E-TGN and E-MTX combined. The PD part of the model is described by the ODE system below:

with

Effect function based on E-TGN:

Effect function based on E-TGN and E-MTX:
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Similar to Jost et al.10 we fixed both the proliferating rate of the first compartment and kcirc , with kprol = ktr 
and kcirc = 2.3765 1/day. Due to the data set beginning after weeks of treatment during maintenance therapy, we 
cannot assume Xma(0) = base as an initial state. Instead, we assume to have reached a treatment steady state 
with an additional parameter inieff describing the drug effect at the initial time point and Xma(0) = inieff · base , 
leading to the initial states below.

Additionally to the resulting model variants, we also estimated the model of Jost et al. with our data set to be 
able to compare the results of integrating individual E-TGN and E-MTX measurements in the model developing 
process in contrast to a fully fixed pharmacokinetic  submodel10.

Interindividual Variability and residual error model. Using the nonlinear mixed effects (NLME) approach for 
parameter estimation, we assumed a log-normal distribution for the interindividual variability of all models as 
is conventional in the literature leading to the following description of the patient-specific parameters θki  with θ 
= ( θk ) as the vector of fixed effect parameters, k in { KMTX

in  , VMTX
mm  , KMTX

mm  , KMTX
eff  , K6MP

in  , V6MP
mm  , K6MP

mm  , K6MP
eff  , base , 

ktr , slope6MP , slopeMTX , γ, inieff  } and i=1,…,n as the patient indices:

with each ηk following a normal distribution N(0,ω2
k) . After obtaining the first estimation results of the PK 

models, we added two model variants PKMTX
fix,mm,cent,pop and PK6MP

mm,pop where KMTX
mm,i = KMTX

mm  and K6MP
mm,i = K6MP

mm  
are not associated with any interindividual variability, see Section "Results" for further discussion.

We tested different residual error models for both PK models with the best performing being a combined 
additive-proportional model:

with i=1,…,n as the patient indices, j=1,…,mPK
i  as the patient-specific observations, and the error terms 

ǫPK ,1 ∼ N(0, σ 2
PK ,1) and ǫPK ,2 ∼ N(0, σ 2

PK ,2) normally distributed. We compared the results of the most prom-
ising PK model variants with changing the residual error model to a purely additive ( YPK

ij = XPK
E

(

tij
)

+ ǫPKij  ) or 
a purely proportional residual error model ( YPK

ij = XPK
E

(

tij
)

+ XPK
E

(

tij
)

· ǫPKij ).
For the PD model, we used a proportional residual error model as this gives more weight to small values of 

the ANC observations, which are particularly important for treatment outcome:

with i=1,…,n as the patient indices, j=1,…,mANC
i  as the patient-specific observations, and the error term 

ǫANC ∼ N(0, σ 2
ANC) normally distributed.

Cross-validation. The cross-validation data set was constructed by determining the time point 50% of the 
ANC observations lie before per patient and using this as a cut off point for E-MTX, E-TGN and ANC observa-
tions. Patients were excluded from this data set for the same reasons as described in Section "Data".

Sensitivity analysis. A sensitivity analysis of the final PKPD model was conducted for all fixed parameters 
by determining the 95% confidence intervals of the absorption rate k6MP

a  = 21.07, the elimination rate k6MP
e  = 

15.40 and the central volume V6MP
C  , the interval from 50% to 150% of the bioavailability F=0.12, as no infor-

mation on the standard error was available, and the 95% confidence interval of t0.5 = 0.29 and computing the 
death rate of mature neutrophils kcirc = ln(2)/t0.5 correspondingly. After that, 100 simulations with the disturbed 
parameters equally spaced in the interval were performed. One of the fixed parameters was varied in each simu-
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lation round, while all other fixed parameters were left at their original value and all estimated parameters were 
fixed to the population parameter values. The resulting ANC trajectories were then compared to the reference 
ANC trajectory simulated with the original values of the fixed parameters by computing the absolute distance 
at each time step.

