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Neurophysiological mechanisms 
underlying the differential effect 
of reward prospect on response 
selection and inhibition
Anna Helin Koyun 1,2, Ann‑Kathrin Stock 1,2,3* & Christian Beste 1,2

Reward and cognitive control play crucial roles in shaping goal‑directed behavior. Yet, the behavioral 
and neural underpinnings of interactive effects of both processes in driving our actions towards 
a particular goal have remained rather unclear. Given the importance of inhibitory control, we 
investigated the effect of reward prospect on the modulatory influence of automatic versus 
controlled processes during response inhibition. For this, a performance‑contingent monetary 
reward for both correct response selection and response inhibition was added to a Simon NoGo task, 
which manipulates the relationship of automatic and controlled processes in Go and NoGo trials. 
A neurophysiological approach was used by combining EEG temporal signal decomposition and 
source localization methods. Compared to a non‑rewarded control group, rewarded participants 
showed faster response execution, as well as overall lower response selection and inhibition accuracy 
(shifted speed‑accuracy tradeoff). Interestingly, the reward group displayed a larger interference of 
the interactive effects of automatic versus controlled processes during response inhibition (i.e., a 
larger Simon NoGo effect), but not during response selection. The reward‑specific behavioral effect 
was mirrored by the P3 amplitude, underlining the importance of stimulus–response association 
processes in explaining variability in response inhibition performance. The selective reward‑induced 
neurophysiological modulation was associated with lower activation differences in relevant structures 
spanning the inferior frontal and parietal cortex, as well as higher activation differences in the 
somatosensory cortex. Taken together, this study highlights relevant neuroanatomical structures 
underlying selective reward effects on response inhibition and extends previous reports on the 
possible detrimental effect of reward‑triggered performance trade‑offs on cognitive control processes.

Everyday, we are confronted with dynamically changing environments. To meet the requirements of these 
changes, we engage in goal-directed behavior, which is crucially based on the ability to inhibit inappropriate 
 responses1. Several factors have been suggested to influence inhibitory processes. These include top-down cog-
nitive  control2 and the automaticity of pre-potent  responses3. Additionally, reward was proposed to be an effec-
tive modulator of human behavioral  performance4 and to influence (inhibitory) cognitive control  processes5,6. 
Impairments in (inhibitory) cognitive control and reward processing have been reported to be key characteristics 
of several clinical populations, including individuals with substance use disorders and  ADHD7–9. It is therefore 
crucial to better understand how cognitive control and reward prospect interact in driving goal-directed behavior.

When behavioral patterns or response tendencies are conflicting with our goals, cognitive control needs 
to be exerted to resolve/overcome this conflict by withholding/inhibiting a (pre-potent) response. It has been 
shown that once (monetary) rewards are at stake, individuals tend to increase the amount of cognitive resources 
and effort spent towards a certain task/goal5,10. A widely accepted postulation is that (monetary) rewards can 
alter the biological system by generating a “motivated state” that in turn leads to adaptations in behavior and 
cognitive  processing11–13. Importantly, higher motivation does not automatically contribute to increased cogni-
tive  control14. Based on the type of reward manipulation and reward rules, different effects have been reported. 
Performance-contingent rewards (i.e., reward for fast and accurate responses) were shown to facilitate behavioral 
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 optimization10,15, whereas performance-noncontingent rewards (e.g., random rewards in a subset of trials) 
appeared not to modulate cognitive control  strategies16. Given that performance-contingent rewards increase 
the ambitious effort engaged in cognitive  control4, they may facilitate effortful cognitive control processes such 
as inhibitory  control17,18, conflict processing  performance10,15 and conflict adaptation (i.e., an increase in effort/
processing capacities when conflict is experienced)19. Furthermore, performance-contingent rewards have been 
suggested to lead to behavioral stability by facilitating the maintenance of context  information20,21. Considering 
the underlying neural mechanisms, dopamine (DA) has been suggested to be a crucial element in mediating the 
interactive effects of motivation (e.g., through monetary reward) and cognitive control, including  inhibition22,23. 
Prefrontal DA is generally assumed to facilitate relevant task/goal representations (e.g., via tonic DA release), 
and cortical DA has recently been suggested to facilitate the disengagement from automatic response tendencies 
(regardless of whether this facilitates or impedes behavior)24. Moreover, phasic striatal DA signalling has been 
suggested to be crucial for optimizing the allocation of cognitive efforts to obtain a  reward23,25.

