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Survival analysis of a stochastic 
impulsive single‑species population 
model with migration driven 
by environmental toxicant
Xiangjun Dai 1,2, Jianjun Jiao 1,3* & Qi Quan 1

Considering the influence of environmental toxicant on population migration between patches, we 
propose and study a stochastic impulsive single‑species population model with migration driven by 
environmental toxicant in this paper. We first discuss the existence and uniqueness of global positive 
solutions of the model by constructing the Lyapunov function. Then, we obtain sufficient conditions 
for extinction, stochastic persistence and persistence in the mean of the single‑species population. 
Finally, we present some numerical simulations to illustrate our results. These results provide insights 
for the conservation and management of species in polluted environments.

Due to differences in the geographical environment and the influence of human activities, the habitats of many 
species are broken up into isolated patches, which may lead to the extinction of species within the patch. There-
fore, the study of population migration between patches plays a very important role in the conservation and man-
agement of species, and many scholars have analysed the effects of migration on stability, permanence, extinction, 
and other dynamic properties by establishing mathematical models  (see1–14). For example, Feng et al.9 proposed 
and studied a predator-prey model with predator population migration dependent on prey. Kang et al.10 consid-
ered the situation that predators migrate towards patches with more concentrated predator-prey interactions in 
the model. Specifically, some scholars proposed single-species population models with migrations between the 
non-nature reserve and the nature reserve to study the survival and extinction of single-species populations. 
For example, Zou and  Wang11 proposed and studied the following deterministic single-species diffusion model.

where r > 0 and a > 0 stand for the population growth rate and the intra-specific competition coefficient of 
population. D > 0 is the diffusion coefficient. H and h are sizes of the non-nature reserve and the nature reserve. 
And then, the extinction and permanence in the mean of single species under fluctuated environments were also 
studied by Zou et al.12,13 and Dieu et al.14. Based on the model  in12, Wei and  Wang15 established the following 
stochastic single-species model with migrations between two patches.

where d12 ≥ 0 stands for the migration rate of the population from the non-nature reserve (patch 1) to the nature 
reserve (patch 2), d21 ≥ 0 stands for the migration rate of the population from the nature reserve to the non-
nature reserve. Ei denotes the hunting rate in the i-th patch, and E1 ≫ E2 . B(t) is standard Brownian motion. 
 In15, authors assumed that the number of individuals of a species in the nature reserve is larger than that in 
the non-nature reserve, and sufficient conditions for the extinction and persistence in the mean of population 
were obtained. However, it is not difficult to find that the growth rate, the intra-specific competition coefficient 
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and the intensity of white noise in two patches are the same, so the results obtained  in15 are not suitable for the 
general situation. Therefore, we need to further discuss the influence of population migration on the survival 
of single-species.

With the rapid development of human society, a large number of toxic substances and pollutants are dis-
charged into the ecosystem, seriously polluting the ecological environment and threatening the survival of spe-
cies. Such as heavy metal pollution, and water pollution caused by crop fertilization and pesticide application. 
Therefore, it is most important to investigate the survival and extinction of species in a polluted environment. In 
recent years, many excellent results have analyzed the effects of toxicant discharged into the environment from 
modern industry and modern agriculture on population by establishing  models16–21. But, these models mainly 
discussed the effect of pollutants on the population growth rate. As we all know, many creatures in nature have 
good sensory organs and highly differentiated nervous systems, and they can respond to information in the 
environment accordingly. For example, in agricultural production, many pests will choose to escape from the 
pesticide-treated environment due to the stimulation of chemical pesticides, and then seek a new environment 
conducive to population growth, this may be one of the reasons for inducing the resurgence of pest populations 
and the emergence of pest resistance. Therefore, it is necessary to consider the effect of environmental toxicant 
on population migration. Wei el at.20,21 proposed two single-species population models with physiological effect, 
where the “physiological” effect is described as self-protection by organisms in highly polluted environments 
to reduce the effective contact between the organism and the polluted environment. However, few studies have 
considered the influence of environmental toxicant on population migration between patches. In this paper, we 
assume that toxins are emitted in regular pulses, a common example being the use of pesticides, and propose 
a deterministic single-species population model with migration driven by environmental toxicant as follows:

Here xi(t) denotes the density of population in patch i. ce(t) and co(t) represent the concentration of toxicant in 
the environment and organism at time t respectively. f > 0 represents the uptake rate of toxicant from the 
environment by the population in patch 1. (g +m)co(t) describes loss due to egestion and metabolic process at 
time t. b ≥ 0 and γ > 0 represent the pulse input amount of toxins and the pulse input period of toxicant respec-
tively. hc(t) represents the total lose at time t from the system environment including processes such as biological 
transformation, microbial degradation, volatilization and photosynthetic degradation. δco(t) represents the lethal 
rate of toxins in the organism to the population in patch 1. In this paper, we adopt a Holling-III response func-
tion ρd12c

2
e

1+αc2e
 to describe the influence of toxicant concentration in patch 1 on population migration. ρd12 is 

described as the migration rate of the population in patch 1 to patch 2 due to the stimulation of toxicant in patch 
1, and α > 0 denotes the sensitivity of population to environmental toxicant. �ψ(t) = ψ(t+)− ψ(t) 
(ψ = x1, x2, co, ce) , ψ(t+) = lim

s→0+
ψ(t + s).

On the other hand, the population is inevitably affected by various factors in the environment, for example, 
changes in temperature, climate and weather.  May22 showed that the birth rates, carrying capacity, and other 
parameters involved in the system can be affected by environmental noise. In order to better understand the 
dynamic behaviors of the population models, many researchers introduced random perturbations into deter-
ministic models to show richer and more complex dynamic  properties24–31. Motivated by the above studies, we 
suppose that environmental noises mainly affect the growth rate rie of system (1) in this paper, according to 
the central limits theorem, we usually use an average value plus an error term satisfying the standard normal 
distribution to estimate a  value25,26, that is,

where rie is a positive constant, dBi(t)dt  is the a Gaussian white noise, Bi(t) represents the standard Brownian motion 
defined on the complete probability space (�,F , {Ft}t≥0,P) with {Ft}t≥0 satisfying the usual  conditions23. σi 
is the intensity of the white noise. There is another possible form of modeling for rie in a randomly-varying 
environment, we introduce the Ornstein-Uhlenbeck process (also called as mean-reverting process)21–27, and 
it has the following form

where rie , ξi and µi are positive constants, µi is the speed of reversion and ξi is the intensity of the white noise. 
Solving the stochastic Eq.  (2), from  studies21–27, we have

(1)
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t �= nγ ,

�x1(t) = 0,�x2(t) = 0,�co(t) = 0,�ce(t) = b, t = nγ , n ∈ Z+.

rie(t) = rie + σi
dBi(t)

dt
, i = 1, 2.,

(2)drie(t) = µi(rie − ri(t))dt + ξidBi(t),
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where ri0 = ri(0) and σi(t) = ξi√
2µi

√
1− e−2µi t  . Modifying the deterministic model (1), we propose the follow-

ing stochastic impulsive single-species population model with migration driven by environmental toxicant

Because the solutions of c0(t) and ce(t) can be solved by the third and fourth equations of (3), we only consider 
the following system

Remark 1 Because each of co(t) and ce(t) is a concentration, co(t) and ce(t) must satisfy the inequalities 
0 ≤ co(t) ≤ 1 and 0 ≤ ce(t) ≤ 1 for t ≥ 0 . Therefore, throughout this article, we assume that f ≤ g +m and 
b ≤ 1− e−hγ.