Software. The software used for parameter estimation was NONMEM 7.5, the PK models were estimated 
with first-order conditional estimation with interaction (FOCEi), the full PKPD model with a combination of 
Monte Carlo Importance Sampling Expectation Maximization (IMP) and Stochastic Approximation Expecta-
tion Maximization (SAEM). Perl speaks NONMEM (PsN) was used to create the visual predictive  checks31. 
Model analysis and simulation was done with Python 3.10 using CasADI and  CVODES32, 33.

Results
Methotrexate Pharmacokinetics. We compared 20 different MTX PK models to find the most suitable 
model, the overview of the parameter estimation can be found in Supplementary Table S4 online. There, the 
objective function value, RMSEs and MAEs of the individual predictions of all model variants are presented 
and evaluated in the same section of the supplementary information online. Analysing the results led to two 
structurally different model variants as best candidates for the MTX PK model, namely PKMTX

fix,bio,lin,peri with linear 
kinetics and PKMTX

fix,mm,cent,pop with Michaelis–Menten kinetics.
Comparing the cross-validation of both, PKMTX

fix,bio,lin,peri leads to more robust results, with not only the 
RMSEs and MAEs again increasing only slightly, but also the fixed effect parameters – in contrast to model 
PKMTX

fix,mm,cent,pop – displaying almost no change, as is reported in Table 2. The comparison of the individual patient 
parameters shows good agreement (cf. Supplementary Figure S8 online), too. Details of the comparison can be 
found in the supplementary information online.

Taking all results into account, even though the model PKMTX
fix,mm,cent,pop led to the lowest objective function 

value, the model PKMTX
fix,bio,lin,peri appears to be more robust when estimating with fewer observations and seems 

to work well enough in the low-dose MTX regime. This is entirely unsurprising, as Michaelis–Menten kinetics 
generally behave similar to linear kinetics for low concentrations. Additionally, when comparing the individual 
patient trajectories of both models, almost no differences are visible (cf. Supplementary Figure S9 online).

Supplementary Figure S10 online depicts the goodness-of-fit plot of the final model variant PKMTX
fix,bio,lin,peri 

for the cross-validation and Supplementary Figure S11 online for the estimation using the whole data set, both 
showing a good agreement of observed with predicted E-MTX values. Supplementary Figure S12 online displays 
the visual predictive check for this model with 1000 simulations with the final parameter values, both the median 
and the 2.5th percentile leading to similar results for the observed and predicted E-MTX values, while the 97.5th 
percentile of the observations lies most of the time slightly below the 95% CI of the predictions.

6-mercaptopurine pharmacokinetics. We compared two structurally different models for the 6MP 
pharmacokinetics: Michaelis–Menten and linear influx kinetics, resulting in the model variants PK6MP

mm,pop and 

Table 2.  Parameter values of the model PKMTX
fix,bio,lin,peri estimated with the whole and the cross-validation data 

set, relative standard error (RSE) of fixed effect parameters and residual unexplained variability in brackets. 
RMSEs and MAEs of the patient trajectories computed with the individual patient parameters are each 
calculated for the whole data set with the standard deviation in brackets. Coefficients of variation (CV) are 
calculated as 

√

exp
(

ω2
)

− 1 with ω2 as the variance of the interindividual variability estimated by NONMEM, 
and the 95% CI being calculated accordingly.

