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ConvNeXt steel slag sand 
substitution rate detection method 
incorporating attention mechanism
Shengjie Teng 1, Lin Zhu 1, Yunze Li 2, Xinnian Wang 2 & Qiang Jin 1*

The proportion of natural sand replaced by steel slag sand affects the volumetric stability of steel 
slag mortar and steel slag concrete. However, the steel slag substitution rate detection method 
is inefficient and lacks representative sampling. Therefore, a deep learning-based steel slag sand 
substitution rate detection method is proposed. The technique adds a squeeze and excitation (SE) 
attention mechanism to the ConvNeXt model to improve the model’s efficiency in extracting the 
color features of steel slag sand mix. Meanwhile, the model’s accuracy is further enhanced by using 
the migration learning method. The experimental results show that SE can effectively help ConvNeXt 
acquire images’ color features. The model’s accuracy in predicting the replacement rate of steel slag 
sand is 87.99%, which is better than the original ConvNeXt network and other standard convolutional 
neural networks. After using the migration learning training method, the model predicts the steel 
slag sand substitution rate with 92.64% accuracy, improving accuracy by 4.65%. The SE attention 
mechanism and the migration learning training method can help the model acquire the critical 
features of the image better and effectively improve the model’s accuracy. The method proposed in 
this paper can identify the steel slag sand substitution rate quickly and accurately and can be used for 
the detection of the steel slag sand substitution rate.

With the continuous development of the construction industry, the demand for natural sand is increasing. 
However, large-scale use of natural sand tends to cause environmental depletion, resulting in a shortage of sand 
resources and soaring prices, so there is a need to find substitutes for natural  sand1,2. Steel slag is an industrial 
waste product produced in the steelmaking process, which is inexpensive, has a hard texture and good wear resist-
ance, and can be used as a substitute for natural  sand3–5. However, steel slag sand contains harmful components 
such as free calcium and magnesium oxide. When the replacement ratio is too high, it will affect the workability 
and volumetric stability of steel slag mortar and steel slag  concrete6.  Jiangfan7 showed that when steel slag sand is 
mixed with more than 60%, the problem of failed stability may occur. Rehman and  Panetal8,9 proposed that steel 
slag cannot replace more than 60% of fine aggregates, and the fluidity of fresh concrete decreases with the increase 
of the replacement ratio. By studying the effect of steel slag sand replacement rate on mortar, Mao  Feikai10 found 
that the optimum replacement rate was 20%, and the maximum replacement rate was 60% for equal volume 
replacement. Reasonable control is needed when using steel slag sand as a natural substitute. Therefore, there is 
an urgent need for a fast and accurate steel slag sand substitution rate testing method to control steel slag sand 
better, thus reducing engineering risks and improving steel slag sand utilization.

With the development of computer vision, image processing technology is widely used in building materials. 
 Ma11 used digital image processing technology to describe the morphological characteristics of coarse aggre-
gate, including angle, sphericity, texture, and fractal dimension. The difference in morphological characteristics 
between recycled coarse aggregate and natural gravel coarse aggregate was discussed.  Han12 evaluated the char-
acteristics and distribution of coarse aggregates based on two-dimensional images of concrete cross-section 
images.  Cao13 proposed a graham algorithm for complex image convex hull processing to evaluate the shape 
characteristics of the measured aggregate particles quickly. Traditional image processing technology has achieved 
specific recognition results in the direction of building materials. However, it relies on manual feature extraction 
and complex parameter adjustment process, and the technical threshold is high.

With the rise of deep learning, the convolutional neural network is superior to traditional image process-
ing technology in computer vision. It has good learning and generalization ability and does not need to extract 
features manually. After  AlexNet14 won the ImageNet Visual Recognition Challenge in 2012, the convolutional 
neural network model developed rapidly. Representative models include  VGGNet15,  ResNet16,  MobileNet17, 

OPEN

1College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Ürümqi 830052, China. 2Department 
of Xinjiang Corps Urban Construction Group Co, Ürümqi 830052, China. *email: tm-jinq@xjau.edu.cn

http://orcid.org/0000-0001-5638-9412
http://orcid.org/0000-0002-5556-0051
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-37676-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10593  | https://doi.org/10.1038/s41598-023-37676-y

www.nature.com/scientificreports/

 ShuffleNet18, and  Efficient19.  Dan20 uses a convolutional neural network (U-NET++) to segment aggregated 
particles, which can accurately obtain the geometry of the particles appearing on the side of the asphalt mixture. 
An identification and analysis method of asphalt mixture segregation and weakening is proposed.  Jean21,22 uses 
a convolutional neural network (CNN) to analyze the recycled aggregate image and give the composition of 
recycled aggregate in real-time. Wenjun  Wang23 focuses on the segmentation of aggregates in concrete settle-
ment images. An extrusion and excitation module was added to the model ResNeXt 50. Adaptively recalibrate 
the channel feature response to improve the efficiency of feature extraction. A concrete aggregate segmentation 
method based on deep learning is proposed. The convolutional neural network can classify complex images, and 
the structure is simple and applicable, which can better detect the substitution rate of steel slag sand.