Preliminaries
For the convenience of later discussion, some notations are defined here:

where cmo  , cMo  , cme  and cMe  are given in Lemma 1.

Definition 1 (see31) 

 (i) The population x is said to go to extinction if lim
t→+∞

x(t) = 0.
 (ii) The population x is said to be strongly persistent in the mean if �x(t)�∗ > 0.
 (iii) The population x is said to be stochastically permanent if for any ǫ ∈ (0, 1) , there exist H1 = H1(ǫ) > 0 

and H2 = H2(ǫ) > 0 such that lim inf
t→+∞

P{|x(t)| > H1} ≥ 1− ǫ, lim inf
t→+∞

P{|x(t)| < H2} ≥ 1− ǫ.

Lemma 1 (see31) Consider the following model corresponding to model (3)

rie(t) = rie + (ri0 − rie)e
−µi t + σi(t)

dBi(t)

dt
,

(3)







































































dx1(t) = x1(t)[r1e + (r10 − r1e)e
−µ1t − δco(t)− a1x1(t)]dt + [d21x2(t)

− d12(1+
ρc2e (t)

1+ αc2e (t)
)x1(t)]dt + σ1(t)x1(t)dB1(t),

dx2(t) = x2(t)[r2e + (r20 − r2e)e
−µ2t − a2x2(t)]dt + [d12(1+

ρc2e (t)

1+ αc2e (t)
)x1(t),

− d21x2(t)]dt + σ2(t)x2(t)dB2(t),

dco(t) = fce(t)− (g +m)co(t)dt,

dce(t) = −hce(t)dt,



























































t �= nγ ,

�x1(t) = 0,�x2(t) = 0,�co(t) = 0,�ce(t) = b, t = nγ , n ∈ Z+.

(4)







































dx1(t) = x1(t)[r1e + (r10 − r1e)e
−µ1t − δco(t)− a1x1(t)]dt + [d21x2(t)

− d12(1+
ρc2e (t)

1+ αc2e (t)
)x1(t)]dt + σ1(t)x1(t)dB1(t),

dx2(t) = x2(t)[r2e + (r20 − r2e)e
−µ2t − a2x2(t)]dt + [d12(1+

ρc2e (t)

1+ αc2e (t)
)x1(t)

− d21x2(t)]dt + σ2(t)x2(t)dB2(t).

R
2
+ ={(x1, x2)|xi > 0, i = 1, 2.}, �f (t)� = t−1

∫ t

0
f (s)ds, f ∗ = lim sup

t→+∞
f (t), f∗ = lim inf

t→+∞
f (t),

η = 1

2hγα
ln

(1− e−hγ )2 + αb2

(1− e−hγ )2 + αb2e−2hγ
, r1(t) = r1e + (r10 − r1e)e

−µ1t − δco(t), r
∗
1 = r1e − δcmo ,

d12(t) =d12

(

1+ ρc2e (t)

1+ αc2e (t)

)

, r2(t) = r2e + (r20 − r2e)e
−µ2t , (r1)∗ = r1e − δcMo ,

(d12)∗ =d12

(

1+ ρ(cme )
2

1+ α(cme )
2

)

, d∗12 = d12

(

1+ ρ(cMe )2

1+ α(cMe )2

)

, σ 2 = ξ21 ξ
2
2

2µ1ξ
2
2 + 2µ2ξ

2
1

, σ̂ 2

=max

{

ξ 21

2µ1
,
ξ 22

2µ2

}

,
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Model (5) has a unique globally asymptotically stable positive γ-periodic solution (c̃o(t), c̃e(t)) , where

and cmo = inf
t≥0

{c̃o(t)} , cMo = sup
t≥0

{c̃o(t)} , cMe = b
1−e−hγ  and cme = be−hγ

1−e−hγ .

Lemma 2 The positive γ-periodic solution ( ̃co(t) , c̃e(t) ) of model (5) satisfies

Proof It follows from the periodicity of c̃o(t) and c̃e(t) that

and

This result is confirmed.   �

Main results
In order to study the long-time behaviors of the model (4), we first discuss the existence and uniqueness of global 
positive solutions to the stochastic differential equation (SDE) (4).

Existence and uniqueness of the positive solution for SDE (4). 
Theorem 1 For any given initial value x(0) = (x1(0), x2(0)) ∈ R2

+, there exists a unique global positive solution 
x(t) = (x1(t), x2(t)) to SDE (4), and the solution x(t) will remain R2

+ with probability 1.

Proof Because the coefficients of the SDE (4) are locally Lipschitz continuous, there must be a unique local solu-
tion x(t) in [0, τe) for any given initial value x(0) ∈ R2

+ , where τe denotes the explosion time. Therefore, we need 
to prove τe = +∞ a.s. in the following. Let N0 be large enough such that x(0) remains in the interval [ 1

N0
,N0] . 

For every N ≥ N0 , define the stopping time

Clearly, τN is increasing as N → +∞ . Letting τ∞ = lim
N→∞

τN , thus, τ∞ ≤ τe a.s. In the following, we only need 
to prove τ∞ = +∞, a.s. We next employ the reduction to absurdity to prove it. If the conclusion is not true, then 
there are T > 0 and ǫ ∈ (0, 1) such that P{τ∞ < T} > ǫ . Accordingly, there is a positive integer N1 ≥ N0 such 
that for any N ≥ N1 , P{τN ≤ T} ≥ ǫ . Define a C2-function V : R2

+ → R+ as follows:

Using Itô′s formula, we have

(5)
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= −hce(t), t �= nγ ,
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c̃o(t) = c̃o(0)e
−(g+m)(t−nγ ) + fb(e−(g+m)(t−nγ ) − e−h(t−nγ ))

(h− g −m)(1− e−hγ )
,

c̃e(t) =
be−h(t−nγ )

1− e−hγ
,

c̃o(0) =
fb(e−(g+m)γ − e−hγ )

(h− g −m)(1− e−hγ )(1− e−(g+m)γ )
,

c̃e(0) =
b

1− e−hγ
,

lim
t→+∞

t−1

∫ t

0
c̃o(s)ds =

fb

h(g +m)γ
, lim

t→+∞
t−1

∫ t

0

c̃2e (s)

1+ αc̃2e (s)
ds = η.

lim
t→+∞

t−1

∫ t

0
c̃o(s)ds = γ−1

∫ γ

0
c̃o(s)ds =

fb

h(g +m)γ
,

lim
t→+∞

t−1

∫ t

0

(c̃e(s))
2

1+ α(c̃e(s))2
ds = −1

γ h

∫ γ

0

−h(c̃e(s))
2

1+ α(c̃e(s))2
ds = −1

γ h

∫ γ

0

c̃e(s)

1+ α(c̃e(s))2
dc̃e(s)

= 1

2hγα
ln

(1− e−hγ )2 + αb2

(1− e−hγ )2 + αb2e−2hγ
= η.