PKMTX
fix,bio,lin,peri

PKMTX
fix,bio,lin,peri

 , cross-validation

Fixed effects parameters with RSE in %

KMTX
in [1/day] 0.031 (5) 0.030 (6)

KMTX
eff [1/day] 0.018 (5) 0.019 (5)

CV with 95% CI, η-Shrinkage in % and p-values

KMTX
in 34 [29, 38], 29, 0.22 37 [32, 42], 32, 0.12

KMTX
eff

31 [26,35], 32, 0.45 21 [14, 27], 53, 0.24

Residual unexplained variability

Additive residual error 0.000018 (7) 0.000021 (15)

Proportional residual error 0.024 (8) 0.0068 (56)

Errors of the individual predictions

Median of RMSEs 0.0042 (0.0028) 0.0054 (0.0045)

Mean of RMSEs 0.0047 (0.0028) 0.0064 (0.0045)

Median of MAEs 0.0033 (0.0022) 0.0041 (0.0035)

Mean of MAEs 0.0036 (0.0022) 0.0049 (0.0035)
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PK6MP
lin  as potential 6MP PK models (cf. Supplementary Table S6 online and the corresponding section in the 

supplementary information online for details of the evaluation).Table 3 shows the parameter values of the cross-
validation for the model PK6MP

mm,pop and the RMSEs and MAEs of the individual predictions of both the estimation 
using the whole data set and the cross-validation. The RMSEs and MAEs did increase only slightly, but K6MP

mm  
changed similarly to KMTX

mm  , with its value decreasing one order of magnitude and its relative standard error 
reaching 206%. V6MP

mm  and K6MP
eff  showed only minor changes (cf. also Supplementary Figure S14 online, and the 

same section for a comparison to the cross-validation of the model variant PK6MP
lin ).

Taking all results into account, the case is not as clear as for the MTX pharmacokinetics. Even though the 
model with linear kinetics seems to be more robust against estimating with fewer observations, the changes in 
the parameter values for the model with Michaelis–Menten kinetics are not as drastic. Additionally, both the 
mean of the η s differing significantly from 0 and the individual patient trajectories seem to suggest that Michae-
lis–Menten kinetics are necessary to characterize E-TGN dynamics. Furthermore, the goodness-of-fit plots of 
observed versus predicted values and the visual predictive checks prefer model PK6MP

mm,pop . But even though model 
PK6MP

mm,pop led to overall better results, the decrease in K6MP
mm  and its huge relative standard error led us to include 

model PK6MP
lin  in the PKPD modeling to compare results again when estimating the full model.

Pharmacodynamics. The objective function values and RMSEs and MAEs based on the individual predic-
tions of all submodels of the five compared PKPD models can be found in Supplementary Table S8 online. Thor-
ough evaluation of the results led to PKPD6MP

lin,mm as the best performing model variant with Michaelis–Menten 
kinetics in the 6MP PK submodel and the effect function based solely on E-TGN (cf. the supplementary infor-
mation online for details of the model comparison).

The results of this model variant are mostly similar to the PKPDJost model, but distinct differences occur when 
computing the RSMEs and MAEs of the population predictions of the ANC. The errors of the PKPDJost model 
are almost twice as high (cf. Table 4 for a comparison with model PKPD6MP

lin,mm ), indicating that with no prior 
knowledge about the individual patient, the model estimated with integrating E-TGN observations performs 
better than the PKPDJost model, which relies on values from the literature.

The comparison of the RMSEs and MAEs of the individual predictions of the cross-validation of the model 
variant PKPD6MP

lin,mm revealed similar medians and means for all three models, but differing results for the standard 
deviations of the ANC errors (cf. Table 4 for the ANC errors and Supplementary Table S9 online for the E-MTX 
and E-TGN errors): the one of the model PKPDJost is about 2 times higher than the one of the model variant 
PKPD6MP

lin,mm, indicating more extreme deviations of the predicted ANC values from the observed ANC values. 
When comparing the results to those of the cross-validations of the PK submodels on their own, the RMSEs and 
MAEs show only negligible differences.

Table 5 shows the results of the parameter estimation using the whole data set and for the cross-validation for 
the model PKPD6MP

lin,mm . The fixed effect parameter K6MP
mm  still decreases, but not as immensely as when estimating 

solely the 6MP PK model. The sharp increase in its relative standard error does not occur for the cross-validation 
of the full PKPD model. The coefficients of variation show only negligible changes for the cross-validation.

