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Biobank‑scale methods 
and projections for sparse 
polygenic prediction from machine 
learning
Timothy G. Raben 1*, Louis Lello 1,2, Erik Widen 1,2 & Stephen D. H. Hsu 1,2

In this paper we characterize the performance of linear models trained via widely‑used sparse machine 
learning algorithms. We build polygenic scores and examine performance as a function of training set 
size, genetic ancestral background, and training method. We show that predictor performance is most 
strongly dependent on size of training data, with smaller gains from algorithmic improvements. We 
find that LASSO generally performs as well as the best methods, judged by a variety of metrics. We 
also investigate performance characteristics of predictors trained on one genetic ancestry group when 
applied to another. Using LASSO, we develop a novel method for projecting AUC and correlation as 
a function of data size (i.e., for new biobanks) and characterize the asymptotic limit of performance. 
Additionally, for LASSO (compressed sensing) we show that performance metrics and predictor 
sparsity are in agreement with theoretical predictions from the Donoho‑Tanner phase transition. 
Specifically, a future predictor trained in the Taiwan Precision Medicine Initiative for asthma can 
achieve an AUC of 0.63(0.02) and for height a correlation of 0.648(0.009) for a Taiwanese population. 
This is above the measured values of 0.61(0.01) and 0.631(0.008) , respectively, for UK Biobank trained 
predictors applied to a European population.

Given the complexity of the human genome, large datasets are required to detect associations between specific 
genetic variations and their effect on phenotypes. These large datasets provide the statistical power necessary to 
overcome false signals (fluctuations) resulting from examination of millions of genetic variants at a time. With 
the advent of very large  biobanks1–3, which collect millions of individual genotypes and associated phenotypes, 
it has become possible to probe the genetic architectures of important disease risks and other complex traits.

The analysis of large genotype and phenotype datasets has led to the development of polygenic scores (PGS). 
A PGS is simply a score built from numerically weighting the state of a persons genome. In most work to 
date, and in this paper, we are interested in linear PGS built from single nucleotide polymorphisms (SNPs), 
i.e., PGS =

∑

X̄ · �β , for genotype matrix X̄ and SNP weights �β . SNP weights are typically obtained through a 
machine learning algorithm on genotype/phenotype pairs and can be as simple as single marker regression (e.g., 
Genome-Wide-Association-Studies or GWAS).

The vast majority of available GWAS and biobank data is from individuals of European ancestry. For example, 
the UK  Biobank3 (UKB) is more than 90% self-reported white. As a consequence, current PGS perform better for 
descendants of Europeans. There are a number of new biobank-scale efforts, focusing on non-European popula-
tions, which will ameliorate this situation, e.g., the Taiwan Precision Medicine  Initiative4 (TPMI). Other novel 
projects have focused on gathering samples with ancestral equity in mind, e.g., All of  Us5 (AoU). However, until 
more diverse data become available, it is necessary to adapt the European results for other ancestral populations 
in order for PGS to have utility for the largest number of individuals possible—i.e., in applications such as disease 
risk estimates, potential clinical interventions, etc.

As genotype databases become larger and as sequencing technology incorporates more SNPs (i.e., increasing 
the number of SNPs through imputation, larger arrays, and whole genome sequencing or WGS), novel difficulties 
arise in PGS construction. First, larger samples and features require greater computational power (we comment 
on the computational requirements for the results in this paper in the Supplementary Information). Second, and 
as mentioned above, the application of PGS has been largely restricted to those of European  ancestry6–17. In order 
to “transport” PGS to other ancestry groups, many techniques have been proposed, using features that are most 
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important in different groups and adjusting their specific  weights15,18–22 (e.g., by using minor allele frequency 
differences or functional information). The complexity of this analysis clearly scales with the number of relevant 
features. Third, future benefits of  PGS8,11,11,16,17,23–43 rely on genotyping future participants. If this genotyping 
can be restricted to a small number of SNPs (e.g. as opposed to more costly WGS) it can be more cost effective 
to implement. Fourth, most PGS development approaches and methods use linear models. Further challenges 
include non-linear SNP effects (e.g., which are responsible for the difference between narrow and broad sense 
 heritability44–50), the relationship between tagged vs causal SNPs, and incorporating genome-environment inter-
actions. Addressing these challenges again scales with the number of relevant features.

In this paper we focus on the performance, detailed application, and future power of sparse algorithms, i.e. 
algorithms that perform feature selection, for the 11 traits listed in Table 1. Performing feature selection can help 
ameliorate some of the issues raised above. Sparse algorithms have previously been shown to be comparable to 
non-sparse methods in terms of standard metrics (e.g., area under receiver operator curve (AUC), correlation, r2 , 
etc.)11,51–53. We focus on 11 phenotypes that have been previously been shown to cover a wide range of sparsities 
(see Table 1): asthma, atrial fibrillation, breast cancer, coronary artery disease (CAD), hypertension, type 1 and 
type 2 diabetes (T1D, T2D), body mass index (BMI), direct bilirubin, height, and lipoprotein A.

As mentioned, there are many efforts to modify PGS trained in primarily European ancestries to improve 
performance in non-European ancestries. This is a complex endeavor that involves trait specific characteristics, 
allele frequency and effect size dependencies, LD structures, and more. (See for  example52,54,54–61 for recent 
progress along these lines  and62 for a review of outstanding challenges). As we discuss, these improvements, 
while important, are unlikely to close the gap completely. To directly close this gap, large data cohorts from or 
including diverse ancestry groups are needed to perform de novo, ancestry specific training. This is difficult and 
expensive. Hence it is valuable to understand in advance what the resulting benefits will be for polygenic predic-
tion. In this work we present a novel method for projecting and predicting the results from sparse algorithms 
in a novel biobank.

The main results of this paper can be summarized as follows 

1. Widely-used sparse methods perform comparably, with a simple LASSO-based approach regularly achieving 
the best results.

2. Increased biobank/database size and access to new datasets will lead to large gains, especially for the perfor-
mance of PGS in diverse ancestries.

3. We develop a novel method which predicts correlation and AUC for continuous and case/control phenotypes 
(respectively), with uncertainty bands, for biobank-sized datasets. This new projection method can be used 
to guide biobank recruitment.

4. We explore details of “phase change” behavior of compressed sensing/LASSO with increasing data size, and 
the corresponding the SNP content of resulting predictors.

