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Deep learning model 
for distinguishing Mayo endoscopic 
subscore 0 and 1 in patients 
with ulcerative colitis
Ji Eun Kim 1,6, Yoon Ho Choi 2,3,6, Yeong Chan Lee 4, Gyeol Seong 5, Joo Hye Song 1, 
Tae Jun Kim 1, Eun Ran Kim 1, Sung Noh Hong 1, Dong Kyung Chang 1, Young‑Ho Kim 1,7* & 
Soo‑Yong Shin 3,7*

The aim of this study was to address the issue of differentiating between Mayo endoscopic subscore 
(MES) 0 and MES 1 using a deep learning model. A dataset of 492 ulcerative colitis (UC) patients who 
demonstrated MES improvement between January 2018 and December 2019 at Samsung Medical 
Center was utilized. Specifically, two representative images of the colon and rectum were selected 
from each patient, resulting in a total of 984 images for analysis. The deep learning model utilized 
in this study consisted of a convolutional neural network (CNN)‑based encoder, with two auxiliary 
classifiers for the colon and rectum, as well as a final MES classifier that combined image features from 
both inputs. In the internal test, the model achieved an F1‑score of 0.92, surpassing the performance 
of seven novice classifiers by an average margin of 0.11, and outperforming their consensus by 0.02. 
The area under the receiver operating characteristic curve (AUROC) was calculated to be 0.97 when 
considering MES 1 as positive, with an area under the precision‑recall curve (AUPRC) of 0.98. In the 
external test using the Hyperkvasir dataset, the model achieved an F1‑score of 0.89, AUROC of 0.86, 
and AUPRC of 0.97. The results demonstrate that the proposed CNN‑based model, which integrates 
image features from both the colon and rectum, exhibits superior performance in accurately 
discriminating between MES 0 and MES 1 in patients with UC.

The treatment goal of ulcerative colitis (UC) is gradually becoming stricter after introduction of diverse biological 
agents. The current therapeutic golas for UC includes clinical remission and endoscopic  remission1,2. Selecting 
Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) I in 2015 defined endoscopic remission as a Mayo 
endoscopic subscore (MES) of 0 or  13. However, STRIDE II in 2020 defined endoscopic remission as MES 0; 
therefore, patients with MES 1 need to step up to achieve MES  04–6.

However, the step-up strategy cannot always result in MES 0, and it is not easy for MES 1 patients to step 
up which can lead to running short of available agents and having financial problems. And the most important 
issue is inaccuracy in the evaluation of MES. Distinguishing between MES 0, 1 versus MES 2 in UC patients 
is relatively straightforward, but discriminating between MES 0 and 1 poses a unique challenge as it requires 
careful discernment of subtle differences in endoscopic features. The severity of inter-/intra-observer variation 
among endoscopists in discriminating between MES 0 and 1 has been well-documented by previous  studies7–9.

Recent breakthroughs in artificial intelligence (AI) have shown great potential in addressing the challenges 
of inter-/intra-observer variations and providing valuable support in the evaluation of endoscopic remission in 
real-world clinical practice. By leveraging AI techniques, studies focusing on endoscopic findings have emerged 
with the aim of overcoming the limitations of MES evaluation, as evidenced by recent  publications10–15. These 
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advancements hold promise for improving the accuracy and objectivity of endoscopic assessment, thereby 
enhancing the reliability and reproducibility of clinical outcomes.

Despite efforts in several institutions to enhance the objectivity of endoscopic evaluation through diverse 
study designs, there are no studies that have specifically focused on differentiating between MES 0 and MES 1, 
despite their clinical significance in evaluating endoscopic remission in patients with UC.

In this study, we built a convolutional neural network (CNN) based on the endoscopic features of UC patients 
with endoscopic improvement defined by an MES of ≤ 1. We focused on the different characteristics of MES 0 
and MES 1 and developed an automated reading model for distinguishing between MES 0 and MES 1.