Table 3.  Parameter values of the model PK6MP
mm,pop estimated with the whole and the cross-validation data set, 

relative standard error (RSE) of fixed effect parameters and residual unexplained variability in brackets. RMSEs 
and MAEs of the patient trajectories computed with the individual patient parameters are each calculated for 
the whole data set with the standard deviation in brackets. Coefficients of variation (CV) are calculated as 
√

exp(ω2)− 1 with ω2 as the variance of the interindividual variability estimated by NONMEM, and the 95% 
CI being calculated accordingly.

PK6MP
mm,pop PK6MP

mm,pop , cross-validation

Fixed effects parameters with RSE in %

V6MP
mm [µmol/L/day] 0.096 (8) 0.067 (29)

K6MP
mm [µmol/L] 0.016 (10) 0.0021 (206)

K6MP
eff [1/day] 0.041 (8) 0.039 (10)

CV with 95% CI, η-Shrinkage in % and p-values

V6MP
mm 52 [44, 59], 26, 0.38 40 [33, 47], 36, 0.18

K6MP
eff

50 [42, 57], 30, 0.63 40 [34, 46], 38, 0.43

Residual unexplained variability

Additive residual error 0.023 (9) 0.021 (10)

Proportional residual error 0.064 (5) 0.059 (7)

Errors of the individual predictions

Median of RMSEs 0.21 (0.16) 0.26 (0.26)

Mean of RMSEs 0.24 (0.16) 0.32 (0.26)

Median of MAEs 0.17 (0.13) 0.19 (0.21)

Mean of MAEs 0.19 (0.13) 0.24 (0.20)
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Comparing the results of the parameter estimation of the full PKPD model to those of the estimation of only 
the PK submodels (cf. Tables 2 and 3), there are no significant changes for the MTX PK submodel and for all 
coefficients of variation, while for the 6MP PK submodel, both V6MP

mm  and K6MP
mm  increase distinctly.

Figure 2 shows the goodness-of-fit plot of the final model variant PKPD6MP
lin,mm for the cross-validation and 

Supplementary Figure S20 online for the estimation using the whole data set. Both show a good agreement of 
observed and predicted E-MTX and E-TGN values, and more variation for the ANC values. Supplementary 
Figure S21 online displays the visual predictive check for this model with 1000 simulations with the final param-
eter values, both the median and the 97.5th percentile leading to similar results for the observed and predicted 
ANC values, while the 2.5th percentile of the observations lies most of the time slightly above the 95% CI of 
the predictions.

Figure 3 displays the final model structure with the 6MP PK submodel, a detailed overview of the fixed param-
eter values and the ODE system of the final PKPD model can be found in the supplementary information online.

Sensitivity analysis. The sensitivity analysis of the final PKPD model led to a maximal absolute distance 
to the reference ANC trajectory of 0.49 for the absorption rate k6MP

a  , with smaller maximal absolute distances 
for all other fixed parameters, namely 0.12 for the bioavailability F6MP , 0.093 for the elimination rate k6MP

e  , 0.11 
for the central volume V6MP

C  and 0.0013 for the death rate of mature neutrophils kcirc . The medians and inter-

Table 4.  ANC errors of the population predictions of the estimation using the whole data set, and of the 
individual predictions of the cross-validation of models PKPDJost and PKPD6MP

lin,mm. RMSEs and MAEs are each 
calculated for the whole data set with the standard deviation in brackets.

PKPDJost PKPD6MP
lin,mm

ANC errors of the population predictions

Median of RMSEs 2.12 (0.79) 1.12 (0.61)

Mean of RMSEs 2.23 (0.79) 1.27 (0.61)

Median of MAEs 1.87 (0.65) 0.90 (0.39)

Mean of MAEs 1.91 (0.65) 0.96 (0.39)

ANC errors of the individual predictions for the cross-validation

Median of RMSEs 1.03 (2.31) 1.07 (1.01)

Mean of RMSEs 1.38 (2.31) 1.29 (1.01)

Median of MAEs 0.80 (1.40) 0.79 (0.60)

Mean of MAEs 1.00 (1.40) 0.94 (0.60)

Table 5.  Parameter values of the model PKPD6MP
lin,mm estimated with the whole and the cross-validation data 

set, relative standard error (RSE) of fixed effect parameters and residual unexplained variability in brackets. 
Coefficients of variation (CV) are calculated as 

√

exp(ω2)− 1 with ω2 as the variance of the interindividual 
variability estimated by NONMEM, and the 95% CI being calculated accordingly.