Results
Here we present the main results of this project. Additional details concerning specific methods are found in 
Section “Methods” and in the Supplementary Information. The main results are obtained using UKB genotype-
phenotype data. Training with PRScs at times uses linkage disequilibrium (LD) information from the 1000 
Genomes  Project1 (1kg). Projections are given for de novo training in TPMI and AoU. We refer to ancestry 
groupings European (EUR), South Asian (SAS), East Asian (EAS), African (AFR), and American (AMR). These 
labeling conventions come  from63.

Comparison of sparse predictors. We compare the performance of several sparse methods: LASSO, 
Elastic Net, L1-penalized Logistic regression (for case-control conditions), and PRScs with LD matrix informa-
tion from either UKB or 1KG. It is important to note that the results presented here for AUC and correlation 
are for purely genetic PGS. In brief, phenotypes are first regressed on covariates (such as age, sex, and the first 

Table 1.  The 11 phenotypes studied in this work and their relative sparsity. As described in Section “Sparsity” 
predictor sparsity can be defined in a variety of ways. Here we color-code the various traits according to the 
order of magnitude of SNP sparsity. Numbers in parentheses are the approximate number of SNPs used in 
a LASSO trained predictor using the maximum amount of data from the UKB. This definition of sparsity is 
consistent with the number of SNPs with non-zero weights found in previous  publications11,12.
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20 genetic principal components) – this allows them to explain as much of the variance as possible so that we 
can conservatively estimate purely genetic effects. Only then are SNP predictors are trained (using genotype-
phenotype data or summary statistics in the case of PRScs) on residual phenotypes. Further details about the 
training and evaluation of PGS can be found in Section “Methods”.

In Fig. 1 we see the comparison results for asthma and height. Similar plots for the other phenotypes can be 
found in the Supplementary Information. Ancestry groups SAS, AFR, EAS, and EUR result from UKB definitions 
of self-reported ancestry (although training, as described in Section “Methods” involves a principal component, 
or PC, adjustment). AMR refers to an American-like group constructed via principal component clustering 
detailed in the Supplementary Information and similar to that found  in7. Sib refers to a set of white siblings (i.e. 
every member of the set has at least one sibling also in the set) where the ancestry is self-reported, but the sibling 
status is determined by a genetic analysis as detailed in the Supplementary Information. This sib-set attempts 
to partially control for environmental effects as described  in64,65. It also allows for performing sibling selection 
experiments as described in Section “Methods”. All results reflect training on a EUR population and then applied 
to a set of siblings or a different ancestry group, not used in training. The bands for TMPI/AoU are based on 
projections for future biobanks—this is described in detail in Section “Biobank projections”.

Uncertainty (error bars) depends on cross-validation (i.e. multiple training sets), finite size effects from 
computing AUC/correlation, and from sample sizes. Details about uncertainty calculations are given in the 
Supplementary Information. For case-control conditions this can lead to error bars that are the same size as the 
central values. However, for continuous phenotypes with much larger sample sizes this is not the case. For exam-
ple, compare the AMR group on both plots in Fig. 1. On the left, the AUC error bar overlaps 0.5 (i.e. consistent 
with no signal), while on the right, the correlation error bar is relatively small.

Comparing performance across ancestry groups, we see a well known fall-off behavior which is observed 
when predictors trained in one population are applied to another (e.g.,  see7,52). The amount of fall-off is phenotype 
specific and ranges from complete fall-off, e.g. diabetes fall-off from sib to AFR, to negligible fall-off, e.g. breast 
cancer AUC from sibs to EAS. The relative order of fall-off is also phenotype specific. For most traits, the (EUR-
ancestry) sibling set shows the least reduction—then either SAS, EAS, and AMR,—and finally AFR. However, 
there are clear exceptions like the direct bilirubin correlation which goes from largest metric to smallest: Sib, 
SAS, AFR, EAS, AMR. There have been recent arguments that PGS fall-off is roughly linear as a function of local 
genetic  distance52. We should note that this claim is not necessarily in conflict with the results we present here. 
First, there are many exceptions to this general linear behavior, e.g., Figure 5  in52. Second, the claimed linear 
fall-off is a function of Euclidean distance in PC space of training population. For genetically distant groups, the 
axes of variation will be different: any measure of PC distance is therefore a local measure. In other words, only 
ancestry groups that are near-enough to the original population where PCs were computed can be considered 
well-ordered in terms of genetic difference. These effects can also be exacerbated by the fact that these are all 
sparse predictors and, after projecting onto PC space, the order of Euclidean genetic-distance may change.

The performance of PGS can always be confounded due to environmental factors, interactions between genes 
and the environment, and non-linear genetic effects (e.g., epistasis). To attempt to guard against some of these 
effects we can perform sibling tests similar to those described  in64,65. Genetic siblings can be assumed to have, on 
average, a more similar environmental background than unrelated individuals. However, there can be a compet-
ing effect from the enhancement of signals from effects like genetic  nurture66. For case control conditions we can 
create affected sibling pairs (ASPs) where one person is a case and one is a control. Then we can ask what fraction 
of the time does the higher PGS correspond to the case vs control. We can also condition this question on the PGS 
difference being larger than some cut-off (e.g., 1.5, 2, or 2.5 standard deviations). For continuous phenotypes we 
can simply compare the fraction of the time where the person with the higher PGS also has the higher phenotype 
value. We can again condition this question for siblings whose phenotypes are separated by a cut-off (e.g., 0.5, 
1, or 1.5 standard deviations). These selection rates for asthma and BMI are shown in Fig. 2 as an example; the 
results for all traits considered in this work can be found in the Supplementary Information. Again, we see that 

Figure 1.  Comparison of sparse methods for asthma and height predictors with a comparison to prediction 
bands for more diverse biobanks. On the left, asthma predictors trained on a UKB white population. Predictors 
are built with LASSO, L1-penalized Logistic regression, Elastic Nets, and PRScs with UKB and 1,000 Genomes 
LD matrices. The specific parameters for the Elastic nets and PRScs are described in Section “Methods”. Similar 
results for the other phenotypes can be found in the Supplementary Information.
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while several methods are extremely competitive, LASSO is regularly among the best performing methods. For 
larger and larger cut-offs, the selection rate improves, but the associated uncertainty also increases largely because 
of decreasing sample sizes. Interestingly, while PRScs performed similarly to other methods in terms of AUC 
and correlation, it routinely underperforms methods training directly on genetic data in sibling selection tests.