Based on deep learning technology, this paper proposes a steel slag sand image classification model SE-Con-
vNeXt based on a convolutional neural network. The classification model adds a channel attention mechanism 
 SE24 (squeeze and excitation network) to  ConvNeXt25 for the characteristics of the color change of steel slag 
mixed sand. The ability of ConvNeXt to obtain the color features of steel slag mixed sand images is enhanced, 
and the accuracy of ConvNeXt in the classification task of steel slag sand substitution rate is improved. On this 
basis, the transfer  learning26 method is used to train the network model to improve the model’s accuracy further 
to identify the steel slag mixed sand image.

The main contributions of this paper are as follows:

(1) To identify the substitution rate of steel slag in different kinds of mixed sand, three kinds of mixed sand 
samples were made by mixing steel slag sand with three different kinds of sand. It helps the model to thor-
oughly learn the characteristics of different types of steel slag mixed sand so that the network can adapt to 
the detection of different mixed sand.

(2) Aiming at the problem of image difference of steel slag mixed sand: the SE attention mechanism module is 
added before the ConvNeXt module. Help the model use the image’s practical information better to learn 
and identify the target and improve the efficiency and accuracy of the model.

(3) To address the issue of lower accuracy in identifying the steel slag substitution rate, we employed transfer 
learning to train the network. Firstly, we selected a dataset of mixed sand samples to pre-train the SE-
ConvNeXt model and saved the weights of the pre-trained model. Secondly, we transferred all the conse-
quences from the pre-trained model to the SE-ConvNeXt network. Finally, we train the model using three 
sets of mixed sand samples, updating all the parameters. This approach significantly improved the learning 
efficiency of the model and resulted in higher accuracy.

Materials and methods
In order to complete the classification recognition of steel slag sand substitution rate, this paper firstly made 
mixed sand samples according to the steel slag sand substitution rate, and obtained mixed sand images by 
professional camera to divide the data set. Finally the dataset is used for training, validation and testing of the 
network to obtain the results.

Mixed sand dataset. The production of the mixed sand dataset in this paper includes the following four 
steps.

(1) Composition of samples. Standard sand and two kinds of natural sand with different grain sets were selected 
to be mixed with steel slag sand, respectively, to make samples of three kinds of mixed sand. A is the mixed 
sample of standard sand (medium sand) and steel slag sand (medium sand), B is the mixed sample of 
natural sand (coarse sand) and steel slag sand, and C is the mixed sample of natural sand (medium sand) 
and steel slag sand.

(2) Production of mixed sand. Firstly, the samples were taken by GB/t14684-2022 "Sand for Construction." 
Next, according to the above configuration of mixed samples, the corresponding mixed samples were 
made according to the steel slag sand substitution rate of 0, 20, 40, 60, 80, and 100%. Finally, the mixed 
samples were placed into the blender separately, shaken, and stirred for 60 s to mix thoroughly and reduce 
the experimental error caused by uneven mixing. The fineness modulus was used to classify mixed sand’s 
coarse and fine grades. Among the three mixed sand samples, the A and C mixed sand samples were 
medium sand, the B mixed sand samples with 0–40% substitution were coarse sand, and more than 60% 
was medium sand.

(3) Mixed sand image acquisition. The professional camera was placed 10 cm directly above the mixed sand, 
and the specific parameters of the camera are shown in Table 1. One hundred images were taken for each 
of the blended sands of each substitution rate. A list of typical images was taken, as shown in Table 2.

(4) Production of the dataset. Each acquired image was cropped into four copies on average. The cropping 
method is shown in Fig. 1; after processing, there are 400 images of mixed sand for each substitution rate 

Table 1.  Camera parameters.

Photosensibility
(iso)

Shutter
(s) Automatic focus (af) White balance (k)

Pixels
(pt)

Parameters 50 1/15 AF-C 4200 2736 × 2736
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and 7200 images in total for the data set of three sets of mixed sand. The images of the three datasets were 
compressed to 224 × 224 pixels, and the dataset labels were made according to the steel slag sand substitu-
tion rate. Each group is divided into data sets according to the percentage of 60% of the training set, 20% 
of the validation set, and 20% of the test set.

Models. ConvNeXt model. The SE-ConvNeXt network architected in this paper uses the ConvNeXt net-
work as the main structure. The ConvNeXt network is a convolutional neural network model based on the 
ResNet structure borrowed from the Swin  Transformer27 architectural strategy. ConvNeXt offers better perfor-
mance and a more straightforward model structure than Swin Transformer. Details of the ConvNeXt network 
are shown in Table 3.