Methods
Patients. This single-center retrospective cohort study was conducted at Samsung Medical Center, a tertiary 
academic institution in Seoul, South Korea. The data of our cohort and study population were previously intro-
duced to confirm the outcome of histologic  remission7. All patients with UC at this center routinely visit the 
outpatient clinic and undergo routine colonoscopy. Our research institute has created an MES scoring protocol 
since 2018, including performing a two-point biopsy at work for all UC patients, and established an UC cohort 
of MES 0 or 1. Among the 1161 UC patients who underwent colonoscopy between January 2018 and December 
2019 at this center, 492 patients with MES improvement (MES 0 or MES 1) were included and analyzed. The 
study protocol was reviewed and approved by the Samsung Medical Center (SMC) Institutional Review Board 
(IRB No. 2021-10-138-001), and conducted in accordance with the principles of the Declaration of Helsinki. We 
used only de-identified data routinely collected during hospital visits, so the requirement for informed consent 
was waived according to the rules of SMC IRB.

Data collection. Two representative images of the colon and rectum, which appear to be the most severe, 
respectively were selected from the endoscopic images of 492 patients, and 984 images were obtained. Here, the 
data were split through random sampling into a training dataset of 452 persons/904 images for hyperparameter 
optimization and model construction and a test set of 40 persons/80 images for comparative experiments with 
the novice group. Supplementary Table 1 lists the composition of the entire dataset.

Endoscopic evaluation. The endoscopic images were reviewed separately by three endoscopic specialists 
and scored from 0 to 3 according to the Mayo endoscopic subscore. MES is a component of the Mayo score, 
classifying mucosal inflammation based on a 4-point scale from 0 to 3 according to endoscopic findings (0: 
normal; 1: erythema, decreased vascular pattern, and mild friability; 2: marked erythema, absent vascular pat-
tern, friability, and erosions; 3: ulceration and spontaneous bleeding)8. In cases of disagreement, the scores were 
recorded according to the consensus of two out of three reviewers. Endoscopic improvement was defined as an 
MES of 0 or 1, and complete endoscopic remission was defined as an MES of 0. The evaluation of the MES score 
was conducted using a colonoscope, specifically the Olympus CF-H260 or CF-Q260 model from Tokyo, Japan.

Preprocessing. Our proposed method includes a preprocessing step to remove redundant information 
from the endoscopic image and ensuring that all images have the same size while preserving their aspect ratio 
(Supplementary Fig. 1). This preprocessing method involves several stages. First, the endoscopic image is con-
verted to grayscale and then binarized using an arbitrary threshold. In our study, a threshold value of 25 was 
chosen to distinguish between redundant background and low foreground illumination. Next, we employ 8-con-
nectivity connected component analysis to remove object groups other than the largest one from the binarized 
image. Subsequently, we crop the image by identifying the bounding box that tightly fits the largest object area. 
The cropped areas have varying sizes and aspect ratios (Supplementary Fig. 2). Therefore, to preserve the aspect 
ratio of the cropped image while transforming it into a square shape, we applied zero-padding to extend the 
shorter axis to match the length of the longest axis of the cropped area. Finally, the padded image is resized to a 
fixed size of 256 × 256 pixels. This preprocessing method provides a more refined foreground compared to fixed-
length cropping or the vertical/horizontal projected histogram thresholding  method10.