PGS for case-control conditions can be converted to more clinically interpretable metrics. In Fig. 3 we see an 
example of an inclusive odds ratio (OR) for asthma. It is inclusive in the sense that the OR corresponds to the ratio 
of the cases to controls (normalized by the ratio of the total cases to controls) at a specific PGS value or above. As 
before uncertainties are conservative and include contributions from multiple cross-validation folds and finite 
size effects. Similar plots for the other case control conditions can be found in the Supplementary Information. 
Because LASSO routinely performed among the best predictors in terms of AUC and correlation we only present 
OR plots for this method. Analogous plots for the other methods can be generated similarly, although for all 7 
case-control traits it leads to 357 plots which can be difficult to interpret. An initial interpretation of these results 
is that at extreme values of PGS there are large increases in OR: for asthma, within ancestry testing (i.e. the sibling 
group) leads to 2 < OR < 2.5 at large PGS. When testing on other ancestries, an optimistic interpretation is that 
asthma OR ranges from 1.25 to 3.5 at large PGS. While this is encouraging, we also urge caution. The extremes of 
the PGS distributions are the regions where model assumptions are most likely to break down, e.g., the linearity 
of SNP effects. Additionally, the sample sizes in these regions are smallest which leads to large uncertainties and 
difficulty interpreting the results. In addition, odds ratios are difficult to model in the presence of non-Gaussian 
distributions. The inclusive odds ratio can be written as a ratio of cumulative distribution functions of cases and 
controls. Similarly the PGS percentile can be written as an integral over the sum of the probability distribution 
functions for cases and controls.

Figure 2.  Left: affected sibling pair (ASP) selection rate for asthma. Pairs of siblings, where one person is a case 
and the other a control, are used and the rate corresponds to the number of times the case sibling has the higher 
PGS. The rate of correct selection, and uncertainty, increases if the siblings are also separated by at least 1.5, 2, 
or 2.5 standard deviations in PGS. Right: rank order selection rate for BMI respectively. The rate corresponds to 
frequency of the sibling with the larger BMI also having the larger PGS. Again the selection rate, and uncertainty 
(due to reduced statistics), increase if the sibling BMI is required to differ by at least 0.5, 1, or 1.5 standard 
deviations. Similar results for the other phenotypes are found in the Supplementary Information. These tests 
were developed  in64,65. More detailed descriptions of these tests and how siblings are defined can be found in 
Section “Methods” and in the Supplementary Information.

Figure 3.  Inclusive odds ratio (OR) for asthma. The inclusive OR is the ratio of all cases to controls at a 
given PGS or above normalized to the ratio of the total number of cases to controls. At the highest PGS bins, 
data is omitted if there are no cases or controls. Similar plots for the other phenotypes and details about how 
uncertainties are computed are all located in the Supplementary Information.
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Biobank projections. This section details how training at various sizes in current biobanks can be used to 
model the growth dependence on training size. For most clinically relevant metrics, e.g., correlation and AUC 
below, this growth can be modeled with uncertainty. Using relatively simple parametric functions, we find that 
we can model the growth of these metrics. The results can be used to guide future studies and genotype-pheno-
type database construction by identifying where large gains can be made.

For sparse methods like LASSO, it has been previously shown that using self-reported ancestry performs 
similarly to principal component based clustering when based on AUC and correlation  metrics11. Nonetheless, 
after sorting on self-reported ancestry, we perform an additional regression on the top 20 PCs to adjust for any 
remaining population stratification.

To be conservative in the projections for PRS performance in other biobanks, several modeling assumptions 
are made. First, to be conservative we assume that these biobanks will have population prevalence rates for dis-
eases even though some biobanks over-recruit cases to enrich their datasets. Additionally, the actual incidence 
rate for disease conditions fluctuates over time. For the conditions considered in this paper we try to consider the 
most recent surveys of all ages. Finally, when there are various estimates for disease prevalence within ancestry 
sub-groups, we choose a conservative (i.e. low) prevalence as the representative for the overall ancestry preva-
lence. Specific details about within ancestry prevalences are given in the Supplementary Information. Preliminary 
training using TPMI and the LASSO method described here was presented at ASHG  202267 and is consistent 
with the projection function predictions.

In Fig. 4 we see projection bands for asthma and BMI. The bands grow from no signal (0.5 AUC and 0 cor-
relation respectively) to asymptotic values. The various colored prediction bands correspond to the Monte Carlo 
(MC) confidence intervals for the various fit functions as described in Section “Methods”. The asymptotic predic-
tions for each trait can be averaged, incorporating the confidence intervals, and the results are given in Table 2. 
Further projection plots for the remaining traits can be found in the Supplementary Information.

The fraction of phenotypic variance captured by SNPs (i.e., the linear, narrow sense heritability) of traits is 
traditionally estimated via means such as Restricted Maximum Likelihood estimates (REML) and using Linkage 
Disequilibrium Score Regression (LDSR). For continuous traits, the correlation of the residual phenotype with 
the PGS can be related to the linear SNP heritability explained by the predictor by simply squaring the correlation. 
In Table 2 this can be seen in the final column. The heritability explained by the predictor is a lower bound on 
the REML heritability in that there may not be enough data to saturate the REML estimates. In Fig. 4 we can see 
the heritability estimates from GCTA (using REML) and LDSR converted to a correlation scale. To make this 
comparison, we assume that a phenotype is determined by the sum of a genetic component and another uncor-
related random component (i.e., P = G + E). In this case, the heritability is simply the square of the correlation 
between P and G. This allows a direct comparison of the new correlation results presented here and traditional 
methods like GCTA and LDSR. For traits like BMI and height it appears that, eventually, sparse predictors will 
capture all the linear SNP heritability. For much sparser conditions, e.g. Lipoprotein A presented in the Sup-
plementary Information, it appears that sparse methods are out performing traditional measures of heritability.

Sparse output interpretation. An advantage of sparsity is that, because there are fewer features, it is rela-
tively easier to categorize features compared to non-sparse methods. Here we identify important features for pre-
dictors for each trait. Because a simple LASSO routinely performed as one of the best predictors in terms of AUC 
and correlation in Section “Comparison of sparse predictors” we focus here on interpreting the LASSO outputs.