τN = inf

{

t ∈ [0, τe] : xi(t) /∈
(

1

N
,N

)

, i = 1, 2.

}

.

V(x1, x2) = [x1 − 1− ln x1]+ [x2 − 1− ln x2].
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here

Obviously, there exists K > 0 such that LV(x) ≤ K.
Integrating (6) on [0, τN ∧ T] , and then taking expectation obtain that

Let �N = {τN ≤ T}, N > N1 , then P(�N ) ≥ ǫ . For any ω ∈ �N , we get that at least one of x1(τN ,ω) and 
x2(τN ,ω) equals either N or 1N  , thus

From (7), we have

Letting N → +∞ , leads to the contradiction:

Therefore, we obtain τ∞ = +∞ , a.s.   �

Stochastic permanence. 
Lemma 3 For any given initial value x(0) ∈ R2

+ , there must be a K(p) > 0 such that the solution x(t) of SDE 
(4) satisfies

Proof Define function V(x) = (x1 + x2)
p , (p > 1) , using Itô ’s formula to V(x), we obtain

where r = pmax{r1e + r10, r2e + r20} + 1
2p(p− 1)max

{

ξ21
2θ1

,
ξ22
2θ2

}

 , a = pmin{a1,a2}
2  . Thus,

further,

Let y(t) = EV(x(t)) , from (8), we have

(6)dV(x) = LV(x)dt + σ1(t)(x1 − 1)dB1(t)+ σ2(t)(x2 − 1)dB2(t),

LV(x) =
[

r1e + (r10 − r1e)e
−µ1t − δco + a1

]

x1 − a1x
2
1 +

[

r2e + (r20 − r2e)e
−µ2t + a2

]

x2 − a2x
2
2

−
[

r1e + (r10 − r1e)e
−µ1t − δco

]

−
[

r2e + (r20 − r2e)e
−µ2t

]

+ d12

(

1+ ρc2e
1+ αc2e

)

+ d21 + 0.5σ 2
1 (t)+ 0.5σ 2

2 (t)− d12

(

1+ ρc2e
1+ αc2e

)

x1

x2
− d21

x2

x1

≤ [r1e + r10 + a1]x1 − a1x
2
1 + [r2e + r20 + a2]x2 − a2x

2
2 + δco(t)+ d12(1+ ρ)+ d21

+ ξ 21

4µ1
+ ξ 22

4µ2
.

(7)EV(x(τN ∧ T)) ≤ V(x(0))+ KT .

V(x(τN ∧ T)) ≥ min

{

N − 1+ lnN ,
1

N
− 1− lnN

}

.

V(x(0))+ KT ≥ P(�N )V(x(τN ∧ T)) ≥ ǫmin

{

N − 1+ lnN ,
1

N
− 1− lnN

}

.

+∞ > V(x(0))+ KT ≥ P(�N )V(x(τN ∧ T)) ≥ ǫmin{N − 1+ lnN ,
1

N
− 1− lnN} = ∞.

lim sup
t→+∞

E[(x1 + x2)
p] ≤ K(p), p > 1.

dV(x) = p(x1 + x2)
p−1d(x1 + x2)+

1

2
p(p− 1)(x1 + x2)

p−2(d(x1 + x2))
2

≤ p(x1 + x2)
p−1{x1[r1e + r10 − a1x1] + x2[r2e + r20 − a2x2]}dt

+ 1

2
p(p− 1)(x1 + x2)

p−2

[

x21
ξ 21

2θ1
+ x22

ξ 22

2θ2

]

dt + p(x1 + x2)
p−1(σ1(t)x1dB1(t)+ σ2(t)x2dB2(t))

≤ (x1 + x2)
p{r − a(x1 + x2)}dt + p(x1 + x2)

p−1(σ1(t)x1dB1(t)+ σ2(t)x2dB2(t)),

EV(x(t))− V(x(0)) ≤
∫ t

0
rEV(x(s))− aEV

p+1
p (x(s))ds,

(8)
dEV(x(t))

dt
≤ EV(x(t))

(

r − a(EV(x(t)))
1
p

)

.

dy(t)

dt
≤ y(t)

(

r − ay
1
p (t)

)

.
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By the comparison theorem, we obtain lim sup
t→+∞

y(t) ≤ ( ra )
p , that is, lim sup

t→+∞
E(x1(t)+ x2(t))

p ≤ ( ra )
p = K(p) . 

This ends the proof.   �

Remark 2 From Lemma 3, we know that there exists a T > 0 such that E[(x1(t)+ x2(t))
p] ≤ 2K(p) for t > T . 

On the other hand, E[(x1(t)+ x2(t))
p] is continuous with respect to t on the interval [0, T], then there exists 

a K1(p) > 0 such that E[(x1(t)+ x2(t))
p] ≤ K1(p) for t ∈ [0,T] . Let K0(p) = max{2K(p),K1(p)}, we have 

E[(x1(t)+ x2(t))
p] ≤ K0(p) , that is, the solution x(t) to SDE (4) is P-moment bounded.

Theorem 2 If min{r1e − δcM , r2e} > 0.5σ̂ 2 , the solution x(t) of SDE (4) is stochastically permanent.

Proof Define function V1(x) = x1(t)+ x2(t) , t ≥ 0 , we can obtain that

Define function U(x) = 1
V1(x)

 , t ≥ 0 . Applying Itô ’s formula, we have

I f  min{r1e − δcM , r2e} > 0.5σ̂ 2  ,  w e  c a n  t a k e  a n  ǫ > 0  s m a l l  e n o u g h  s u c h  t h a t 
ř = min{(r1(t))∗, (r2(t))∗} = min{r1e − δcM , r2e} > 0.5σ̂ 2 + ǫ . Moreover, we can also select a θ > 0 such that 
(ř − ǫ)− 0.5(θ + 1)σ̂ 2 > 0 . Define function V2(t) = (1+ U(x))θ . An application of Itô ’s formula gives

here â = max{a1, a2} and

for t large enough. We select a ζ > 0 small enough to satisfy

By computing, we have

where

here

From (11), we know that κ(x) is bounded in R2
+ . Let κ1 = max







sup
x∈R2+

κ(x), 1







< +∞. It follows from (12) that

dV1(x) = [x1(t)(r1(t)− a1x1(t))+ x2(t)(r2(t)− a2x2(t))]dt + σ1(t)x1(t)dB1(t)+ σ2(t)x2(t)dB2(t).