Model architecture. Our model comprises an encoder, two auxiliary classifiers, and a final classifier. Each 
auxiliary classifier outputs the MES score for each input image of the colon and rectum, and the final classifier 
integrates the two input image feature maps to predict the final MES score for the patient (Fig. 1 However, none 
of the previous deep learning studies have shown capability to distinguish MES 0 and MES 1.). The encoder 
extracts the features of the input image and works as a common backbone for the following three classifiers: The 
encoder consists of convolutional filters of CNN-based classification models pre-trained with the ImageNet data-
base. Among various CNN structures, we chose VGG-16, which showed the best experimental  performance11,12. 
The encoder was fine-tuned with our endoscopic data, and the training details and performance comparison are 
described in the “Settings” and “Experiments” sections, respectively. We added two auxiliary classifiers, inde-
pendently predicting MES in the colon and rectum, to better guide the encoder over common features in the 
input endoscopic images. It consists of a binary classifier followed by global average pooling and a dense layer 
for encoded image features. This auxiliary classifier also enables MES classification even in limited conditions 
where only colon or rectum images are allowed. The final classifier predicts the patient’s MES by aggregating the 
image feature maps of the colon and rectum extracted from the encoder. The architecture followed by the global 
average pooling and dense layer is the same as that of the auxiliary classifier but with twice the trainable param-
eters. The model is trained as a weighted sum of the binary cross-entropy losses calculated from each output of 
all classifiers, as shown in the following equation:
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In Eq. 2, � is the balancing factor of the loss functions between the final classifier and the two auxiliary clas-
sifiers. The additional backpropagation of the loss for each of the colon and rectal images to the shared encoder 
of the model allows it to learn a better representation for predicting the MES in the endoscopic image. For the 
experiment, we maintained the value � at 1.

Settings. Data augmentation techniques of horizontal flip, vertical flip, rotation, zoom-in, and brightness 
adjustment were randomly applied for model training. For rich augmentation, these techniques were indepen-
dently applied to each of the two input colons and rectal images of the model. The model was trained for 500 
epochs with a batch size of 8 and optimized using Adam with an initial learning rate of 1e-5. All images input to 
the model in training and testing were standardized sample-wise. Our model was programmed in Python ver-
sion 3.9.6 and TensorFlow version 2.8.0 with CUDA version 11.0. The model was trained and tested on a system 
with an NVIDIA GeForce RTX 2080 8 Gb GPU, 64 Gb RAM memory, and an Intel(R) Core(TM) i9-10850 K 
CPU @ 3.60 GHz CPU environment.

Experiments. We conducted the following three experiments to evaluate and test our model.
(1) Twelve-fold cross-validation for representative model selection
The final hyperparameters and backbones were determined through 12-fold cross-validation using a training 

dataset of 452 patients/904 images from our improvement cohort. We evaluated the performance of the model 
using five different backbones: VGG16, MobileNet  V213, DenseNet121, EfficientNet B0, and  ResNet5013,16–18, 
and conducted a performance comparison for the backbone according to initial weight settings, such as scratch 
learning and transfer learning. We also conducted a performance comparison experiment for optimal model 
architecture and hyperparameter exploration according to the loss weight λ in the range of 0 to 1.

(2) Internal test and performance comparison with the novice group
We compared the developed model with a novice group on 40 patients/80 images of the test dataset. The 

novice group consisted of 7 fellow doctors from the Department of Gastroenterology at our center. Their experi-
ence varied from three to seven months, with an average of five months. Each novice independently investigated 
each image pair of the colon and rectum in the test set according to the MES scoring guidelines, and the final 
MES was predicted. The consensus of MES prediction results for each novice was also calculated and compared 
with the AI model results.

(3) External test
To investigate the generalization capabilities of the model, we additionally conducted an external test using 

the Hyperkvasir dataset, a publicly available collection of endoscopic video and  image19. The dataset includes 
colonoscopy images of MES grades 1,2, and 3, as well as images that are confounded between adjacent grades 
(0–1, 1–2, and 2–3). However, specific images representing the MES 0 are not included in the dataset. To address 
the absence of MES 0 data, we utilized videos from the Hyperkvasir dataset that were graded with Boston Bowel 
Preparation Scale (BBPS) score of 3. These videos represent intestines with perfectly clean mucosal conditions, 
free from residual stool or opaque liquid. From each of the eight BBPS 3 videos, we randomly sampled five still 

(1)BCE
(
y, ŷ

)
= −(ylog

(
ŷ
)
+ (1− y)log(1− ŷ))

(2)Total loss = BCEfinal classifier + �(BCEauxiliary classifier for colon + BCEauxiliary classifier for rectum)

Figure 1.  Artificial intelligence (AI) model architecture.
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frames, excluding the initial and final 2-s intervals that commonly exhibited severe motion artifacts. This resulted 
in a total of 40 still images, which served as substitutes for MES 0 score images in the external test. The composi-
tion of the Hyperkvasir data used for external test can be found in Supplementary Table 5.