This is a note. Patchify layer denotes the initial downsampling layer. Downsample layer denotes the down-
sampling layer between the two ConvNeXt Blocks. d7 × 7, 96, s1 denotes a deep convolutional layer of size 7 × 7, 
with 96 channels and a step size of 1. 4 × 4, 96, s4 denotes a convolutional layer of size 4 × 4, with 96 channels 
and a step size of 4.

ConvNeXt comprises three parts: downsampling layer, ConvNeXt block, and fully connected layer. The down-
sampling layer of ConvNeXt includes the patchy layer (the initial downsampling layer), the downsampling layer 
between ConvNeXt blocks, and the downsampling layer between ConvNeXt block and the fully connected layer. 
ConvNeXt’s patchy layer borrows the architectural approach of Swin Tansformer’s patchy layer. The patchy layer 
is constructed with a convolutional layer of size 4 × 4 and stride four instead of using the traditional structure of 
downsampling sublayer in ResNet. As the patchy layer in Fig. 2b and c; b is the downsampling layer of ResNet 
and c is the patchy layer of the ConvNeXt network. The downsampling layer between the two ConvNeXt blocks 
uses a convolutional layer of size 2 × 2 and a stride of 2. The downsampling layer between the ConvNeXt block 
and the fully connected layer is composed using a global average pooling layer.

The stacking number of Conv Ne Xt blocks imitates the stacking ratio of Stages in the Swin Transformer. It 
was adjusted from (3,4,6,3) to (3,3,9,3), as shown in Table 3. The ConvNeXt block uses the inverted bottleneck 
in the Swin Transformer stage, as shown in the SE-ConvNeXt block module diagram in Fig. 2a. First, a 7 × 7 
deep convolutional layer and two 1 × 1 convolutional layers are used to extract the features of the input image. 
Next, the Layer  Scale28 operation is performed to scale the data for each channel. Finally, a  DropPath29 layer is 
added to deactivate the main branch structure of the model randomly in order to prevent the phenomenon of 
overfitting and improve the generalization ability of the model.

Table 2.  Typical images of each substitution rate of steel slag mixed sand.

Substitution 

rate 
0% 20% 40% 60% 80% 100% 

Sample A 

     

Sample B 

     

Sample C 

     

Figure 1.  Cutting method.
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Table 3.  Network structure information.

Structure Input size Convolution kernel, channel, stride(s) Output size

Patchify 224 × 224 × 3 4 × 4, 96, s4 56 × 56 × 96

Downsample 56 × 56 × 96 2 × 2, 96, s2 56 × 56 × 96

ConvNeXt block 56 × 56 × 96

[

d7× 7, 96, s1

1× 1, 384, s1

1× 1, 96, s1

]

× 3 28 × 28 × 192

Downsample 28 × 28 × 192 2 × 2, 192, s2 28 × 28 × 192

ConvNeXt block 28 × 28 × 192

[

d7× 7, 192, s1

1× 1, 768, s1

1× 1, 192, s1

]

× 3 14 × 14 × 384

Downsample 14 × 14 × 384 2 × 2, 384, s2 14 × 14 × 384

ConvNeXt block 14 × 14 × 384

[

d7× 7, 384, s1

1× 1, 1536, s1

1× 1, 384, s1

]

× 9 7 × 7 × 768

Downsample 7 × 7 × 768 2 × 2, 768, s2 7 × 7 × 768

ConvNeXt block 7 × 7 × 768

[

d7× 7, 768, s1

1× 1, 3072, s1

1× 1, 768, s1

]

× 3 7 × 7 × 768

Figure 2.  SE-ConvNeXt model: (a) structure of the SE-ConvNeXt model, (b) patchify layer, (c) initial 
downsampling layer of ResNet, (d) SE-ConvNeXt block, (e) SE block.
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The fully-connected layer is located at the end of the entire network. The fully-connected layer compresses 
the features extracted from the convolutional and pooling layers and completes the classification function of the 
model based on the compressed features.

ConvNeXt combines the strategies of the Swin Tansformer model architecture in its overall architecture and 
focuses on the differences between the ResNet model and the details of the Swin Tansformer model. The GELU 
(Gaussian Error Linear Units)30 activation function is commonly used in Transformer models, while the ReLU 
(Rectified Linear Units)31 activation function is commonly used in ResNet models. Transformer uses fewer 
activation functions instead of connecting an activation function to each convolutional or fully connected layer. 
Similarly, Transformer uses fewer data normalization operations, using LN (Laryer Normalization) rather than 
BN (Batch Normalization), commonly used in ResNet models. ConvNeXt draws on the strategy of the Swin 
Transformer model architecture by following the GELU activation function after the first 1 × 1 convolutional 
layer in the ConvNeXt block and using the LN after 7 × 7 deep convolution as the SE-ConvNeXt block module 
in Fig. 2d.