(9)

dU = −U2dV1 + U3(dV1)
2

= −U2[x1(t)(r1(t)− a1x1(t))+ x2(t)(r2(t)− a2x2(t))]dt
+ U3(σ 2

1 (t)x
2
1 + σ 2

2 (t)x
2
2)dt − U2(σ1(t)x1(t)dB1(t)+ σ2(t)x2(t)dB2(t)).

dV2(x) = θ(1+ U(x))θ−1dU(x)+ 1

2
θ(θ − 1)(1+ U(x))θ−2(dU(x))2

= LV2(x)dt − θ(1+ U)θ−1U2(σ1(t)x1(t)dB1(t)+ σ2(t)x2(t)dB2(t)),

(10)

LV2(x) = θ(1+ U)θ−1{−U2{x1[r1(t)− a1x1] + x2[r2(t)− a2x2]} + U3(σ 2
1 (t)x

2
1 + σ 2

2 (t)x
2
2)}

+ 1

2
θ(θ − 1)(1+ U)θ−2U4(σ 2

1 (t)x
2
1 + σ 2

2 (t)x
2
2)

≤ (1+ U)θ−2{θU3{−x1(r1e − ǫ − δcM)− x2(r2e − ǫ)+ θ(1+ U)U2(a1x
2
1 + a2x

2
2)}

+ (θ(1+ U)U3 + 1

2
θ(θ − 1)U4)σ̂ (x21 + x22)}

≤ (1+ U)θ−2

{[

1

2
θ(θ + 1)σ̂ − (ř − ǫ)θ

]

U2 + (θ â+ θσ̂ )U + θ â

}

(11)(ř − ǫ)θ − 1

2
θ(θ + 1)σ̂ − ζ > 0,

(12)E[eζ tV2(x)] = V2(x(0))+ E

∫ t

0
L[eζ sV2(x(s))]ds,

(13)

L[eζ tV2(x)] = ηeζ tV2(x)+ eζ tLV2(x)

≤ eζ t(1+ U)θ−2

{

ζ(1+ U)2 +
[

1

2
θ(θ + 1)σ̂ − (ř − ǫ)θ

]

U2 + (θ â+ θσ̂ )U + θ â

}

= eζ t(1+ U)θ−2

{

−
[

(ř − ǫ)θ − 1

2
θ(θ + 1)σ̂ − ζ

]

U2 + (θ â+ θσ̂ + 2ζ )U + θ â+ ζ

}

≤ ζ eζ tκ(x),

κ(x) = 1

ζ
{(1+ U)θ−2{−[(ř − ǫ)θ − 1

2
θ(θ + 1)σ̂ − ζ ]U2 + (θ â+ θσ̂ + 2ζ )U + θ â+ ζ }}.
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for t large enough. Further, we can obtain that

For any ǫ ∈ (0, 1) , denote H1 = ǫθ /κθ1 . By Chebyshev’s inequality  (see23), we can obtain that

thus lim sup
t→+∞

P{(x1(t)+ x2(t)) < H1} ≤ ǫ, and lim inf
t→+∞

P{(x1(t)+ x2(t)) > H1} ≥ 1− ǫ.

We will  prove in the following that for any ǫ > 0 ,  there is a H2(ǫ) > 0 such that 
lim inf
t→+∞

P{(x1(t)+ x2(t)) ≤ H2} ≥ 1− ǫ. According to Lemma 3 and the Chebyshev’s inequality, this result can 
be easily confirmed.   �

Extinction. 
Lemma 4 The solution x(t) to SDE (4) satisfies lim sup

t→+∞
ln xi(t)

t ≤ 0, a.s., i = 1, 2.

Proof Define function V3(x) = ln(x1 + θx2)  (θ > 0) . Applying Itô ’s formula for V3(x) , we have

where r = max{r1e + r10 + θd12(1+ ρ), (r2e + r20 + d21
θ
)} and ν = 0.5min{a1, a2θ } . Thus,

Integrating both sides of inequality (15) in the interval [0, t], we have

w h e r e  M(t) =
∫ t
0 e

s σ1(t)x1(s)dB1(s)+σ2(t)θx2(s)dB2(s)
x1(s)+θx2(s)

 .  T h e  q u a d r a t i c  v a r i a t i o n  o f  M ( t )  i s 

�M(t),M(t)�t =
∫ t
0 e

2s σ
2
1 (t)x

2
1(s)+σ 2

2 (t)θ
2x22(s)

(x1(s)+θx2(s))2
ds . According to the exponential martingale inequality, for all posi-

tive constants ε,β and T0 , we can obtain that

and choose ε = e−n , β = 2en ln n and T0 = n , then

E[eζ tV2(x)] ≤ V2(x(0))+ κ1(e
ζ t − 1)

lim sup
t→+∞

E
1

(x1 + x2)θ
≤ lim sup

t→+∞
E

(

1+ 1

(x1 + x2)θ

)

≤ κ1.

P{(x1(t)+ x2(t)) < H1} = P

{

1

(x1(t)+ x2(t))θ
>

1

Hθ
1

}

≤ Hθ
1E

1

(x1(t)+ x2(t))θ
,

(14)

d ln(x1 + θx2) =
(

x1[r1(t)− a1x1] + [d21x2 − d12(t)x1]
x1 + θx2

+ θx2[r2(t)− a2x2] + θ[d12(t)x1 − d21x2]
x1 + θx2

− σ 2
1 (t)x

2
1 + σ 2

2 (t)θ
2x22

2(x1 + θx2)2

)

dt + σ1(t)x1dB1(t)+ σ2(t)θx2dB2(t)

x1 + θx2

≤
(

(r1e + r10 + θd12(1+ ρ))x1 + (r2e + r20 + d21
θ
)θx2 − a1x

2
1 − θa2x

2
2

x1 + θx2

−σ 2
1 (t)x

2
1 + σ 2

2 (t)θ
2x22

2(x1 + θx2)2

)

dt + σ1(t)x1dB1(t)+ σ2(t)θx2dB2(t)

x1 + θx2

≤
(

r − ν(x1 + θx2)−
σ 2
1 (t)x

2
1 + σ 2

2 (t)θ
2x22

2(x1 + θx2)2

)

dt + σ1(t)x1dB1(t)+ σ2(t)θx2dB2(t)

x1 + θx2
,

(15)

detV(x) = etV(x)dt + etdV(x)

≤ et
(

ln(x1 + θx2)+ r − ν(x1 + θx2)−
σ 2
1 (t)x

2
1 + σ 2

2 (t)θ
2x22

2(x1 + θx2)2

)

dt

+ et
σ1(t)x1dB1(t)+ σ2(t)θx2dB2(t)

x1 + θx2
.

(16)
etV(x) ≤ V(x(0))+

∫ t

0
es(ln(x1(s)+ θx2(s))+ r − ν(x1(s)+ θx2(s))

− σ 2
1 (t)x

2
1(s)+ σ 2

2 (t)θx
2
2(s)

2(x1(s)+ θ2x2(s))2
)ds +M(t),

P

{

sup
0≤t≤T0

[M(t)− 0.5ε�M(t),M(t)�t ] > β

}

≤ e−εβ ,

P

{

sup
0≤t≤n

[M(t)− 0.5e−n�M(t),M(t)�t ] > 2en ln n

}

≤ n−2.
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Because the series 
+∞
∑

n=1

n−2 < ∞ , by Borel-Cantalli lemma, we obtain that there is a �0 ∈ � with P(�0) = 1 such 

that for every ω ∈ �0 , a positive integer n1 = n1(ω) can be found that

for 0 ≤ t ≤ n and n ≥ n1(ω) . Let ϕ(x) = ln(x1 + θx2)+ r − ν(x1 + θx2) , we obtain that there must be a positive 
constant K such that ϕ(x) ≤ K for x ∈ R2

+ . It follows from (16) and (17) that for all n > n1(ω),

If n− 1 ≤ t ≤ n and n > n1(ω) , we have

Letting t → +∞ , we can obtain that lim sup
t→+∞

ln ln(x1(t)+θx2(t))
t ≤ 0, a.s. , this can also imply that 

lim sup
t→+∞

ln ln xi(t)
t ≤ 0, a.s., i = 1, 2. when we take θ = 1.