PKPD6MP
lin,mm

PKPD6MP
lin,mm , cross-validation

Fixed effect parameters with RSE 
in %

CV with 95% CI, η-Shrinkage in % 
and p-values

Fixed effect parameters with RSE 
in %

CV with 95% CI, η-Shrinkage in % 
and p-values

KMTX
in [1/day] 0.032 (1) 34 [29, 38], 29, 0.75 0.029 (2) 35 [30, 40], 34, 0.86

KMTX
eff [1/day] 0.019 (1) 31 [26, 35], 30, 0.77 0.018 (1) 26 [20, 31], 45, 0.72

V6MP
mm [µmol/L/day] 0.21 (4) 56 [46, 65], 27, 0.97 0.13 (4) 42 [34, 50], 35, 0.98

K6MP
mm [µmol/L] 0.14 (0.1) - 0.046 (7) -

K6MP
eff [1/day] 0.050 (2) 54 [45, 63], 29, 0.97 0.044 (2) 44 [37, 51], 33, 0.91

base[G/L] 2.17 (3) 27 [24, 31], 22, 0.68 2.08 (4) 29 [25, 32], 27, 0.78

ktr[1/day] 0.15 (2) 72 [60, 82], 35, 0.57 0.17 (3) 72 [60, 84], 46, 0.65

slope6MP[L/µmol] 0.16 (4) 81 [65, 97], 40, 0.68 0.15 (6) 93 [68, 117], 45, 0.96

γ 0.79 (5) 11[8, 12], 49, 0.89 0.82 (10) 15 [11, 18], 58, 0.54

inieff 0.87 (22) 54 [48, 59], 20, 0.63 0.88 (29) 48 [42, 53], 27, 0.69

Residual unexplained variability

Additive, MTX 0.000018 (7) 0.000022 (8)

Proportional, MTX 0.024 (8) 0.0074 (25)

Additive, 6MP 0.024 (9) 0.020 (10)

Proportional, 6MP 0.061 (5) 0.051 (6)

Proportional, ANC 0.25 (2) 0.22 (3)
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quartile ranges of the trajectory with the maximal distance to the reference ANC trajectory can be found in Sup-
plementary Table S12 online, plots of the results of all simulations of the sensitivity analysis in Supplementary 
Figures S24–28 online.

Discussion
The mechanism of action of 6MP involves the sequential conversion to TGN and its subsequent incorporation 
into DNA (DNA-TG). Furthermore, methylated metabolites of 6MP generated by thiopurine methyltransferase 
(TPMT) directly inhibit purine de novo synthesis (PDNS), thereby increasing the incorporation of TGN into 
DNA. MTX works by depleting the cells of reduced folates as well as directly inhibiting PDNS, thereby working 
synergistically with methylated metabolites of 6MP to increase DNA-TG, which is considered their common 
downstream metabolite. (Supplementary Figures S1–S3)3 We therefore expected a rise in E-MTX and E-TGN to 
lead to a decrease in ANC. In the model, this is implemented by an effect function depending on either E-MTX, 
E-TGN or a combination of both, which reduces the proliferating rate and consequently, the number of prolif-
erating cells, the cells in the transit compartments and ultimately, the ANC.