In Fig. 5 we see an example of the SNP content for an asthma predictor as it is trained with larger and larger 
training sizes. The LASSO weights β , single-SNP-variance (SSV), and training sizes are all further described in 

Figure 4.  Growth of AUC (left: asthma) and correlation (right: BMI) as a function of training size in the 
UKB. Colored, curved bands come from fitting data with various 4 parameter functions. Width of the band 
corresponds to a confidence interval on the predictions: on the left 2 standard deviations or ∼ 68% and on the 
right 4 standard deviations or ∼ 95% . Vertical bars represent projections for de novo training in other biobanks 
using literature prevalences, summarized in the Supplementary Information. If one assumes that a phenotype is 
determined by the sum of a genetic component and another uncorrelated random component (i.e., P = G + E), 
then the heritability is simply the square of the correlation between P and G. On the right, this apprximation is 
used to convert heritability predictions from GCTA and LDSR to horizontal correlation bands.
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Section “Methods”. A notable feature from this figure is that, as training size is increased, the LASSO algorithm 
first adds more SNPs (becomes less sparse) while barely increasing the AUC. Eventually the algorithm gets rid of 
most of these SNPs, becomes much more sparse, and then quickly increase AUC as SNPs are then added again. 
This is an example of the algorithm “searching” for seemingly important features. Once some of the important 
features are identified, the algorithm finds more and more features that are important as evidenced by the rising 
AUC. Note that, as described in Section “Methods”, LASSO does not try to directly optimize AUC. This sparsity 
behavior (rising and falling before eventually finding important features that greatly increase AUC/correla-
tion) appears in the rest of the predictors seen in the Supplementary Information and appears to be related to 
the Donoho-Tanner phase transition. This behavior can be seen in other features of each predictor—e.g., the 
SSV—as displayed in Supplementary Information. The Donoho-Tanner phase  transition68–71 comes from the 
field of compressed sensing and generally refers to sharp behavior in the recovery of a sparse signal in under-
determined systems. In simple language, signal recovery or predictor construction changes sharply as relevant 
parameters change. In genomics, key parameters are trait heritability, sparsity (i.e., number of important variants 
affecting the trait), and the sample size. In the case of genomics, crossing the phase transition boundary does 
not guarantee that true causal SNPs are found. For modern applications to this phase boundary for the LASSO 
see, e.g.,72,73 and for its application to genetics  see74.

At the largest training sizes—i.e., after the phase transition—we also look at how the SNP content varies 
across cross-validation (CV) folds. As detailed in Section “Methods”, for case control phenotypes the largest 
training size includes as many controls as possible while all previous training sizes contain an equal number of 
cases and controls. In the Supplementary Information we have examples of the SNP content for the different 
types of large training sizes. For the largest training sizes we can also average over the CV folds to find the frac-
tion of SSV per chromosome. Plots for SSV per chromome for each phenotype can be found in the Supplemen-
tary Information. There are several important takeaways from these results. The main metric for case-control 
phenotypes is much more affected by the number of cases than controls. Specifically, increasing the number of 
cases used in training increases the AUC, but increasing the number of controls in training, even by a factor of 2 
or more, either does not change the AUC or leads to a very minor change. However, when looking at the single 
SNP variance, the number of both cases and controls do have appreciable effects. Take for example asthma. If 
we look for common features among the folds in maximal training (i.e., using all possible cases and controls) 
we see a modest jump in SSV at specific locations on chromosome 1, 2, 5, 6, 9, 10, 11, and 17. Additionally the 
increase in SSV on chromosome 17 is much larger on a single fold. In contrast, we also perform near-maximal 
training with the maximum number of cases and equal number of controls. Near-maximal training results in 
high impact regions (regions where the SSV increases by at least a few percent) at places similar to those found 
in maximal training (i.e., all cases and controls used), but the fraction of SSV at the beginning of chromosome 9 
is much larger and the effect on chromosome 17 seems to be more smoothed out. This feature, which contrasts 
the two cases, is also seen when looking at the SSV fraction per chromosome. These plots, and the corresponding 
plots for the other phenotypes, are found in the Supplementary Information.

To interpret these plots we have collected and identified every SNP that accounts for at least 1% of total SSV. 
These tables are found in the Supplementary Information. Here we review the most important SNPs and com-
pare them to known results, i.e. we identify genes, associated with the particular phenotypes, that are within at 
least 2 million base pairs of a SNP accounting for > 1% SSV. We choose a 2 million base pair distance to be a 
conservative measure of possible long-range  LD75. All predictors, except those for Lipoprotein A, include SNPs 
that account for at least 1% of total SSV but are not near any known gene that associates with the phenotype. 
Additionally, we list the p-value associated with a GWAS on the raw (case control) or adjusted (continuous) phe-
notype to highlight that many of these important LASSO SNPs would be missed by a traditional GWAS approach.

SNPs which we identify that are located near known associated genes for several phenotypes are listed here:

Table 2.  Asymptotic projections for AUC and and correlation for case-control and continuous traits 
respectively. Type 1/2 diabetes (T1/2D), coronary artery disease (CAD), and body mass index (BMI) are all 
abbreviated to save space. “Gain” represents the additional gain over the best result from training reported here. 
For most case control conditions, except T1D, there are large gains that can be found from increased training 
sizes. For continuous phenotypes, BMI can benefit from training on larger data sizes. Correlations are also 
translated to the asymptotic projection of linear, narrow-sense SNP heritability explained by the predictor. 
Colors correspond the relative sparsity of the predictor as mentioned in Table 1.
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• Asthma: SNPs around FLG, IL1RL1, TSLP, IL33, SMAD3, HLA-DQ, RORA, CLEC16A, and SERPIN7 which 
have been previously been identified by  GWAS76–80

Figure 5.  Asthma active SNPs—i.e., SNPs with non-zero β weights—as training size is increased. The left axis 
shows the β value and is represented by colored dots. Different colors are used to differentiate chromosomes. 
The right axis represents the single SNP variance (SSV) normalized to the total SSV. The solid line showes the 
cumulative SSV. The “training” label represents the number of cases used in training. The first 10 (from the top) 
training sizes use equal number of cases and controls. The final training size uses all possible remaining controls.
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• Atrial fibrillation: at least 164 SNPs have been identified in GWAS  studies81–84, and while none of these exact 
SNPs appear in the 58 SNPs identified using LASSO, many of the LASSO SNPs are located around the genes 
KCNN3, PMVK, LMNA, KIFAP3, PRRX1, SCN5A, SCN10A, PITX2, FAM13B, WNT8A, CAV1, SH3PXD2A, 
HCN4, ZFHX3, RPL, and FBXO32 which are associated with some of the gwas SNPs

• Breast cancer: none of the SNPs identified here are near the genes identified  in85

• Type 2 Diabetes: we find relevant SNPs in the associated genes GCKR, TCF7L2, and  SLC12A186

• Type 1 Diabetes: we find SNPs near HLA-A, TRIM26, MICA, HLA-DRB1, and  LAT87

• Coronary Artery Disease: we find SNPs near the associated genes PCSK9, PLPP3, IL6R, MIA3, VAMP5, 
ZEB2, SLC22A4/A5, SLC22A3, LPAL2, LPA, PLG, and  CETP88,89