This completes the proof.   �

Theorem 3 Let x(t) be a solution of SDE (4) with initial value x(0) ∈ R2
+ . If any of the following conditions is true, 

 (i): r∗1 = r2e and r∗1 + r2e < σ 2.
 (ii): r∗1 < r2e and (r∗1 + r2e − d∗12 − d21)+

√

(r∗1 − r2e + d21 − d∗12)
2 + 4d∗12d21 < σ 2.

 (iii): r∗1 > r2e and (r∗1 + r2e − d21 − (d12)∗)+
√

(r∗1 − r2e + d21 − (d12)∗)2 + 4(d12)∗d21 < σ 2 . Then the 
single-species population goes to die out, that is, lim

t→+∞
xi(t) = 0, a.s.

Proof From SDE (4), we obtain that

From Lemma 1, we derive that for ǫ > 0 , there exists a T1 > 0 such that for t ≥ T1,

Case (i) :  If r∗1 = r2e , we take θ = 1 , and obtain from (19) that

Applying Itô′s formula, we have

By Cauchy inequality, we can obtain that

Further from (22), we have

Integrating both sides of above inequality on [T1, t] and dividing by t, we can obtain that

where M1(t) =
∫ t
T1

σ1(s)x1(s)dB1(s)+σ2(s)x2(s)dB2(s)
x1(s)+x2(s)

. Let N(t) =
∫ T1
0

σ1(s)x1(s)dB1(s)+σ2(s)x2(s)dB2(s)
x1(s)+x2(s)

+M1(t) , then the 
quadratic variation of N(t) is

(17)M(t) ≤ 0.5e−n�M(t),M(t)�t + 2en ln n

(18)et ln(x1 + θx2) ≤ V(x(0))+ K(et − 1)+ 2en ln n.

ln(x1 + θx2)

t
≤ V(x(0))

tet
+ K(et − 1)

tet
+ 2en ln n

tet
.

(19)
d(x1 + θx2) =

[

(r1(t)+ d12(t)(θ − 1))x1 + (θr2(t)+ d21(1− θ))x2 − a1x
2
1 − a2θx

2
2

]

dt

+ σ1(t)x1dB1(t)+ θσ2(t)x2dB2(t).

(20)
(r1)∗ − ǫ = r1e − δcMo − ǫ ≤ r1(t) ≤ r1e − δcm + ǫ = r∗1 + ǫ, r2e − ǫ ≤ r2(t) ≤ r2e + ǫ,

(d12)∗ − ǫ = d12

(

1+ ρ1(c
m
e )

2

1+ α(cme )
2

)

− ǫ ≤ d12(t) ≤ d12

(

1+ ρ1(c
M
e )2

1+ α(cMe )2

)

+ ǫ = d∗12 + ǫ.

(21)
d(x1 + x2) =

[

(r1(t)x1 + r2(t)x2)− a1x
2
1 − a2x

2
2

]

dt + σ1(t)x1dB1(t)+ σ2(t)x2dB2(t)

≤ (r∗1 + ǫ)(x1 + x2)dt + σ1(t)x1dB1(t)+ σ2(t)x2dB2(t).

(22)d ln(x1 + x2) ≤
(

(r∗1 + ǫ)− 0.5
σ 2
1 (t)x

2
1 + σ 2

2 (t)x
2
2

(x1 + x2)2

)

dt + σ1(t)x1dB1(t)+ σ2(t)x2dB2(t)

x1 + x2
, t ≥ T1.

(

σ 2
1 (t)

x21
(x1 + x2)2

+ σ 2
2 (t)

x22
(x1 + x2)2

)(

1

σ 2
1 (t)

+ 1

σ 2
2 (t)

)

≥ 1.

d ln(x1 + x2) ≤
(

(r∗1 + ǫ)− 0.5σ 2
1 (t)σ

2
2 (t)

σ 2
1 (t)+ σ 2

2 (t)

)

dt + σ1(t)x1dB1(t)+ σ2(t)x2dB2(t)

x1 + x2
, t ≥ T1.

(23)
ln(x1(t)+ x2(t))

t
≤ ln(x1(T1)+ x2(T1))

t
+ (r∗1 + ǫ)(t − T1)

t
− 1

2t

∫ t

T1

σ 2
1 (s)σ

2
2 (s)

σ 2
1 (s)+ σ 2

2 (s)
ds + M1(t)

t
,
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According to the strong law of large number, we have lim
t→+∞

N(t)
t = 0 , thus, lim

t→+∞
M(t)
t = 0 . And

thus, lim
t→+∞

t−1
∫ t
T1

σ 2
1 (s)σ

2
2 (s)

σ 2
1 (s)+σ 2

2 (s)
ds = ξ21 ξ

2
2

2θ1ξ
2
2+2θ2ξ

2
1
= σ 2.

If r∗1 + r2e − σ 2 < 0 , we can take a sufficiently small ǫ ∈ (0, 1) such that r∗1 + r2e + 2ǫ − σ 2 < 0 , from (23), 
we have lim

t→+∞
(x1(t)+ x2(t)) = 0, a.s , that is, lim

t→+∞
xi(t) = 0, a.s., i = 1, 2.

Case(ii) :  If r∗1 < r2e , we take a θ1 > 1 , from (19), we have

Let (θ1, �1) be the solution of the following equations

and

which implies that r∗1 + ǫ < �1 < r2e + ǫ . Denote p = �1 − (r∗1 + ǫ) > 0 , q = r∗1 − r2e < 0 . From (25), we have

it is easy to calculate that the quadratic equation (26) has two real roots:

And because f (−q) = −d21q > 0 , it is easy to see that 0 < p1 < −q , further,

From (24), we obtain that

If (r∗1 + r2e − d∗12 − d21)+
√

(r∗1 − r2e + d21 − d∗12)
2 + 4d∗12(r2e − r∗1 ) < σ 2 , we choose an ǫ small enough such 

that �1 < 0.5σ 2 , from (27), we also conclude that lim
t→+∞

xi(t) = 0, a.s., i = 1, 2.

Case (iii): If r∗1 > r2e , we select a 0 < θ2 < 1 , from (19), we have

Let (θ2, �2) be the solution of the following equations

and

�N(t),N(t)�t =
∫ t

0

σ 2
1 (t)x

2
1(s)+ σ 2

2 (s)x
2
2(s)

(x1(s)+ x2(s))2
ds ≤ max{ ξ

2
1

2θ1
,
ξ22

2θ2
}t.