While reward prospect and the associated DA modulations are often reported to facilitate (controlled) behav-
ior, automaticity (i.e., probability of executing a pre-potent response) has been shown to increase the need for 
cognitive control and obstruct inhibitory  performance3,26. Thus, one needs to engage in controlled/instrumental 
responses to decrease the impact of automatic responses on response inhibition. Experiments combining a 
“Simon Task” with a “Go/NoGo Task” have shown conjoint effects of automatic and controlled processes dur-
ing (motor) response  inhibition26,27. In a Simon Task, response conflicts arise because of congruent (same-side/
non-conflicting) or incongruent (opposite-side/conflicting) stimulus–response hand relationships. Response 
execution is commonly observed to be slower and more prone to errors in incongruent (conflicting) Go trials, 
whereas faster and more accurate responses have been observed in congruent Go  trials26,28,29. The difference 
in accuracy between congruent and incongruent trials yields the Simon effect. According to the dual process 
 account30, this is the result of conflicts that arise between “automatic” and “controlled” processing routes. Accord-
ingly, the “direct-route” generates rather automatic response tendencies based on the task-irrelevant stimulus 
location, which are sufficient to produce correct response executions on congruent trials. During incongruent 
trials, however, there is a necessity to control these automatic response tendencies, as they would otherwise lead 
to incorrect responses. This is accomplished via the “indirect route”, which refers to a rather controlled selec-
tion of relevant stimulus features indicating the correct response. In the Simon NoGo Task, response inhibition 
(NoGo) trials are included in a Simon task, thus generating congruent and incongruent NoGo trials. The usually 
observed pattern of the Simon effect has been shown to reverse when motor response inhibition is  required26: 
In congruent NoGo trials, the level of automatic response tendencies is  high3, thereby leading to increased false 
alarm rates. In contrast, the impact/ inhibitory control of the “indirect route” reduces automatic response ten-
dencies during incongruent NoGo trials and by that facilitates motor response inhibition, leading to lower false 
alarm  rates26,27. We used this Simon NoGo task to investigate if and how performance-contingent reward, and 
possibly associated DA modulations, alter the degree to which interactive effects of automatic and controlled 
response selection processes influence inhibitory control, including response inhibition. Given that rewards can 
impair performance when only one of various response modes/conditions is rewarded (e.g., response execution 
over  inhibition10;), we decided to reward both correct response selection and inhibition in the current study (see 
“Methods” section for reward rule details).

Reward and cognitive control have both been suggested to enhance task-relevant associations, but the under-
lying neurophysiological mechanisms have remained rather elusive. In the current study, we set out to investigate 
the interactive effects of reward prospect and cognitive control processes on response inhibition using a neuro-
physiological approach combining EEG temporal signal decomposition and source localization methods. We 
were specifically interested in reward prospect-based differences in the magnitude of the interactive effects of 
automatic and controlled response selection processes modulating motor response inhibition. Previous studies 
have shown that classical event-related potentials (ERPs) reflect a mixture of perceptual, stimulus-related pro-
cesses (termed “stimulus codes”) and motor response selection processes (termed “response selection codes”)27,31, 
which co-exist during response  inhibition31. As a consequence, regular ERPs may only produce precise insights 
into neurophysiological processes if the intra-individual variability is very  low32,33. However, evidence suggests 
that the effects of (monetary) rewards on inhibitory processes are rather  heterogeneous34, possibly due to dif-
ferences at the neurophysiological level. Thus, correlates of group-dependent behavioral modulations were not 
expected to be well-explained by standard averaged ERP waveforms due to the expected trial-to-trial latency 
variability. In the current study, we therefore applied residue iteration decomposition  (RIDE33) to overcome this 
problem and dissociate stimulus codes and inhibitory control codes in the EEG signal. Specifically, RIDE tem-
porally decomposes the EEG signal into several separate component clusters (S-, R-, & C-cluster), with variable 
intercomponent delays and distinct functional  relevance35. The S-cluster reflects stimulus-related processes (i.e., 
perception and attention), the R-cluster refers to response-related processes (i.e., motor response execution), and 
the C-cluster reflects intermediate processes between the S-, and the R-cluster (i.e., response selection). Each 
cluster usually comprises different (aspects of) ERP components. Typically, the N1 and P2 components are most 
strongly shown in the S-cluster, and the P3 component is often best captured by the information in the C- and 
R-clusters. The N2 ERP has been described to represent both stimulus and response-related  processes36,37 and 
can therefore often be found in all three RIDE clusters.