SE‑Net model. Table 2 shows that the mixed sand samples of A, B, and C are darker when the steel slag sand 
substitution rate is 100%, indicating that the pure steel slag sand is darker. At a low substitution rate, the color 
characteristics of the three sand blends differed significantly. As the substitution rate increases, the proportion 
of steel slag sand increases, and the color characteristics of the three sand blends gradually become similar. The 
color characteristics of blended sand images with similar substitution rates are similar in the same blended sand 
samples. According to the characteristics of the steel slag mixed sand samples, applying the SE block to the con-
volutional neural network should result in a more significant performance improvement with a slight increase 
in computation.

SE-Net: SE-Net is a network structure proposed by Jie Hu’s  team24, which used SE-Net and won the ImageNet 
2017 competition for the image classification task. The process of an SE block is divided into two steps, Squeeze 
and Excitation: (1) Squeeze is the global compressed feature volume of the current feature layer by performing 
global average pooling on the feature layer; (2) The excitation is to get the weights of each channel in the feature 
layer by two fully connected bottleneck layers and use the weighted feature layer as the input of the next layer of 
the network. As shown in Fig. 2e for the SE block.

SE‑ConvNeXt model. In Transformer, the attention mechanism module is located before the multi-layer per-
ceptron layer, and this paper uses the SE block to emulate this architectural approach. The SE-ConvNeXt block is 
formed by placing the SE modules before the ConvNeXt block, as the SE-ConvNeXt block in Fig. 2d. Therefore, 
the main structure of the SE-ConvNeXt model is the same as that of the ConvNeXt model. As shown in the 
structure of the SE-ConvNeXt model in Fig. 2a.

Transfer learning. Transfer learning is a machine learning method that improves the performance of a 
model on a target task by applying knowledge and experience learned in one domain to another related field. In 
transfer learning, previously known models or feature representations are used as a starting point for a new task, 
accelerating and enhancing the learning process. Through transfer learning, a model can leverage the acquired 
knowledge and patterns to adapt to the specific requirements of the new task, even when the training data for the 
target task is limited or not sufficiently representative. Transfer learning can be achieved by sharing lower-level 
features, adjusting network structures, tuning model parameters, and other approaches.

By selecting one set of mixed sand samples, we performed pretraining on SE-ConvNeXt and saved the weights 
of the pre-trained model. These pre-trained weights represent the learned parameter values of the model dur-
ing the pretraining phase, capturing its understanding and representation of the mixed sand data. The trained 
consequences can include the weights of the model’s convolutional layers, pooling layers, fully connected layers, 
and other components. By utilizing these pre-trained weights, we can leverage the knowledge already acquired 
on one set of mixed sand data and transfer it to the classification task on the three sets of diverse sand data, 
thereby accelerating and improving the training and performance of the model. To achieve the best experimental 
results, we transferred the pre-trained weights to all layers of SE-ConvNeXt and used all the model parameters 
in training on the three sets of mixed sand samples. This approach is particularly suitable for situations with 
similarities between the source and target tasks. The knowledge and features learned by the pre-trained model 
on the source task can be more easily transferred to the target task.

Experiments and results
Experimental Device: SE-ConvNeXt is implemented in Keras deep learning framework based on CNN using 
python language.

SE-ConvNeXt Detection Process: First, we train the network using three validation sets and test sets and test 
the SE-ConvNeXt network model performance with the test sets. Next, the SE-ConvNeXt network is compared 
with the ConvNeXt network and other advanced networks to evaluate the advantages and disadvantages of the 
improved SE-ConvNeXt network. Finally, transfer learning is used to train SE-ConvNeXt and compare the model 
performance before and after transfer learning.

Confusion matrix. In order to test the stability of the SE-ConvNeXt model, this paper trained five sets of 
SE-ConvNeXt models with five cross-validations using three data sets. The classification accuracies of the five 
groups of models on the test set were 87.64, 89.24, 87.22, 88.61, and 87.22%, respectively; the average classifica-
tion accuracy was 87.99%, with a standard deviation of 0.902%. The above results show that SE-ConvNeXt has 
good stability.
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The model with 89.24% accuracy is used as an example to produce the confusion matrix shown in Fig. 3. 
The graph’s horizontal axis represents the real mixed sand substitution rate, and the vertical axis represents the 
model-predicted mixed sand substitution rate. The diagonal line is the correct prediction result, and the darker 
the cube color, the more images are correctly predicted. Figure 3 shows that the model predicts four substitution 
rates of 0, 60, 80, and 100% with an image accuracy of more than 90%, while the accuracy of predicting a 40% 
substitution rate is only 69.2% and the accuracy of predicting 20% substitution rate is only 83.8%. Most of the 
images incorrectly predicted by the model were adjacent substitution rate images. The dataset of mixed sand is 
made according to the steel slag sand substitution rate, so the adjacent substitution rate images have approximate 
color characteristics. The confusion matrix shows the results of the confusion images, which conform to the 
regularity of the data set, and thus shows the reliability of the SE-ConvNeXt model for steel slag sand substitu-
tion rate detection.