∫ t

T1

ξ21 ξ
2
2

4θ1θ2
(1− e−2θ1s)(1− e−2θ2s)

ξ21
2θ1

+ ξ22
2θ2

ds ≤
∫ t

T1

σ 2
1 (s)σ

2
2 (s)

σ 2
1 (s)+ σ 2

2 (s)
ds ≤

∫ t

T1

ξ21 ξ
2
2

4θ1θ2

ξ21
2θ1

(1− e−2θ1s)+ ξ22
2θ2

(1− e−2θ2s)
ds,

(24)
d(x1 + θ1x2) ≤ [((r∗1 + ǫ)+ (d∗12 + ǫ)(θ1 − 1))x1 + (θ1(r2e + ǫ)+ d21(1− θ1))x2

− a1x
2
1 − a2θ1x

2
2]dt + σ1(t)x1dB1(t)+ θ1σ2(t)x2dB2(t).

{

(r∗1 + ǫ)+ (θ1 − 1)(d∗12 + ǫ) = �1,

θ1(r2e + ǫ)+ (1− θ1)d21 = θ1�1,

(25)















θ1 − 1 = �1 − (r∗1 + ǫ)

d∗12 + ǫ
> 0,

1− θ1 = θ1
�1 − (r2e + ǫ)

d21
< 0,

(26)f (p) = p2 + (q+ d∗12 + d21 + ǫ)p+ (d∗12 + ǫ)q = 0,

p1 =
−(q+ d∗12 + d21 + ǫ)+

√

(q+ d21 − d∗12 − ǫ)2 + 4d21(d
∗
12 + ǫ)

2
> 0,

p2 =
−(q+ d∗12 + d21 + ǫ)−

√

(q+ d21 − d∗12 − ǫ)2 + 4d21(d
∗
12 + ǫ)

2
< 0.







θ1 =
p1

d∗12 + ǫ
+ 1 > 1,

�1 = p1 + (r∗1 + ǫ) < r2e + ǫ.

(27)d(x1 + θ1x2) ≤ �1(x1 + θ1x2)dt + σ1(t)x1dB1(t)+ θ1σ2(t)x2dB2(t).

(28)
d(x1 + θ2x2) ≤ [((r∗1 + ǫ)+ ((d12)∗ − ǫ)(θ2 − 1))x1 + (θ2(r2e + ǫ)+ d21(1− θ2))x2

− a1x
2
1 − a2θ2x

2
2]dt + σ1(t)x1dB1(t)+ θ2σ2(t)x2dB2(t).

{

(r∗1 + ǫ)+ (θ2 − 1)((d12)∗ − ǫ) = �2,

θ2(r2e + ǫ)+ (1− θ2)d21 = θ2�2,
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this implies that r2e + ǫ < �2 < r∗1 + ǫ . It follows from (29) that

where p = �2 − (r∗1 + ǫ) < 0 , q = r∗1 − r2e > 0 . There exist two real roots to quadratic equation g(p) = 0,

moreover, p4 < −q < p3 < 0 , thus,

Similar to the proof of Case (ii), we have lim
t→+∞

xi(t) = 0, a.s. (i = 1, 2) if

This proof is completed.   �

Remark 3 From the proof of Theorem 3’(ii), we know that species goes to extinction when r∗1 < 0 and 
d∗12r2e + r∗1d21 − r∗1 r2e < 0 , which is independent of the intensity of the noise.

Remark 4 If ρ = 0 , that is, without considering the influence of environmental toxicant concentra-
tion on population migration. From Theorem 3, we obtain that single-species population will be extinct if 
(r∗1 + r2e − d21 − d12)+

√

(r∗1 − r2e + d21 − d12)2 + 4d12d21 < σ 2.

Permanence in the mean. In this subsection, we aim to analyze the permanence in the mean of SDE (4).

Theorem 4 Let (x1(t), x2(t)) be the solution of SDE (4) with initial value x(0) ∈ R2
+. If any of the following condi-

tions is true, 

 (i): (r1)∗ = r2e and (r1)∗ + r2e > σ̂ 2.
 (ii): (r1)∗ < r2e and (r1)∗ + r2e − (d12)∗ − d21 +

√

((r1)∗ − r2e + d21 − (d12)∗)2 + 4(d12)∗d21 > σ̂ 2.
 (iii): (r1)∗ > r2e and (r1)∗ + r2e − d∗12 − d21 +

√

((r1)∗ − r2e + d21 − d∗12)
2 + 4d∗12d21 > σ̂ 2 . Then the single-

species population is strongly persistent in the mean.

Proof Using the same proof method as Theorem 3. Let ǫ ∈ (0, 1) be small enough, and r2e − ǫ > 0 , (d21)∗ − ǫ > 0
.

Case (i) :  If (r1)∗ = r2e , we take θ = 1 , and obtain from (19) that

Applying Itô′s formula, we have

where σ̂ 2 = max{ ξ1
2θ1

, ξ2
2θ2

} and a = max{a1,a2}
2  . And,

If (r1)∗ + r2e > σ̂ , we select a sufficiently small ǫ such that (r1)∗ + r2e − 2ǫ > σ̂ , from Lemma 4 and (32), we 
obtain that

(29)















θ2 − 1 = �2 − (r∗1 + ǫ)

(d12)∗ − ǫ
< 0,

1− θ2 = θ2
�2 − (r2e + ǫ)

d21
> 0,

(30)g(p) = p2 + (q+ (d12)∗ + d21 − ǫ)p+ ((d12)∗ − ǫ)q = 0,

p3 =
−(q+ d21 + (d12)∗ − ǫ)+

√

(q+ d21 − (d12)∗ + ǫ)2 + 4((d12)∗ − ǫ)d21

2
< 0,

p4 =
−(q+ d21 + (d12)∗ − ǫ)−

√

(q+ d21 − (d12)∗ + ǫ)2 + 4((d12)∗ − ǫ)d21

2
< 0,







θ2 =
p3

(d12)∗ − ǫ
+ 1 < 1,

�2 = p3 + (r∗1 + ǫ) > r2e + ǫ.

(r∗1 + r2e − d21 − (d12)∗)+
√

(r∗1 − r2e + d21 − (d12)∗)2 + 4(d12)∗d21 < σ 2.