• Hypertension: we find important contributions near the ULK4, NR3C2, PRRC2A, and NOS3  genes90

• Direct Bilirubin: we find results near the UGT1A1, SLCO1B3, and SLCO1B1 associated  genes91,92

• Body Mass Index: we find SNPs in genes TMEM18 and the well studied FTO – both appear with more than 
1% SSV for  BMI93

• Height: Liu et al.94 categorized over 400 genes associated with height that were later reanalyzed by Yengo 
et al.95. Of these, SNPs near ORC1, COL11A2, FANCE, BRAF, ACAN, ANKRD11, CDK10, CDT1, FANCA, 
GALNS, and RPL13 all appear in our analysis

• Lipoprotein A: all SNPs appear in or near the genes LPA, LPAL2, and SLC22A3 which are all known to be 
associated with Lipoprotein A  levels96,97 and additionally contribute to coronary artery  diseases98.

There are several interesting aspects of examining SNPs in this manner. First we note that we are interested in 
common variants and exclude SNPs with a minor allele frequency below 0.001 to avoid any spurious associations. 
Because of this, rare variants can’t appear in our analysis, even if they are known to be associated with a pheno-
type. An example of this can be seen in the case of breast cancer where the BRCA mutations aren’t included in 
our analysis. Interestingly there are SNPs that have previously been identified via GWAS, that are available on 
our array, but are not selected by LASSO. An example would be rs116716490 which is part of the ZBTB10 gene, 
previously associated with asthma via  GWAS78, but not selected by LASSO.

A more coarse grained interpretation of the impactful regions can be found in the Supplementary Informa-
tion. There, we examine—for each trait—the fraction of SSV that resides on each chromosome. For case-control 
phenotypes, we also compare the result for max possible training (i.e., the max possible cases and controls), and 
training with the largest possible equal number of cases and controls. We highlight some of the notable results. 
For atrial fibrillation, max training and equal case control training both find a large fraction of SSV on chromo-
some 4, but the signal is much larger for equal cases and controls. On chromosome 15 there is a large signal for 
max training, but not for equal cases and controls. For type 2 diabetes a large fraction of SSV is on chromosome 
10, but the signal is largest for equal cases and controls. For type 1 diabetes. equal cases and controls find a strong 
signal on chromosome 6 while max training also finds signals on chromosomes 1, 11, 15, and 17. For CAD, the 
equal case control training finds the largest signal in chromosome 6 while max training finds similarly large 
signals in chromosomes 1, 2, 3, 6, and 12. Hypertension shows varying signals all throughout the chromosome 
with the most precise signal coming from chromosome 1. Breast cancer has the most diverse differences between 
the two types of training with large signals for equal case control training on chromosomes 10 and 16, and large 
signals on 7, 11, 16, and 19 for max training. For continuous phenotypes we only have one measure of SSV per 
chromosome. For direct bilirubin the largest contributions are on chromosomes 1 and 2. For BMI the largest 
signals are on chromosomes 1, 2, and 3. For height there is strong signal throughout most of the genome. Finally 
for Lipoportein A, the signal seems to be concentrated on chromosome 6.

Sparsity and heritability. We can see examples of all the definitions of sparsity in Fig. 6 where the defini-
tions themselves are explaind in Section “Sparsity”. The traits are roughly grouped according to their heritability 
estimate using GCTA 99. Using all metrics together, the scatter of data can be regressed linearly in log10 scales in 
both training size N and sparsity s. We find log10(s) = 0.7(0.1)log10(N)+ 0.1(0.5) (the black line in Fig. 6) with an 
r2 = 0.43 . This weakly implies s ∼ N0.7 (or conversely N ∼ s1.4 ).  In74 it was shown, using simulated data, that for 
h2 = 0.5 (where h2 represents the narrow-sense heritability) the compressed sensing phase transition occurs at 
N ≈ 30 s . The result reported here is consistent with this previous prediction, but tighter error bars are required 
to completely determine the coefficient and its dependence on h2.

Finally we can see estimates of heritability using a variety of metrics in Fig. 7 and in the Supplementary 
Information. In Fig. 7 we see examples of these heritability estimates, from a LASSO training, as a function of 
training size. (Additional phenotypes are in the Supplementary Information). Additionally, for the largest train-
ing size, we also record these heritability estimates for the other training methods. As a function of training size 
we generally see the phenotype dependent phase transition behavior noticed before. After a critical amount 
of training data is used, the error bars for all methods greatly decrease. Identifying this transition behavior is 
important; it indicates that central values below the critical training size may suggest a deceptively high estimate. 
For most phenotypes–regardless of training size, metric, or method–the estimated heritability is below what 
can be estimated from GCTA. However, there are a few exceptions: for asthma and type 1 diabetes, at the larg-
est training size PRScs using the � metric outperforms GCTA; for height the • metric generally, and PRScs at 
largest training, outperforms GCTA; and for Lipoprotein A, every metric and method except PRScs results in a 
higher value than GCTA.
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Methods
Predictor training. We start with a very brief description of the general training pipeline for generating pre-
dictors: step (1) initial populations are separated into groups; step (2) quality control (QC) for both phenotypes 
and genotypes; step (3) phenotypes are regressed on covariates and adjusted phenotypes are built; step (4) SNP 
set is filtered down to a computationally manageable size; step (5) machine learning on adjusted phenotype and 
genotypes using cross-validation; step (6) predictors are tested on withheld groups.

As an initial grouping of UKB data, we separate participants using self-reported ancestry (a principal com-
ponent adjustment is done below). We use participants reporting ancestry as White (EUR), South Asian (SAS), 
East Asian (EAS), and Black (AFR). Additionally we construct an American ancestry (AMR) set done using the 
approach  from7 and described in the Supplementary Information (there is a small 60 person subset of the 322 
AMR labeled participants who also self identify as white and could appear in the training. This set is so small 
that its effects are assumed to be negligible). From the EUR population we identify genetic siblings as described 
in the Supplementary Information and remove them to use as a final testing set. The remaining EUR population 
is used for training.