In order to determine the reasons for the easy confusion of 20 and 40% substitution rate sand mixes, this 
paper examines the test sets of three sand mix samples, A, B, and C, respectively. Among them, SE-ConvNeXt 
predicted the test set of sample A with 96.88% accuracy, and the model predicted sample A with a high accuracy 
rate. There is a large difference in the color of standard sand and steel slag sand, so the model can easily distin-
guish the substitution rate of steel slag sand in sample A.

The accuracy of SE-ConvNeXt in predicting the B sample test set was 88.54%, and the confusion matrix is 
shown in Fig. 4. The accuracy rate of 40% substitution was only 48.75%, and the predicted error images were 
mostly 20% substitution. The model predicted the C sample test set with 82.29% accuracy, and the confusion 

Figure 3.  Confusion matrix of SE-ConvNeXt.

Figure 4.  Confusion matrix of SE-ConvNeXt predicted B-sample test set.
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matrix is shown in Fig. 5. The accuracy rate of 40% substitution is only 65%, and the predicted error images are 
mostly 20% substitution. The accuracy of 20% substitution was only 58.75%, and the predicted error images 
were mostly 0% substitution. When the steel slag sand substitution rate is low, the steel slag sand accounts for 
less of the mixed sand, and less of the steel slag sand color characteristics are shown in the image. So the model 
needs to be more accurate in identifying sand mixes with 20 and 40% substitution rates. As the substitution rate 
of steel slag sand increases, the proportion of steel slag sand gradually increases, and the color characteristics of 
steel slag sand dominate. So the model has high accuracy in images where the steel slag sand substitution rate 
exceeds 60%. When the substitution rate of steel slag sand reaches 60%, the problem of inferior mortar stability 
will occur. The model can accurately predict the mixed sand with a 60% substitution rate or more, so the steel 
slag sand substitution rate can be detected by the SE-ConvNeXt model to reduce the problems such as failure 
of the stability.

Ablation experiment. In order to verify the effect of the SE attention mechanism block on ConvNeXt, this 
paper compares ConvNeXt and SE-ConvNeXt. Similarly, five groups of ConvNeXt models were trained, and the 
accuracy of the five groups on the test set is 85.35, 86.32, 85.90, 86.81, and 86.88%, with an average accuracy of 
86.25%. The five sets of the accuracy of ConvNeXt after adding the SE attention mechanism module were 87.64, 
89.24, 87.22, 88.61, and 87.22%, with an average accuracy of 87.99%. SE-ConvNeXt improved the accuracy over 
ConvNeXt by 1.74%, while the parameters increased by only 5.84%. Therefore, in the steel slag sand substitution 
rate classification task, the SE attention mechanism can significantly improve the accuracy of the classification 
task with a slight increase in computation.

Figure 6 compares the accuracy and loss values of the two models, SE-ConvNeXt and ConvNeXt. acc_1 and 
loss_1 are the accuracy and loss values on the validation set during SE-ConvNeXt training. acc_2 and loss_2 are 
the accuracy and loss values on the validation set during ConvNeXt training. They compare the accuracy and 

Figure 5.  Confusion matrix of SE-ConvNeXt predicted C-sample test set.

Figure 6.  Comparison of accuracy and loss values between SE-ConvNeXt and ConvNeXt.
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loss values of the two models. In the early training period, the loss value and accuracy converge faster. The fall-
ing gradient of the loss value curve and the rising gradient of the accuracy curve of the SE-ConvNeXt model are 
much larger than those of ConvNeXt. As the model is gradually trained, the SE-ConvNeXt model converges much 
faster than ConvNeXt, with a smaller range of curve fluctuations. The SE-ConvNeXt accuracy reached 97.0%, 
and the loss value converged to 0.069. The ConvNeXt accuracy reached 94.6%, and the loss value converged 
to 0.132. Comparison of accuracy and loss values shows that the ConvNeXt model with the addition of SE has 
higher accuracy, lower loss values, a more stable training process, and better convergence.