(31)
d(x1 + x2) =

[

(r1(t)x1 + r2(t)x2)− a1x
2
1 − a2x

2
2

]

dt + σ1(t)x1dB1(t)+ σ2(t)x2dB2(t)

≥ ((r2e − ǫ)(x1 + x2)− a(x1 + x2)
2)dt + σ1(t)x1dB1(t)+ σ2(t)x2dB2(t).

d ln(x1 + x2) ≥ ((r2e − ǫ)− 0.5σ̂ 2 − a(x1 + x2))dt +
σ1(t)x1dB1(t)+ σ2(t)x2dB2(t)

x1 + x2
, t ≥ T1,

(32)a�x1 + x2� ≥ − ln(x1(t)+ x2(t))

t
+ ln(x1(T1)+ x2(T1))

t
+ ((r2e − ǫ)− 0.5σ̂ 2)(t − T1)

t
+ M(t)

t
.
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Case(ii) :  If (r1)∗ < r2e , we take a θ3 > 1 , from (19), we have

Let (θ3, �4) be the solution of the following equations

further,

this implies that (r1)∗ − ǫ < �3 < r2e − ǫ . Denote u = �3 − ((r1)∗ − ǫ) > 0 , v = (r1)∗ − r2e < 0 . From (34), 
we have

there exist two real roots to quadratic equation (35),

Since h(−v) = −d21v > 0 , thus 0 < u1 < −v , further,

From (33), we have

When ((r1)∗ + r2e − d21 − (d12)∗)+
√

((r1)∗ − r2e + d21 − (d12)∗)2 + 4(d12)∗d21 > σ̂ 2 , we can select an ǫ small 
enough such that condition �3 > 0.5σ̂ 2 holds. We conclude from (36) that

Case (iii): If (r1)∗ > r2e , the following proof is similar to Theorem 3, we omit it.
The proof of Theorem 4 is competed.   �

Remark 5  If ρ = 0 , when

the population x is strongly permanent in the mean.

Theorem 5 If r1e − δfb
h(g+m)γ

− d12(1+ ρη) > 0 and r2e − d21 > 0, we have

Proof From (4), we have

Then,

�x1(t)+ x2(t)�∗ ≥ (r2e − ǫ)− 0.5σ̂ 2

a
> 0.

(33)
d(x1 + θ3x2) ≥ [(((r1)∗ − ǫ)+ ((d12)∗ − ǫ)(θ3 − 1))x1 + (θ3(r2e − ǫ)+ d21(1− θ3))x2

− a1x
2
1 − a2θ3x

2
2]dt + σ1(t)x1dB1(t)+ θ3σ2(t)x2dB2(t).

{

((r1)∗ − ǫ)+ (θ3 − 1)((d12)∗ − ǫ) = �3,

θ3(r2e − ǫ)+ (1− θ3)d21 = θ3�3,

(34)















θ3 − 1 = �3 − ((r1)∗ − ǫ)

(d12)∗ − ǫ
> 0,

1− θ3 = θ3
�3 − (r2e − ǫ)

d21
< 0,

(35)h(u) = u2 + (v + (d12)∗ − ǫ + d21)u+ ((d12)∗ − ǫ)v = 0,

u1 =
−(v + d21 + (d12)∗ − ǫ)+

√

(v + d21 − (d12)∗ + ǫ)2 + 4d21((d12)∗ − ǫ)

2
> 0,

u2 =
−(v + d21 + (d12)∗ − ǫ)−

√

(v + d21 − (d12)∗ + ǫ)2 + 4d21((d12)∗ − ǫ)

2
< 0.







θ3 =
u1

(d12)∗ − ǫ
+ 1 > 1,

�3 = u1 + ((r1)∗ − ǫ) < r2e − ǫ.

(36)d(x1 + θ3x2) ≥ [�3(x1 + θ3x2)−max{a1,
a2

θ3
}(x1 + θ3x2)

2]dt + σ1(t)x1dB1(t)+ θ3σ2(t)x2dB2(t).

�x1(t)+ θ3x2(t)�∗ ≥ �3 − 0.5σ̂ 2

max{a1, a2θ3 }
> 0, a.s.

(r1)∗ + r2e − d12 − d21 +
√

((r1)∗ − r2e + d12 + d21)2 + 4d12(r2e − (r1)∗) > σ̂ 2,

�x1(t)�∗ ≥
r1e − δfb

h(g+m)γ
− d12(1+ ρη)

a1
, �x2(t)�∗ ≥ r2e − d21

a2
, a.s.

dx1 ≥ x1

[

r1e + (r10 − r1e)e
−µ1t − δco(t)− d12

(

1+ ρc2e (t)

1+ αc2e (t)

)

− a1x1

]

dt + σ1(t)x1dB1(t),

dx2 ≥ x2[r2e + (r20 − r2e)e
−µ2t − d21 − a2x2]dt + σ2(t)x2dB2(t).
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According to Lemma 4, (37) and (38), we obtain that

This ends the proof of Theorem 5.   �

Stochastic single‑species population model for migration between two non‑polluted 
patches. If there is no polluted patch, the model (3) will degenerate into the following stochastic single-
species population migration model.

From Theorems 3 and 4, we can also get the following results for system (39).

Corollary 3.1 (i) Species in system (39) will be extinct if

(ii) Species in system (39) is permanent in the mean if

Numerical simulation and discussions
In this section, we give some numerical simulations to demonstrate the analytical results for the SDE model 
(3) presented in the previous sections by applying the positive preserving truncated Euler-Maruyama method 
(PPTEMM) given  in32,33.

We give some parameters as:

and initial value (x1(0), x2(0), co(0), ce(0)) = (0.8, 0.5, 0.2, 0.6) . And then we take different values of ξi , µi , γ and 
b to show the influence of the intensity of white noise ξi , the speed of reversion µi , the pulse input cycle of toxi-
cant γ and the toxicant input amount each time b on the dynamics of the SDE model (3). We first take µ1 = 0.1 , 
µ2 = 0.1 , γ = 1 , b = 0.1 . If we choose ξ1 = 0.4 and ξ2 = 0.4 , by calculation, we have r∗1 − r2e < −0.1132 < 0 
and (r∗1 + r2e−d21− (d12)∗)+

√

(r∗1 − r2e + d21 − (d12)∗)2 + 4(d12)∗d21−σ 2 < −0.2091 < 0 , which satisfy 
condition (ii) in Theorem 3. From Theorem 3, we can obtain that species will be extinct as shown in Fig. 1a. If 
we choose ξ1 = 0.1 , ξ2 = 0.1 , after calculating, we obtain that (r1)∗ − r2e < 0 and

it implies by Theorem 4 that system (3) is strongly permanent in the mean, see Fig. 1b. We can easily find 
that higher intensity of white noise ξi may lead to the extinction of species by comparing Fig. 1a,b. In the 
following, we will show the influence of speed of reversion µi (i = 1, 2) on the population dynam-
ics of SDE model (3). We take µ1 = 0.01 , ξ1 = 0.1 , µ2 = 0.01 , ξ2 = 0.1 , γ = 1 , b = 0.1 , and derive that 
(r∗1 + r2e−d21− (d12)∗)+

√

(r∗1 − r2e + d21 − (d12)∗)2 + 4(d12)∗d21−σ 2 < −0.0591 < 0 . It follows from Theo-
rem 3 that the single-species dies out (see Fig. 1c). From Fig. 1b,c, we can find that a small speed of reversion µi 
can give rise to extinction of species. Finally, we will show the influence of γ and b on species survival, and take 
µ1 = 0.1 , ξ1 = 0.1 , µ2 = 0.1 , ξ2 = 0.1 , γ = 0.8 , b = 0.2 , simple calculation obtain that r∗1 − r2e = −0.5112 < 0 
and (r∗1 + r2e−d21− (d12)∗)+

√

(r∗1 − r2e + d21 − (d12)∗)2 + 4(d12)∗d21−σ 2 = −0.0482 < 0 , which satisfy 
the condition (ii) of the Theorem 3, hence, population xi goes to extinction (see Fig. 1d). Comparing Fig. 1b,d, 
we can observe that species may tend to survive when increasing the toxins input period γ or decreasing the 
toxins input amount b.