Step 2 involves performing quality control on both the genotypes and phenotypes. Full phenotype definitions, 
including UKB codes, are given in the Supplementary Information. For phenotype quality control we exclude 
any missing values or negative values (usually used as a placeholder or indicator in the UKB). For continuous 

Figure 6.  Sparsity measurements, as a function of training size, for all 11 traits. Different markers correspond 
to different (arbitrary) estimated heritability groupings. Different colors correspond to different versions of 
sparsity. Heritablity here for case-control phenotypes is broad sense heritability reported from twin/family study 
literature, whereas GCTA was used to estimate heritability for continuous phenotypes. Low heritability traits 
(circles) include: atrial fibrillation, breast cancer, and  BMI100,101. Medium heritability traits (squares) include: 
CAD, hypertension, direct bilirubin, height, and lipoprotein  A102,103. High heritability traits (triangles) include: 
asthma and type 1/2  diabetes104–106.

Figure 7.  Estimates of the fraction of variance explained from purely genetic contributions for asthma and BMI. 
There are various ways to estimate the variance explained as explained in Section “Methods”. Similar plots for 
the other traits are found in the Supplementary Information.
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phenotypes we average over all recorded measurements (many participants are measured on repeated visits, 
but there is not a consistent number of visits per participant). Case control conditions are defined with a logic 
‘or’, i.e., if the participant is recorded as a case for any relevant code, then they are counted as a case. The UKB 
array contains 805,426 SNPs. We run QC using PLINK to filter out (remove) variants (SNPs) with more than 
3% missing values, samples (participants) with more than 3% missing values, and variants with minor allele 
frequency less than 0.001 (i.e. 0.1%). After QC this leaves 663,533 SNPs and 487,048 participants. (Exact number 
of participants can slightly vary due to participant withdrawal from the UKB program.) Finally we reduce our 
SNP set down to only the autosome as this allows us to roughly double our training base, i.e. use all sexes in 
training (except for sex specific phenotypes).

Step 3 can be briefly described as sex-specific z-scoring and covariate adjustment. The z-scoring is only 
done on continuous phenotypes while covariate adjustment is done for all phenotypes. We z-score to improve 
the efficiency of the machine learning algorithms (e.g., using normalized data lowers the risk of large numbers 
appearing in a gradient descent algorithm). If we assume that we are looking for common genetic factors that 
are independent of sex then we can z-score each sex individually and roughly double our training data. The 
ultimate aim is to identify genetic variants that we are most confident are related to a phenotype. To do this we 
assume that common covariates and population stratification have a maximal effect. That is, we regress covari-
ates on the raw (or z-scored) phenotype and then adjust (i.e., create a residual phenotype) phenotypes for the 
contribution explained by these covariates. Common covariates included are: age, sex (except for sex specific 
traits like breast cancer), and the top 20 principal components as computed by the UKB. Even though we do a 
sex specific z-scoring, at this stage we still assume sex can have an impact. That is, for phenotype, �y , and covari-
ates, H̄ , we regress: �y ∼ �αH̄ . Then we can construct an adjusted phenotype, �yadj , that just includes the residual 
signal: �yadj = y − �αH̄.

Unfortunately, before we employ a machine learning algorithm, we have to reduce down the ∼ 600k SNPs 
to a computationally manageable number. The exact computational details will depend on the machine being 
used to run the analysis and whether or not computational cost saving measures can be used (e.g., paralleliza-
tion). For our analysis, as shown in the Supplementary Information, the time to run lasso scales as a function of 
training data, N, roughly as ∼ N1.35 . Additionally, the memory and CPU usage, while growing more slowly than 
exponential, grows quickly. For step 4, we choose to subset our SNP set by selecting the top 50k SNPs (10k for 
penalized logistic regression which is more computationally intensive) via GWAS with the training set.

Next, in step 5 we run machine learning algorithms. For LASSO and Elastic Net we use the Scikit-learn107 
lasso path linear_model.lasso_path and enet path linear_model.enet_path algorithm. The 
Elastic Net algorithm minimizes the objective function,

where X̄ is the normalized genotype matrix, �β the regression weights, � the hyperparameter, L1ratio relatively 
weights the L1 and L2 penalties. As L1ratio → 1 this becomes LASSO and L1ratio → 0 it becomes ridge regression. 
For all phenotypes we run for 5 different ratio weights: L1ratio ∈ {.1, .3, .5, .7, .9} . For L1 penalized logistic regres-
sion we use the Scikit-learn function linear_model.LogisticRegression with an L1 penalization and 
parallelize it using the Multiprocessing package Pool function. For all methods of (penalized) regression we 
use five-fold cross validation and use a 2,500 sample validation set (withheld from training) for hyperparemeter 
selection. For case-control phenotypes, the validation set is equal number of cases and controls. Finally, we also 
use PRS-cs108 which is a Bayesian shrinkage prior which runs directly on summary statistics (i.e., GWAS output) 
and an LD matrix. We use three fold cross validation and run with the global shrinkage/sparseness parameter, 
φ ∈ {10−1, 10−3, 10−5, 10−7, 10−9} and the local scale parameters {a, b} ∈ {1/2, 1, 3/2}.

In the final step 6 we apply the predictors to all testing sets: the EUR genetic siblings set, an SAS set, an EAS 
set, an AFR set, and an AMR set. Case control phenotypes are evaluated by computing the Area Under the 
receiver operator Curve (AUC) which compares the true positive rate to the false positive rate, i.e. how well 
the predictor is calling cases and controls. Within this work we generally report the AUC only using the genetic 
weights to emphasize how well cases and controls can be identified using only genetic information. For case 
control phenotypes we can also compute an odds ratio, as a function of polygenic score, as seen in Fig. 3. This is 
an inclusive odds ratio: at each score, we compute the ratio of the number of cases to controls (normalized to the 
total cases and controls) of all individuals with that score or a higher score. I.e., the 80th percentile represents all 
individuals with a score ≥ 80% . For continuous phenotypes we simply report the correlation between the poly-
genic score and the adjusted phenotype, Corr(PGS, �yadj) , and again this estimates the purely genetic contribution.

In addition to standard metrics like AUC and correlation, we are often interested in the amount of variance 
described by a particular polygenic predictor. For a particular polygenic score, the variance is described by

(1)
1
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where the approximation defines the Single SNP Variance (SSV). This approximation assumes that the covari-
ance between SNPs is small. For most sparse methods, this covariance is minimized to enforce sparsity. For 
example, in the objective function Eq. (1), adding extra SNPs with non-zero weights amounts to decreasing the 
first term and increasing the second term. For an added SNP that is highly correlated with another SNP with 
non-zero weight, the decrease in the first term is likely smaller than the increase in the second. The accuracy of 
this approximation is demonstrated in the Supplementary Information.