Comparison of Convolutional Neural Networks. To further validate the effectiveness of the improved model 
in the steel slag sand substitution rate classification task, SE-ConvNeXt was compared with other convolutional 
neural networks. Five models EfficientNet  V232, MobileNet  V333, ShuffleNet  V234, VGG-16, and Resnet-50, were 
trained using the dataset. Figure 7 shows the accuracy of the validation set during the training of EfficientNet 
V2, MobileNet V3, ShuffleNet V2, VGG-16, Resnet-50, and SE-ConvNeXt. Figure 8 shows the loss values on the 
validation set while training the six convolutional neural networks mentioned above. According to the trend of 
accuracy and loss values shown in Figs. 7 and 8. MobileNet V3 and Resnet-50 need better training results. The 
EfficientNet V2 network converges slowly at the beginning, while the VGG-16, ShuffleNet V2, and SE-ConvNeXt 
networks converge faster at the beginning of training. As the model is gradually trained, the accuracy of Effi-
cientNet V2 finally reached 92.4%, and the loss value converged to 0.363, with a wide range of curve fluctuations 
in the late training period. The VGG-16 accuracy reached 84.81%, and the loss value converged to 0.655. The 
curve fluctuated in a wide range in the late training period, with a downward trend in the accuracy curve and an 
upward trend in the loss value curve. The ShuffleNet V2 accuracy finally reached 93.9%, the loss value converged 
to 0.397, and the curve fluctuated less in the late training period. The absolute accuracy of SE-ConvNeXt is 97.0%, 
with a loss value of 0.069, and the curve fluctuates less in the late training period. In summary, SE-ConvNeXt 
has a faster convergence rate, higher accuracy, and stable training process in the steel slag sand substitution rate 
classification task compared with other models.

Figure 7.  Accuracy of convolutional neural network training process on the validation set. This is a note. X-axis 
is the training epoch, Y-axis is the accuracy of the corresponding network on the validation dataset.

Figure 8.  Loss values on the validation set during the training of the convolutional neural network. This is a 
note. X-axis is the training epoch, Y-axis is the loss of the corresponding network on the validation dataset.
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Table 4 shows the comparison of training parameters and accuracy of each model, and the validation of 
MobileNet V3 and Resnet-50 was not performed for these two networks because of their poor training results. 
The larger the parameters, the more computationally intensive the model is, comparing parameters and accuracy. 
The VGG-16 parameters are much larger than the rest of the network, and the accuracy is lower. The parameter 
values of SE-ConvNeXt and EfficientNet V2 are similar and can reach over 90% accuracy. ShuffleNet V2 has 
minimal parameters and decent accuracy compared to the rest of the network. By comparison, although SE-
ConvNeXt has more parameters than most networks, SE-ConvNeXt is far more accurate than its counterparts.

Comparing the training process of SE-ConvNex with other convolutional neural networks shows that the 
SE-ConvNeXt network performs better than other networks in the training process. However, the accuracy on 
the test set was only 87.99%, significantly different from the 97.3% accuracy during training. Therefore, it cannot 
be shown by the training process alone that SE-ConvNeXt outperforms other convolutional neural networks. 
To be able to explore their performance accurately and comprehensively, this paper examines several network 
models using test sets and validates them with three evaluation metrics.

The values of TP, TN, FP, and FN need to be obtained to calculate the evaluation index. True Positive (TP): the 
sample is judged to be positive and is, in fact, positive. True Negative (TN): the sample is judged to be negative 
and is, in fact, harmful. False Positive (FP): the sample judged to be positive is, in fact, a negative sample. False 
Negative (FN): the sample judged to be positive is, in fact, harmful. The SE-ConvNeXt confusion matrix is used 
as an example to calculate TP, TN, FP, and FN for 60% substitution, as shown in Fig. 9. TP = 228, TN = 1193, 
FN = 12, and FP = 7 for 60% substitution.

The three-evaluation metrics are precision, recall, and F1-score. Precision: in all samples with optimistic 
predictions. The probability that the sample is positive, as shown in Formula 1. Recall the probability of being 
predicted as a positive sample out of an actual positive sample, shown in Eq. (2). F1-score: the harmonic mean 
of precision rate and recall rate, shown in Eq. (3).

(1)Precision=
TP

TP+FP

(2)Recall=
TP

TP+FN

Table 4.  Comparison of training parameters and accuracy of each model.

Models Input size Output size Total parameters Trainable parameters Accuracy (%)

VGG-16 224 16 70,305,606 70,305,606 84.8

Efficient V2 224 16 20,339,046 20,185,174 92.4

ShuffleNet V2 224 16 1,275,934 1,275,934 93.9

ConvNeXt 224 16 27,824,742 27,824,742 94.6

SE-ConvNeXt 224 16 29,450,430 29,450,430 97.0

Figure 9.  TP, TN, FP, FN calculation example diagram.
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This paper uses accuracy, precision, recall, and F1 index to compare further four models, SE-ConvNeXt, Effi-
cient V2, ShuffleNet V2, and VGG-16. The accuracy of the four models on the test set was 87.99, 52.97, 82.99, and 
82.99%, respectively. The accuracy rate has decreased compared to the accuracy rate during training. However, 
the accuracy of the SE-ConvNeXt model is still better than the remaining three networks.