We compared 20 different MTX PK models. For the application addressed here, the model combining fixed 
plasma pharmacokinetics based on Panetta et al.20, 21, dose-adjusted bioavailability based on Ogungbenro et al.23 
and linear kinetics modeling influx from the peripheral compartment into red blood cells proved to be the most 
appropriate. This model does not have the lowest objective function value but exhibits sufficiently good predic-
tion of MTX dynamics in the low-dose MTX regime while being more robust to a reduction in the number of 
observations used for estimation than the models with Michaelis–Menten kinetics. This is in line with Korell 
et al.22 who built a model for low-dose MTX and also modeled the influx into the red blood cells by linear 
kinetics. While the transportation of MTX into the red blood cells is mainly a saturable process indicating the 
need for Michaelis–Menten  kinetics13, 34, 35, for low concentrations, they are virtually indistinguishable from 
linear kinetics. Relying on linear kinetics in this case introduces the need to be especially careful though when 
simulating new treatment schedules to make sure to not reach MTX concentrations in the plasma where the 
dynamics would leave the linear phase of Michaelis–Menten kinetics, as linear kinetics are not able to describe 
the saturation that would occur for high MTX doses. Comparing the estimated fixed effect parameter values to 
those from the literature show excellent agreement for the elimination rate KMTX

eff  = 0.018 1/day with Korell et al. 

a. E-MTX b. E-TGN c. ANC

Figure 2.  Goodness-of-fit plots of observed and by the model PKPD6MP
lin,mm predicted E-MTX, E-TGN and ANC 

values. Estimations were done with the cross-validation data set, where blue dots are in-sample and purple dots 
are out-of-sample observations.

E

fb

Figure 3.  Final PKPD model with the 6MP PK submodel.
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reporting an elimination rate of 0.024 1/day22, Schalhorn et al. and Schrøder et al. reporting a half-life of 30–40 
days and a mean half-life of 37 days of MTX in the red blood cells, respectively, resulting in an elimination rate 
of 0.017–0.023 1/day and 0.019 1/day27, 28. For the linear influx rate of our model, KMTX

in  = 0.031 1/day, there are 
less results available in the literature with only Korell et al. reporting a much smaller rate of 0.0014 1/day22. The 
reason for this discrepancy might be the different patient population, which consists of adults with rheumatoid 
arthritis in contrast to the here analyzed population of children with  ALL22.

The basis in the literature to draw from for the 6MP PK model was less comprehensive, leading to only one 
model for the plasma pharmacokinetics of 6MP based on the results of Lennard et al.30 Further comparison 
of the results of using linear versus Michaelis–Menten kinetics for the influx of 6MP into the red blood cells 
showed that for 6MP, Michaelis–Menten kinetics are necessary to adequately describe the dynamics. Still, the 
observations available were not sufficient to fully analyze all aspects of the Michaelis–Menten kinetics with no 
possibility to estimate the coefficient of variation of the parameter K6MP

mm  and the reduced robustness against 
using less observations for the parameter estimation. There are several possible remedies for this: most obviously, 
increasing the number of observations available per patient, using a different timeline where it is possible to 
start the estimation at a point in time where the E-TGN compartment can be initialized with 0, and integrating 
observations for higher 6MP doses in the data set. Due to the limitations of our data set, it was not possible to 
include these remedies in our paper. The comparison of the estimated fixed effect parameter values to results 
from the literature is hindered by differences in units and structural models. Jayachandran et al. report a maximal 
influx into the red blood cells for Michaelis–Menten kinetics that is also integrated into the model of Le et al. 
and can be converted to about 0.23 µmol/L/day by assuming a mean corpuscular volume of 83  fL9, 11, 36, which 
is higher than the estimated V6MP

mm  = 0.096 µmol/L/day here, but similar to that estimated using the full PKPD 
model. Our estimated elimination rate of K6MP

eff  = 0.041 1/day is at the same order of magnitude as that reported 
by Jayachandran et al. with 0.0714 1/day11.