Sibling tests. For both types of phenotypes there are sibling specific tests that we perform. These were devel-
oped  in64,65. All siblings used in these analyses are genetic siblings identified using KING109,110 and filtered in a 
manner similar  to110. More detail is provided in the Supplementary Information. Siblings generally share a simi-
lar environment growing up which helps to control for some external factors. For case control phenotypes we 
can consider Affected Sibling Pairs (ASPs), which are pairs of siblings where one person is a case and the other a 
control. We can then look at the correct selection rate, that is the fraction of the time the person with the larger 
polygenic score corresponds to the case. This computation can be done again while requiring that the sibling 
pair’s scores are at least 1.5, 2, or 2.5 standard deviations different. For continuous phenotypes we show a similar 
selection rate for the amount of time the person with the larger polygenic score has the larger phenotype. Again 
this rate can be recomputed with the requirement that the phenotype difference between the siblings is at least 
0.5, 1, or 1.5 standard deviations.

Metric projection. We can model improvement in predictor performance metrics as a function of train-
ing data size. In Fig. 4 we see examples of this for asthma and BMI. We use four functions, which have left and 
right asymptotes, to model this growth: sigmoid, inverse tangent, error function, and hyperbolic tangent. The 
hyperbolic tangent can be written as a rescaled version of a sigmoid function. We use that as a cross-check, i.e. 
we make sure both functions give the same results, to avoid fitting routines getting stuck in a local minimum. For 
all functions, four parameters are used to fit the performance, e.g., erf4(x; a, b, c, d) = a+ b erf(c(x + d)) . These 
parameters are subject to physical constraints. Roughly this corresponds to 0.5 < AUC < 1 , 0 < Corr < 1 , met-
ric growth is a function of training size, and the growth happens when training with multiple samples. Care is 
taken to incorporate uncertainty from cross-validation and finite data sizes. More details about the functions, 
uncertainty calculations, and fitting results are given in the Supplementary Information. The non-linear fit of 
each functional form involves computing a Hessian matrix as a function of the parameters {a, b, c, d} . The inverse 
of this matrix is the correlation matrix for the model’s fit parameters. Using these empirical correlations we build 
a MC method that relies on a Cholesky decomposition. For a given correlation matrix C of fit parameters, we can 
generate a correlated set of MC parameters, �Y  , from random numbers, �X , via a Cholesky matrix, L:

    We can then build MC bands as seen in Fig. 4. For both types of phenotypes, these projection bands are 
informative: they indicate (1) the asymptotic (i.e. best possible) metric obtained from infinite data, as in Table 2 
(2) which traits are nearing that asymptotic maximum or which are still improving substantially with more 
training data, and (3) what sample size other biobanks will need to obtain meaningful results. These projection 
bands can be compared to the application of European trained predictors applied to other ancestry groups. In 
Fig. 1 we see that predictors built using data from TPMI and AoU will greatly surpass the results of UKB trained 
predictors when applied to distant ancestry groups.

More details can be found in the Supplementary Information and in the code examples found in the affiliated 
Github repository.

Sparsity. The sparsity associated with a phenotype can be defined in several ways and it is not a priori clear 
which definition is most appropriate. The definitions used here are: 

1. The number of SNPs with non-zero weights using all possible cases and controls. This quantity can appear to 
continue to grow without reaching an asymptote even though traditional metrics (e.g. AUC or correlation) 
appear to asymptote. However, this definition is obviously impacted by training sample size and difficult 
to compare between datasets/biobanks. Assuming infinite data generated by a linear model plus noise, 
compressed sensing guarantees complete signal recovery and the sparsity will reach an asymptotic value 
corresponding to the underlying model that generated the  data74. Additionally, for algorithms like LASSO 
there is debate as whether to use the maximal metric for hyperparameter selection or to step one standard 
deviation “back” (i.e. towards fewer features) in hyperparameter space to avoid over-fitting when applying 
to outside true testing sets.  (see11 and references therein).

2. We can use the previous definition but for the training case with the maximum number of equal cases and 
controls. The same caveats from definition 1. apply.

3. Because we expect traits not to be 100% heritable, we expect metrics to asymptotically approach a limit value. 
We can look at relative increase in these metrics to try to identify the point of largest growth (or above some 
cut), i.e. the inflection point. We can do this by looking at a relative metric, i.e. (yi+1 − yi)/yi . We can look 
at the sparsity of the predictors at this point as a second version of sparsity.

4. Instead of looking at the metrics, we can instead look at the relative increase in the number of features (SNPs) 
at each training size and look for the relative maximum increase (or increase above some cut) in features to 
define a sparsity value.

(4)C = L L∗ → L �X = �Y .
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Comparisons for these definitions can be seen in Fig. 6.

Fraction of variance explained. Heritability, H2 , is traditionally defined as the proportion of pheno-
typic variance explained by genetic factors. All the work discussed here involves linear genomic prediction, i.e. 
that PGS ≡ yPGS =

∑

�β · X̄ . The proportion of variance explained by a linear model is generally referred to as 
the narrow-sense or linear heritability, h2linear . There are several ways we can estimate the fraction of variance 
explained via the results of a linear predictor. First, we note that our linear predictors are trained after sex specific 
z-scoring. Because of this, the overall scale of yPGS (i.e. the variance) is expected to be of the order of the adjusted 
phenotype, not the original raw phenotype. Therefore, we can consider the ratio of the variance of the PGS to the 
adjusted phenotype ( � denotes var(pgs)/var(yadj) ) or we can undo the sex specific z-scoring only on the PGS 
and compute the ratio of variance in this rescaled PGS to the raw phenotype ( • denotes var(y∗pgs)/var(yraw) ). 
Finally, for continuous traits we can simply look at the correlation between pgs and adjusted phenotype as 
 in11,51,64.

In both Section “Biobank projections” and in Section “Sparse output interpretation” we refer to the heritability 
estimated via REML and LDSR. The LDSR results are reported  from111,112. The REML results are produced using 
the GCTA  software99,113. All GCTA computations used 350,000 SNPs and the following number of samples: 
asthma 20,469; atrial fibrillation 9027; type 2 diabetes 11,077; type 1 diabetes 1755; CAD 11,077; hypertension 
11,659; breast 9027; direct bilirubin 21,544; BMI 25,118; height 21,544; lipoprotein A 21,544.

Public Data. Raw data is not available for direct sharing, but can be obtained via application to the UK 
biobank (https:// www. ukbio bank. ac. uk/ enable- your- resea rch/ apply- for- access). Predictors (i.e. SNPs and 
weights) and some code used to produce results can be found at https:// github. com/ MSU- Hsu- Lab/ bioba nk- 
scale- metho ds- paper- 2023/.