The precision, recall, and F1 index of each model at each substitution rate are shown in Table 5. The confu-
sion matrix of ShuffleNet V2 is shown in Fig. 10. The confusion matrix for VGG-16 is shown in Fig. 11. The 
accuracy of EfficientNet V2 is lower and will not be compared. Table 5 and the confusion matrix shows that the 
three network models are generally less accurate when predicting lower substitution rates. The confused image is 
mainly in the range of adjacent substitution rates. It is consistent with the change rule of the mixed sand sample.

Precision measures the accuracy of the model’s positive predictions, with a higher precision indicating a lower 
false positive rate when predicting positive instances. For SE-ConvNeXt, the precision rates for predicting 40, 60, 
80, and 100% are 91.2, 97.0, 90.5, and 95.4%, respectively, showing high precision in predicting these replace-
ment rates. When expecting a 20% replacement rate, SE-ConvNeXt achieves a precision rate of 75.6%, which is 
9.5% and 9.1% higher than that of ShuffleNet V2 and VGG-16 models, respectively, with a relatively lower false 
positive rate. When predicting a 0% replacement rate, SE-ConvNeXt achieves a precision rate of 87.9%, lower 
than ShuffleNet V2 and VGG-16 but still relatively high.

Recall measures the coverage of positive class samples by the model, with a higher recall indicating a more 
vital ability to predict positive instances. For SE-ConvNeXt, the recall rates for predicting 0, 60, 80, and 100% 
replacement rates are 97.1, 95.0, 95.0, and 95.4%, respectively, indicating high recall rates for these replacement 
rates. When predicting a 20% replacement rate, SE-ConvNeXt achieves a recall rate of 83.8%, which is 13.8% 
and 14.2% higher than that of ShuffleNet V2 and VGG-16, respectively, showing a relatively high recognition 
capability. However, when predicting a 40% replacement rate, the recall rate of SE-ConvNeXt is lower than Shuf-
fleNet V2 and VGG-16, indicating a lower recognition ability.

Precision and recall are competing metrics when evaluating model performance. Improving precision 
may lead to a decrease in recall, and vice versa. Precision only provides accurate information about positive 

(3)F1-score=
1

1

Precision
+

1

Recall

Table 5.  Precision, recall, F1-score for each substitution rate. This is a note. M1 is the SE-ConvNeXt model, 
M2 is the ShuffleNet V2 model, and M3 is the VGG-16 model.

Indicators

Precision Recall F1-score

M 1 (%) M 2 (%) M 3 (%) M 1 (%) M 2 (%) M 3 (%) M 1 (%) M 2 (%) M 3 (%)

Substitution rate

0% 87.9 96.8 96.5 97.1 63.3 69.6 92.3 76.5 80.9

20% 75.6 66.1 66.5 83.8 70.0 69.6 79.5 68.0 68.0

40% 91.2 73.1 69.7 69.2 82.5 77.5 78.7 77.5 73.4

60% 97.0 85.1 88.3 95.0 88.3 94.2 96.0 86.7 91.2

80% 90.5 88.0 91.4 95.0 95.0 88.8 92.7 91.4 90.1

100% 95.4 94.8 90.8 95.4 98.8 98.3 95.4 96.8 94.4

Figure 10.  Confusion matrix of ShuffleNet V2.
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predictions while ignoring samples incorrectly classified as positive. Recall focuses on the model’s ability to 
identify positive instances while ignoring errors in classifying negative instances. The F1 score combines both 
metrics to provide a more comprehensive model performance evaluation. For SE-ConvNeXt, the F1 scores for 
predicting 0%, 60%, 80%, and 100% replacement rates are 92.3, 96.0, 92.7, and 95.4%, respectively, indicating 
good performance. When predicting a 20% replacement rate, the F1 score for SE-ConvNeXt is 79.5%, 11.5% 
higher than that of ShuffleNet V2 and VGG-16. For predicting a 40% replacement rate, the F1 score for SE-
ConvNeXt is 78.7, 1.5, and 5.3% higher than that of ShuffleNet V2 and VGG-16, respectively. By comparing the 
F1 scores, SE-ConvNeXt demonstrates the best overall performance, particularly in predicting steel slag replace-
ment rates, showing significant advantages.

Comparative experiment of transfer learning. Transfer learning has the advantages of shortening 
training time, reducing model training cost, and achieving ideal results with smaller data  sets35. The essence of 
transfer learning is to transfer knowledge to other fields and reuse it. The weights and parameters of pre-training 
are loaded into the new model to help the network learn features from experience.

We failed to find tasks similar to the classification in this paper on the network. Therefore, the model is pre-
trained by selecting a set of mixed sand data sets. In order to obtain optimal experimental results, all parameters 
of the model are trained in transfer learning. Table 6 shows the F1-score comparison of SE-ConvNeXt before 
and after using the transfer learning approach, and Fig. 12 shows the confusion matrix of the SE-ConvNeXt with 
transfer learning. The SE-ConvNeXt with transfer learning, the model achieved an accuracy of 92.64% in the test 
set. The results shown in Table 6 and Fig. 12 shows that the F1-score of almost all substitution rates has increased. 
The number of images confused by the model is reduced, and the model’s performance is improved considerably.