In this test, we focused on two important aspects of our model’s performance. Firstly, we assessed the clas-
sification performance of MES 0 and 1. Secondly, we evaluated the detection performance for all UC positive 
cases with MES scores higher than 1 (1–2, 2, 2–3, 3). The objective of the second experiment was to investigate 
whether our model possesses the capability to detect UC irrespective of its severity. Since the Hyperkvasir data 
in this experiment only included colon images, we sub-modeled and evaluated the auxiliary classifier specifically 
for colon images in our model.

Evaluation metrics. To evaluate the classification results of our model, we applied standard classification 
metrics, such as accuracy, true positive ratio, sensitivity, the area under the receiver operating characteristic 
curve (AUROC), area under the precision-recall curve (AUPRC), and F1-score (Supplementary Table 2). Since 
the composition of the experimental data in this study shows class imbalance, we mainly compared the F1-score 
among them.

Statistical analysis. Values are expressed as median (interquartile range) for continuous variables and 
number (%) for categorical variables. The chi-square, Fisher’s exact, and Mann–Whitney U tests were used to 
compare the variables between the two groups. All statistical analyses were performed using the SPSS Statistics 
ver. 27.0 (IBM Corp, New York, NY, USA). Statistical significance was set at p < 0.05.

Results
Baseline characteristics. The baseline characteristics of UC patients with endoscopic improvement 
defined by an MES of 0 or 1 are summarized in Table 1. The median age was 48 (37–58) years, and 254 patients 
(51.6%) were male. The median duration of the disease was 549.0 (369.25–744.75) days; 253 patients (51.4%) 
showed complete endoscopic remission defined by a rectal MES of 0, and 220 patients (44.7%) showed complete 

Table 1.  Baseline characteristics. BMI, body mass index; 5-ASA, 5-aminosalicylic acid; ESR, Erythrocyte 
sedimentation rate; CRP, C-reactive protein; MES, Mayo endoscopic subscore.

Total patients All patients (492)

Age 48 (37–58)

Male, n (%) 254 (51.6)

Age at diagnosis 39.0 (29.0–49.0)

Disease duration (month) 78.0 (30.0–144.0)

Disease extent

 Proctitis 212 (43.1)

 Left sided colitis 133 (27.0)

 Pancolitis 147 (29.9)

BMI 22.96 (20.93–25.02)

Steroid use history 194 (39.4)

Current medication

 5-ASA, topical 99 (20.1)

 5-ASA, oral 193 (39.2)

 5-ASA, both 160 (32.5)

 Steroid 6 (1.2)

 Azathioprine 28 (5.7)

 Immunomodulator 37 (7.5)

Laboratory finding

 WBC (/µL) 6060.0 (5140.0–7247.5)

 Hemoglobin (g/dL) 14.0 (13.0–15.1)

 Platelet count (×103 µL) 247.0 (213.5–290.0)

 ESR (mm/hr) 11.0 (5.0–20.0)

 Albumin (g/dL) 4.6 (4.4–4.8)

 CRP (mg/dL) 0.05 (0.03–0.11)

Endoscopic finding

 Colon MES 0 220 (44.7)

 Rectal MES 0 253 (51.4)

 Total MES 0 217 (44.1)

Follow up duration (day) 549.0 (369.25–744.75)
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endoscopic remission defined by a colon MES of 0. When evaluating the total MES score combined with colon 
and rectal MES, 217 patients (44.1%) achieved complete endoscopic remission.