Discussion
Development of a large genetic database or biobank is a significant endeavor. To ensure that these efforts are 
focused on phenotypes and recruitment sample targets that will produce the most beneficial results, we have 
developed a novel method for projecting polygenic score performance to the size of novel biobanks. We make 
specific predictions for TPMI and AoU based on their currently stated recruitment goals and known population 
prevalences for various phenotypes. These and other biobanks are still recruiting and genotyping participants; 
hopefully these results can be used to plan recruitment targets and drive new analyses.

Sparse methods optimize prediction while activating as few features (SNPs) as possible during training. In 
contrast, non-sparse methods construct predictors in which potentially every SNP in the genome has non-zero 
(but possibly very small) effect size. Because sparse predictors perform about as well as predictors constructed 
using non-sparse  methods114–116, it is reasonable to conclude that actual genetic architectures are themselves 
sparse. For all known complex traits and disease risks, only a small fraction of common SNPs are required to 
build a predictor which performs nearly, or equally, as well as any non-sparse predictor.

In this paper we analyzed many aspects of sparse predictors. Within the class of algorithms that produce 
spare predictors we find that LASSO, also known as compressed sensing, is competitive with other more complex 
techniques. In fact, methodological improvements in predictor training, although important, generally produce 
improvements which are relatively small (in rough terms, of order 5 or 10%), whereas increases in data size are 
likely to produce much larger gains. Additionally, we demonstrate the performance characteristics promised 
from the compressed sensing literature. Specifically, we demonstrate phase transition behavior in performance 
using actual genotype/phenotype pairs—above a certain data threshold we recover the SNPs which provide 
the strongest contribution to performance metrics. Additionally, techniques to improve predictor portability 
(e.g.,52,54,54–61) rely on understanding the SNP content of the original predictor. This issue is considerably simpli-
fied if the predictors are trained using sparse algorithms to narrow down the possible resulting SNP set.

We develop a methodology for projecting the performance of LASSO on larger datasets. This method can be 
applied to anticipated future biobanks and to analysis which is forthcoming on existing biobanks. Specifically, 
we project that a predictor trained in the Taiwan Precision Medicine Initiative for asthma can achieve an AUC 
of 0.63(0.02) and for height a correlation of 0.648(0.009) for a Taiwanese population. For comparison, the meas-
ured values are 0.61(0.01) and 0.631(0.008) , respectively, for UK Biobank trained predictors applied to a European 
population. We also show that, in terms of AUC, atrial fibrillation, type 2 diabetes, CAD, and breast cancer will 
more than double their signal if trained on larger datasets.

Other researchers have investigated the question of how prediction and association results depend on sample 
size and have tried to predict the results for future large sample sizes. We highlight here some lines of research 
in this direction so that we can emphasize how our new analysis is different. First, most of the previous work 
involves GWAS based methods (e.g.,95,117–123) whereas this work involves machine learning algorithms that go 
beyond single marker regression. Secondly, much of the previous work makes assumptions about how perfor-
mance metrics, e.g. AUC or Area Under receiver operator Curve, depend on trait heritability, model parameter 
effect distributions, and their functional form. For example,  in124,125, AUC is modeled with a cumulative distri-
bution function for the Gaussian distribution and depends on the population variance of the PGS. Using these 
approaches, after fitting to the training of a single PGS, predictions can be made for other training sample sizes. 
In this work we make no such assumptions about the functional form of AUC or the scaling dependence of an 
underlying genetics effects model. Instead we simply assume that AUC is a finite and bounded quantity. We 
then use a series of different functional forms to model the growth of AUC. These functional forms are chosen 
because based on parsimony, i.e. that they have the fewest number of parameters for functions that satisfy the 
simple physical constraint. This is an advantageous approach when there are limited or small samples with which 

https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://github.com/MSU-Hsu-Lab/biobank-scale-methods-paper-2023/
https://github.com/MSU-Hsu-Lab/biobank-scale-methods-paper-2023/
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to train. In contrast, in this work for each phenotype we use 11 different training sizes to model the growth of 
performance metrics. In using such a large number of different training sizes, we developed a novel method for 
taking into account the uncertainty/error associated with the metrics when modeling the growth as a function 
of training size.

Throughout this work we are primarily concerned with sparse methods that are trained directly on genomes. 
The one exception being the PRScs method, which is a summary-statistics (GWAS) based method. We stress 
that that our main results are concerned with training methods that directly use genome matrices themselves 
and might not generalize to the comparison to generic GWAS based methods. For example, although a simple 
LASSO regularly outperformed or performed comparably to PRScs, it is not necessarily true that this will be the 
case for all GWAS based methods with similar training sizes—especially if it includes additional information like 
fine-mapping, functional information, other -omics, etc. However, it has been found that for some phenotypes, 
e.g. height, methods like LASSO usually require much smaller sample sizes than GWAS based methods to find 
the same phenotype-PGS  correlation51,95. GWAS based methods however have an advantage over direct genome 
training: it is relatively easy to combine GWAS summary statistics from disjoint studies to increase sample size. 
This is advantageous as it requires less individual computing resources for training while still increasing sample 
size. For example, meta-analysis of GWAS for height and BMI has found novel  loci122. Some GWAS based meth-
ods, like PRScs, require information about the LD structure. Computing LD information can be computationally 
intensive, but it only has to be done once and then the results can be efficiently  reused126,127.

One of the main challenges of polygenic prediction is that most of the available data comes from studies in 
which most of the participants are individuals of European ancestry. Thus the current predictors perform poorly 
when applied to other ancestry groups (e.g., East Asians or Africans). The hope of developing methods which 
“transport” a predictor trained on one ancestry to other ancestral groups remains, but despite ongoing research 
efforts the goal remains elusive. In the absence of such a breakthrough, much larger cohorts of non-Europeans 
are required to produce predictors of comparable quality. The new methods developed here allow us to predict, 
e.g., how well new predictors trained on biobank-scale data from the Taiwan Precision Medicine Initiative (which 
is planned to surpass 1 million genotypes) and the US All of Us project. In the former case, we predict that new 
predictors will exceed AUC / correlation metrics for current best-in-class predictors for European ancestry.

Data availability
Access to the UK Biobank resource is available via application (http:// www. ukbio bank. ac. uk). UKB data was 
collected under policies conforming with national and local requirements and subject to privacy rights. (https:// 
www. ukbio bank. ac. uk/ priva cy- policy) All data handled by researchers in this work was de-identified. MSU 
researchers working on this project do not have access to any identifiable data and are covered under MSU IRB 
[STUDY00006493].
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