The full PKPD model was developed building on the model of Jost et al.10 by using the Friberg et al.  model15, 
a linear effect function and either E-TGN or a combination of E-TGN and E-MTX as inputs. To further investi-
gate the 6MP PK model, a variant with linear kinetics as well as a variant with Michaelis–Menten kinetics were 
integrated into the PKPD model and compared to each other. The final PKPD model relies only on E-TGN as 
input for the effect function and uses Michaelis–Menten kinetics for the 6MP PK model. The resulting fixed 
effect parameters for the 6MP PK submodel did differ from those stemming from estimating the PK model on 
its own, with V6MP

mm  = 0.21 µmol/L/day and K6MP
eff  = 0.050 1/day now being closer to the results in Jayachandran 

et al.11 Additionally, the 6MP PK submodel is more robust against estimating with less data when integrated into 
the PKPD model with the parameters now varying not as much and the relative standard error not increasing 
as much compared to estimating the 6MP PK model on its own. Focusing on the PD submodel, the parameters 
base = 2.17 G/L, ktr = 0.15 1/day and γ = 0.79 are comparable to those reported in Jost et al. with base = 2.34 
G/L, ktr = 0.148 1/day and γ = 0.76910, which also testifies to both models replicating the same dynamics. The 
mean maturation time indicated by our model is comparable to that from Jost et al. with 20  days10, 37. The slope 
of the effect function of this model differs with slope6MP = 0.16 L/µmol from the Jost et al.  one10, which must 
be converted due to unit differences in the E-TGN-compartment, resulting in a slope of 0.037 L/µmol. This 
discrepancy might be explained by the 6MP PK dynamics in the model in Jost et al. being fixed for all  patients10, 
while the observations of E-TGN in our data allowed to vary parameters individually resulting in patient-wise 
differing E-TGN trajectories, which influences the size of the slope parameter. This might also contribute to the 
improved model performance compared to PKPDJost when predicting patient trajectories by using the popula-
tion parameters. The final parameter to discuss, inieff  = 0.87, cannot be compared to values from the literature, 
as in contrast to previously published  models9, 10, the data used for this estimation begins in the middle of 
maintenance therapy and the assumption of Xma(0) = base does not hold. One limitation of our approach to 
estimate Xma(0) = inieff · base as a possibility to represent a steady treatment effect is that for some patients, 
the estimated inieff  > 1, indicating a positive effect of the treatment. This could be circumvented by using a data 
set that allows the initialization of the first PD compartment with Xma(0) = base.

All fixed effect parameter estimates of the final PKPD model - except for inieff  - show relative standard errors 
of 5% or lower, testifying to the identifiability of the parameters. The relative standard error of inieff  reaches 22%, 
again indicating the need for a data set with observations before the start of treatment to enable the direct estima-
tion of base . For the coefficients of variation, all 95% CI lie closely around the parameter estimates (cf. Table 5), 
and the relative standard errors of the estimates for the residual unexplained variability reach a maximum of 
9%, showing parameter identifiability to be unproblematic. There is no indication of over-parameterization of 
the model with the η-shrinkage reported in Table 5 lying mostly around 20–30% with a maximum shrinkage 
of 49%. Overall, even though the model requires the estimation of a relatively large number of parameters, 
identifiability seems to be no issue. The sensitivity analysis of this model led to a maximal distance of 0.49 to 
the reference ANC trajectory even in the most extreme case with the majority of the deviations of the disturbed 
trajectories lying well below that. This indicates that fixing these parameters does not influence the resulting 
ANC trajectories considerably, with the absorption rate k6MP

a  being the most influential parameter of the fixed 
ones. Therefore, the model would benefit from a better data basis with the ability to determine the absorption 
rate with a smaller confidence interval.