Representative model selected by 12‑fold cross‑validation. In the 12-fold cross-validation of the 
training dataset, VGG16 showed the best performance among the five backbones, with an average F1-score of 
0.8738, accuracy of 0.8472, AUROC of 0.8699, and AUPRC of 0.8830 (Supplementary Table 3). Incorporating 
auxiliary classifiers into the model led to an average accuracy improvement of over 3% in all five backbones, and 
the optimal auxiliary loss weight λ was 1 (Supplementary Table 4). Supplementary Fig. 3 shows AUROC and 
AUPRC plots for the entire fold.

Outcomes of internal test and comparison of our models with the novice group. The consensus 
of MES prediction results for each novice was also calculated and compared with our model. The AUROC and 
AUPRC of our model for the test set were 0.9661 and 0.9827, respectively, outperforming the consensus of the 
novices (Fig. 2). The consensus of the novice individuals and the novice group on the test set and the prediction 
results of our model are shown in Table 2 and are expressed as a confusion matrix (Supplementary Fig. 1). The 
average F1-score of the novice group was 80.26%, and their consensus showed an improved accuracy of 89.4%. 
In comparison, the test set F1-score of our model was 91.7%, showing the highest performance. Novices tended 
to overestimate disease exacerbations in terms of activity. Figure 3 shows the result of overlapping the normal-
ized class activation map obtained for MES 1 on the two input images of the colon and rectum. MES 1 is shown 
in red, and MES 0 is shown in blue.

Outcomes of external test. Supplementary Table 5 shows the composition of the Hyperkvasir data used 
for external validation. We conducted an investigation into the classification performance of our model for 
Hyperkvasir’s MES 0 and 1 data. Additionally, we examined the model’s detection performance for UC, regard-
less of its severity, using only positive images with MES scores higher than 1. During the test for MES 0 and 1 
classification, our auxiliary classifier demonstrated high performance, achieving an AUROC of 0.8587 and an 
AUPRC of 0.9696 (Fig. 4). Supplementary Fig. 5A showcases the model’s excellent generalized performance, as 
depicted by the confusion matrix derived from Hyperkvasir’s MES 0 and 1 data.

Figure 2.  Area under the Receiver Operating Characteristic curve (AUROC) and Area under the Precision-
Recall Curve (AUPRC) of our model and novice group on the internal test set.

Table 2.  Performance comparison between novices and our model in Internal test dataset.

Accuracy F1-Score True positive ratio Sensitivity

Novice 1 0.8250 0.8511 0.8696 0.8333

Novice 2 0.7250 0.7925 0.7241 0.8750

Novice 3 0.8500 0.8800 0.8462 0.9167

Novice 4 0.8000 0.8333 0.8333 0.8333

Novice 5 0.7500 0.7619 0.8889 0.6667

Novice 6 0.7000 0.7857 0.6875 0.9167

Novice 7 0.7000 0.7143 0.8333 0.6250

Consensus 0.8750 0.8936 0.9130 0.8750

Ours 0.9000 0.9167 0.9167 0.9167
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In the supplementary evaluation aiming to assess the model’s ability to detect UC, our model classified only 
35 out of 615 positive cases with MES scores higher than 1 as MES 0, as illustrated in Supplementary Fig. 5B.

Discussion
Recognizing the necessity and difficulty of objectification in MES classification, many studies have been published 
to solve it through AI. In one study that examined whether MES was evaluated through a CNN, AUROC was 
0.84 for MES ≥ 1, 0.85 for MES ≥ 2, and 0.85 for MES ≥  320. In another study, the developed deep learning model 
classified MES 0–1 and 2–3 with 94.5% accuracy, 89.2% sensitivity, and 96.3%  specificity21. Most previous stud-
ies have focused on scoring and predicting MES 1 or higher or merging MES 0 and 1 into the same  class20,22,23. 
Therefore, according to STRIDE II, they are not suitable for monitoring endoscopic remission. In addition, the 
performance of most existing studies was measured only with AUROC and accuracy, which have a high risk of 

Figure 3.  Examples of test images and their corresponding normalized class activation maps True positives 
(MES = 1) (A),(B),(C),(D). True negatives (MES = 0] (E),(F),(G), and (H) (https:// pypi. org/ proje ct/ matpl otlib/3. 
5.3/).