On the other hand, population migration both patches will also affect the survival of the single-species. We 
choose parameters as

(37)
ln x1(t)− ln x1(0)

t
≥t−1

∫ t

0
r1(s)− d12(s)ds − a1t

−1

∫ t

0
x1(s)ds + t−1

∫ t

0
σ1(s)dB1(s),

(38)
ln x2(t)− ln x2(0)

t
≥t−1

∫ t

0
r2(s)− d21ds − a2t

−1

∫ t

0
x2(s)ds + t−1

∫ t

0
σ2(s)dB2(s).

�x1(t)�∗ ≥
r1e − δfb

h(g+m)γ
− d12(1+ ρη)

a1
, �x2(t)�∗ ≥ r2e − d21

a2
, a.s.

(39)

{

dx1(t) =
[

x1(t)(r1e + (r10 − r1e)e
−µ1t − a1x1(t))+ d21x2(t)− d12x1(t)

]

dt + σ1(t)x1(t)dB1(t),

dx2(t) =
[

x2(t)(r2e + (r20 − r2e)e
−µ2t − a2x2(t))+ d12x1(t)− d21x2(t)

]

dt + σ2(t)x2(t)dB2(t).

r1e + r2e − d12 − d21 +
√

(r1e − r2e + d21 − d12)2 + 4d12d21 < σ 2.

r1e + r2e − d12 − d21 +
√

(r1e − r2e + d21 − d12)2 + 4d12d21 > σ̂ 2.

(40)
r1e = 0.3, r10 = 0.6, δ = 0.8, a1 = 0.1, r2e = 0.15, r20 = 0.3, a2 = 0.5, d12 = 0.5, d21 = 0.6,

α = 0.2, h = 0.3, ρ = 1.2, f = 0.5, g = 0.3,m = 0.2,

(r1)∗ + r2e − (d12)∗ − d∗21 +
√

((r1)∗ − r2e − (d12)∗ + d21)2 + 4(d12)∗d21 − σ̂ 2 > 0.1323 > 0,
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and initial value (x1(0), x2(0), co(0), ce(0)) = (0.8, 0.5, 0.2, 0.6) . If d12 = d21 = 0 , that is, there is no mutual migra-
tion between populations of two patches. According to the theoretical results of Ref.21, we know that population 
xi is permanent in the mean if �ri(t)− 0.5σi(t)� > 0 , and population xi goes to extinction if �ri(t)− 0.5σi(t)� < 0 . 

After calculation, we have �r1(t)− 0.5σ1(t)� = r1e − δb
hγ − 1

2
ξ21
2µ1

= −0.0825 < 0 and �r2(t)− 0.5σ2(t)� =
r2e − 1

2

ξ22
2µ2

= 0.1875 > 0 , population x1 in patch 1 will be extinct and population x2 in patch 2 is strongly per-
sistent in the mean, see Fig. 2a. Moreover, when we take d12 = 0.4 , d21 = 0.2 , ρ = 1.2 , and calculate that 
(r1)∗ − r2e = −0.2722 < 0  and (r1)∗ + r2e − (d12)∗ − d21 +

√

((r1)∗ − r2e − (d12)∗ + d21)
2 + 4(d12)∗d21

(41)
r1e = 0.25, r10 = 0.4, δ = 0.8, a1 = 0.1, r2e = 0.2, r20 = 0.1, a2 = 0.6,α = 0.1,

h = 0.3, γ = 1, b = 0.12, ξ1 = 0.1,µ1 = 0.2, ξ2 = 0.1,µ2 = 0.2,
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Figure 1.  Time series of SDE model (3) with parameters given in (40) for different µi , ξi , γ , b . (a): µ1 = 0.1 , 
ξ1 = 0.4 , µ2 = 0.1 , ξ2 = 0.4 , γ = 1 , b = 0.1 ; (b): µ1 = 0.1 , ξ1 = 0.1 , µ2 = 0.1 , ξ2 = 0.1 , γ = 1 , b = 0.1 ; (c): 
µ1 = 0.01 , ξ1 = 0.1 , µ2 = 0.01 , ξ2 = 0.1 , γ = 1 , b = 0.1 ; (d): µ1 = 0.1 , ξ1 = 0.1 , µ2 = 0.1 , ξ2 = 0.1 , γ = 0.8 , 
b = 0.2.
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Figure 2.  Time series of SDE model (3) with parameters given in (41) for different migration rate. (a) 
d12 = d21 = 0 ; (b) d12 = 0.4 , d21 = 0.2 , ρ = 1.2 ; (c) d12 = 0.2 , d21 = 0.8 , ρ = 0.4.
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−σ̂ 2 > 0.2492 > 0 . According to Theorem 3’s (ii), we know that species is strongly permanent in the mean, as 
shown in Fig.  2b. However, If we take d12 = 0.2 , d21 = 0.8 , ρ = 0.4 , it can be calculated that 
(r1)∗ − r2e = −0.2659 < 0  and (r1)∗ + r2e − (d12)∗ − d21 +

√

((r1)∗ − r2e − (d12)∗ + d21)
2 + 4(d12)∗d21

−σ̂ 2 < −0.0039 < 0 by Theorem 3’s (ii), which means species goes extinct, see Fig. 2c.

Conclusions
With the rapid growth of economy, a large number of toxic substances are discharged into the ecosystem, which 
seriously threatens the survival of species and human beings. Based on its theoretical and practical significance, 
stochastic population models with impulsive toxicant input and stochastic single-species population models 
with migration have attracted many scholars’ attention (see, e.g.,14–31). Up to our knowledge, few studies have 
considered the influence of environmental toxins on population migration between patches. In this paper, we 
propose and study a stochastic single-species population system with migration driven by environmental toxicant 
and impulsive toxicant input. We prove the existence and uniqueness of the global positive solution of SDE (3) 
by constructing the Lyapunov function, and analyze the boundedness of the p-moments of the solution. And 
then, we obtain sufficient conditions for population extinction, stochastic permanence and permanence in the 
mean. There results show that the intensity of white noise ξi , the speed of reversion µi , the pulse input period 
of toxicant γ , the toxicant input amount each time b and the population migration between patches play a very 
important role on the survival of the population, see Figs. 1 and 2. Finally, we also study the stochastic single-
species population model with migration between two non-polluted patches, and give the sufficient conditions 
for population extinction and permanence.

On the other hand, there are many interesting problems that deserve further study, for example, the existence 
and uniqueness of the ergodic stationary probability density for system (3)  (see34,35), and many more realistic but 
complex models should be formulated  (see36). In addition, the telegraph noise can be illustrated as a switching 
between two or more regimes of environment, which differ by factors such as nutrition or as rain  falls37,38, which 
is memoryless and the waiting time for the next switch has an exponential distribution, we can use a finite-state 
Markov chain to simulate regime switching in here. Therefore, it is interesting to introduce the telegraph noise 
into model (3). We shall also consider this question in our future work.

Data availability
All data used in this study have been given within the article.
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