During pre-training, the model learned some general features, such as color, from mixed sand samples. These 
features can be transferred to the model that recognizes the three groups of mixed sands, helping it better learn 
the characteristics of the three types of mixed sands. Moreover, the model that identifies a kind of mixed sand 
replacement rate shares similarities with the model that recognizes the replacement rates of the three types of 
mixed sand. Therefore, the feature representation capability learned by the pre-trained model is more easily 
adaptable to the requirements of recognizing the three groups of mixed sands, thereby improving the accuracy 
and F1 score of the model.

In this paper, we use the model with transfer learning to predict the test set of B and C samples, respectively, 
and compare it with the model without transfer learning. The model with transfer learning can predict the 
B-sample test set with an accuracy of 95.21%, and the confusion matrix is shown in Fig. 13. With the model 
predicting a 40% substitution rate, the accuracy of this model, which is 85%, increases by 36.25% compared with 
the model without transfer learning. The accuracy of predicting sand blends with more than 60% substitution was 
97.9%, and the model predicted sand blends with more than 60% substitution with high accuracy. In the model 

Figure 11.  Confusion matrix of VGG-16.

Table 6.  F1-score metrics for SE-ConvNeXt with transfer learning.

0% 20% 40% 60% 80% 100%

With transfer learning 0.923 0.795 0.787 0.960 0.927 0.954

Without transfer learning 0.952 0.860 0.875 0.944 0.949 0.974
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with transfer learning, the model can better extract the features of the B-sample, and the accuracy of predicting 
the B-sample is improved significantly.

The model with transfer learning can predict the C-sample test set with an accuracy of 85.42%, and the confu-
sion matrix is shown in Fig. 14. The model’s accuracy in predicting 20% substitution was 67.5%, and the accu-
racy in predicting 40% substitution was 68.75%, a slight improvement compared to the model without transfer 
learning. The accuracy of predicting sand blends with more than 60% substitution was 92.5%, and the model 
predicted sand blends with more than 60% substitution with high accuracy. The SE-ConvNeXt model accurately 
identified the substitution rate of steel slag sand in A and B sand mixes. However, the improvement in accuracy 
was less in determining C mixed sand. In particular, the improvement in accuracy was only 8.7 and 3.8% when 
determining 20 and 40% substitution rates, respectively. In type C blended sand, when the substitution rate of 
steel slag sand is low, the 20 and 40% blended sand are similar to the combined sand with a lower substitution 
rate, and the difference is minimal. Even using migration learning, these subtle differences are difficult to be 
accurately captured by the model, resulting in limited improvement in accuracy. However, compared with the 
model accuracy without transfer learning, there is a significant improvement.

Figure 12.  Confusion matrix of SE-ConvNeXt with transfer learning.

Figure 13.  Confusion matrix of the SE-ConvNeXt with transfer learning predicting the B-sample test set.
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Conclusion
For the quality control problem of steel slag sand substitution rate, the image recognition method is used to 
quickly detect the steel slag sand substitution rate and achieve the proper application of steel slag sand in the 
project. In this paper, the ConvNeXt network is used as the main framework. The SE-ConvNeXt network model 
is architected by integrating the SE attention mechanism module in the module of ConvNeXt for the color 
characteristics of mixed sand. They are aiming at the problem of low prediction accuracy of the model under a 
low substitution rate. The transfer learning training method is used to train all the parameters in the model to 
improve accuracy of the model.

(1) Through the five cross-validation methods of SE-ConvNeXt, the model predicts that the accuracy of the 
steel slag mixed sand test set is 87.99%. The accuracy of predicting A, B, and C samples was 96.88, 88.54, 
and 82.29%, respectively. Show the excellent performance of the model.

(2) Comparing SE-ConvNeXt and ConvNeXt and analyzing the effect of the SE attention mechanism module 
on ConvNeXt, the training process of the ConvNeXt model after adding SE is more stable, with better 
convergence and higher accuracy.

(3) SE-ConvNeXt was compared with five convolutional neural network models under the same steel slag sand 
dataset condition with confusion matrix and evaluation metrics.SE-ConvNeXt has the highest accuracy 
with the addition of fewer training parameters.

(4) The SE-ConvNeXt with transfer learning achieved 92.64% accuracy in predicting the three sand blends, 
an improvement of 4.65%.

The above research results show that SE-ConvNeXt can obtain higher accuracy in the classification task of 
steel slag sand substitution rate through the training method of transfer learning. It can quickly and accurately 
identify the substitution rate of steel slag sand.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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