https://pypi.org/project/matplotlib/3.5.3/
https://pypi.org/project/matplotlib/3.5.3/
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giving distorted values for class-imbalanced  data24. Our study conducted a more reliable performance analysis 
by including the AUPRC and the F1 score, which is the harmonic mean of precision and recall. Our end-to-end 
classification model, which accepts colon and rectum images simultaneously, is cost-effective and has perfor-
mance advantages compared to creating two models that classify the images separately. In the VGG16-based 
classification model for colon (auxiliary classifier 1) and rectum images (auxiliary classifier 2), the average F1 
scores were 0.6381 and 0.7296, respectively.

In addition, the structural strengths of our model can be summarized as follows. First, all classifiers are easy to 
implement with a simple structure consisting of global average pooling and one fully connected layer, requiring 
little additional cost from the backbone. Second, because the model capacity and performance are highly depend-
ent on the backbone model, it is easy to upgrade performance by introducing an improved backbone. Third, the 
independent classification of colon or rectum images is possible through the sub-modeling of auxiliary classifiers.

Our study had some limitations. As it was a single-center retrospective cohort study, the number of patients 
was small; hence, the amount of data was inevitably small. To achieve the results of a multicenter study on deep 
learning to supplement this, an improvement cohort should be established in the same way as in our center. In 
clinical practice, it is important to perform MES scoring after observing the entire colon; however, it is techni-
cally difficult to make AI models by making these moving images rather than still images because of the data 
capacity. Recently, studies on clinical relapse through histological remission of UC patients have been actively 
 published25,26. Furthermore, the findings of real-time video-based research have shown promising results in 
reducing the need for unnecessary biopsies and enhancing the accuracy of evaluations by integrating endoscopic 
and histological  assessments14. However, reproducibility is difficult even if video data are technically constructed. 
The feasibility of practical implementation of this approach is deemed to require a considerable amount of time. 
Therefore, for applicability in actual clinical practice, as shown in our study, the appropriate method is to analyze 
the two images as a backbone and further analyze them using an auxiliary classifier, taking into account the 
properties of any image, and to give the final results.

We used only the MES score instead of Ulcerative Colitis Endoscopic Index of Severity (UCEIS) as an endo-
scopic evaluation tool. The simplification and clarity of deep learning algorithms can mitigate the occurrence 
of false positives and false negative. We thought that assessment of MES through grading is straightforward for 
deep learning, while UCEIS, due to the need for assigning points to each descriptor based on its definition, is 
complex and prone to errors. This study focused solely on evaluating the MES index, as it pertains to the changes 
brought about by STRIDE II, in order to draw conclusive research findings regarding MES0. Our future plans 
involve refining technology and developing algorithms that are free from UCEIS errors and are more sophisti-
cated in nature.

Deep learning model is a valuable tool because of its low variation in results and reproducibility. Utilizing 
deep learning as a support system for clinical decision-making reduces the difference between observers; it is 
expected to be helpful for replacing "automated reading" now that MES 0 is suggested as a therapeutic goal in 
STIRIDE II. Discriminating between MES 0 and MES 1 is difficult for endoscopist in clinical practice. However, 
it is clear that patients with MES 0 have fewer clinical relapse, therefore it is necessary to distinguishing between 
the two because of saving drugs through accurate discrimination, and ultimately to decide on the patient’s 
treatmen plan. Through our model, this gap can be narrowed which can contribute to treatment improvement.

In conclusion, our study demonstrated the successful construction of a CNN utilizing endoscopic features 
of UC patients, specifically focusing on distinguishing between MES 0 and MES 1 for endoscopic improvement. 
Through rigorous development and testing, our automated reading model has proven its superiority over novice 
groups in an internal test and showcased excellent performance by external validation.

Data availability
The data underlying this article cannot be shared publicly given the privacy of the individuals who participated 
in the study. The data will be shared on reasonable request to the corresponding author.

Figure 4.  External test of predictive performance of our model.
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