Compared to the results of Jost et al.10, the ANC trajectories resulting from our model display the same 
oscillations (cf. Figure 4 with the trajectories of one patient and Supplementary Figures S23 online). In contrast 
to the model of Jost et al.10 including E-TGN observations and therefore individual parameters for the intracel-
lular pharmacokinetics, we see the RMSEs and MAEs of the individual ANC predictions resulting from the 
cross-validation varying less than when relying on values from the literature for the 6MP PK submodel as in Jost 
et al.10 indicating that individualizing this part of the model leads to more robust predictions even with fewer 
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observations of E-TGN and ANC per patient. A similar advantage of the newly developed PKPD model holds 
true when comparing the results of the population predictions with the ANC observations of the individual 
patients: the model PKPD6MP

lin,mm leads to distinctly lower RMSEs and MAEs, suggesting a better fit of the model 
predictions to the patient observations if no prior individual information is available. Overall, our model testifies 
to the quality (i.e., description of the so-called ground truth) of the model of Jost et al. when sufficient data is 
available, but performs better in circumstances with limited data  availability10. This advantage has to be weighed 
against possible disadvantages of model complexification, such as estimates becoming more uncertain when 
increasing a model’s effective  dimension38.

While our model seems to replicate the dynamics of ALL maintenance therapy well overall, its ability to reach 
the minima and maxima of the ANC is limited, in contrast to e.g., models of acute myeloid leukemia (AML) 
predicting especially the nadir of treatment cycles  accurately39, 40. The reason for this might be differences in 
population with the AML models using data of adult patients versus data of still developing pediatric patients, 
and time horizons with the treatment cycles of AML lasting around 30–50 days versus 1–2 years of maintenance 
therapy. With the Jost et al. model displaying the same  characteristics10, this might point to general limits of 
this modeling approach for ALL maintenance therapy. This property of the model is especially relevant when 
simulating new treatment schedules or when using the model for optimization. The clinical applicability of PKPD 
models also depend on the models’ ability to predict the timing of samples and the expected effect on ANC. It 
is important to note that the trajectories of the ANC are not only influenced by the linear effect function but 
also by the nonlinear feedback mechanism, which necessitates more involved numerical studies to explore this 
relationship. We plan to address this in a subsequent paper.

One possible extension of the here developed PKPD model could be inspired by the results of Korell et al.41 
In their study, they compare the intracellular pharmacokinetics of MTX in the red blood cells and other cell 
lines and come to the conclusion that the dynamics of MTX in the red blood cells differ significantly from those 
in the white blood cells. While our final PKPD model does not include a MTX PK submodel, the same might 
hold for 6MP and would require further research into the intracellular pharmacokinetics of TGN in the white 
blood cells to integrate this into the PKPD model. DNA-TG in leukocytes is associated with E-TGN, E-MTX 

Figure 4.  Treatment schedule, E-TGN and ANC trajectories resulting from the final PKPD model for one 
patient showing the relation between 6MP doses, E-TGN concentrations and the ANC.
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and E-MMP42. Furthermore, DNA-TG has been associated with the risk of relapse in patients with positive 
measurable residual disease at the end of induction  therapy42, 43. However, the impact of DNA-TG on ANC has 
not yet been reliably modelled, and an optimal level of DNA-TG remains to be determined before DNA-TG can 
be used as a target for  TDM3, 44.

Conclusion
We developed a full pharmacokinetic–pharmacodynamic model that relies on observations of E-TGN and ANC 
to predict the effect maintenance therapy has on the patient-specific dynamics of the ANC. The results of the 
parameters estimation of this model are mostly comparable to those of Jost et al.10 with a structurally similar 
model replicating the same dynamics and indicating that at this point, this model structure is the most promising 
for ALL maintenance therapy. The newly developed model shows a better fit to the patient-wise observations 
in situations where less data is available as is often the case in clinical practice. This model now allows compre-
hensive analysis of the effects resulting from the modeled dynamics to generate hypotheses for the optimization 
of adapted treatment regimens through systematic simulation studies.

Data availability
The estimated patient parameters of this study are included in the Supplementary Information. The original data 
analysed in this study is not publicly available to preserve patient confidentiality.

Code availability
All relevant Python and NONMEM code for the model analysis and simulation are available from the authors 
upon reasonable request.
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