Concerning the expected results, we hypothesized that the performance-contingent reward might improve 
both response selection and response inhibition (in terms of accuracy). Since reward prospect has been repeat-
edly shown to shorten reaction  times38–40, it could however also be possible that responses become faster and 
accuracy performance might suffer as a result of this. Another potential consequence of such response speeding 
could be larger accuracy-based Simon effects (i.e., interactive effects of automatic and controlled processes) in 
the reward  context41. The interplay of interference inhibition (i.e., the inhibition of interfering effects of distract-
ing stimuli and stimulus properties onto response selection, which is typically most required in incongruent 
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trials) and motor response inhibition (i.e., the inhibition of prepotent motor responses) during NoGo trials has 
been reported to be modulated by stimulus–response (S–R) translation processes as reflected in the C-cluster26, 
and here, mainly by the NoGo-P3. Given the importance of S–R translation/selection processes for successful 
response inhibition, we expected the effect of reward prospect itself to be reflected in C-cluster (NoGo-)P3 
modulations that reflect/parallel the task effects found on the behavioral level.

Recently, it was further suggested that early attentional and specifically early cognitive resource allocation 
play a key role in the interaction of automatic and cognitive control processes during response  inhibition42. This 
is in accordance with accounts underlining the importance of early ERP components in determining successful 
response  inhibition43,44. We therefore anticipated variations in the extent to which modulations in the S-cluster 
explain observable differences in behavioral performance (especially the interaction between controlled and 
automatic processes) between the reward intervention and control group. Subsequent source localization analy-
ses were conducted to pinpoint which functional neuroanatomical structures are associated with any reward 
prospect-based differences in neural activity.

Material and methods
Participants. Thirty-eight young and healthy adults [17 males; mean age = 23.89 years; SEM = 0.557] were 
recruited to participate in the current reward intervention study. The control group comprised another thirty-
eight healthy adults [17 males; mean age = 23.92 years; SEM = 0.145], who were randomly drawn from previous 
applications of this task in our research group. All participants included in the study were between 19 and 33 years 
old, reported to be healthy (no history of chronic or acute neurological, psychiatric, or somatic disease), and had 
normal or corrected-to-normal vision. After purpose and procedure of the study had been fully explained, writ-
ten informed consent was obtained from all participants. Upon completion of the study, all participants received 
20 € as monetary compensation. Participants in the reward group additionally received a cumulative monetary 
reward of up to 6€ for good performance (for further details, please refer to the task description). 

Task and procedure. In the current study, we used a combined Simon and Go/NoGo  paradigm26, that 
allows to investigate the influence of automatic versus controlled response tendencies on response inhibition. 
The experiment was programmed and run using Presentation (Version 22.1, Neurobehavioral Systems Inc., CA, 
United States). Task design and structure are illustrated in Fig. 1.

The experiment was conducted in a dimly lit, sound-isolated room. For the task, participants were seated at a 
distance of approximately 60 cm in front of a 24-inch LCD monitor (60 Hz frame rate), on which visual stimuli 
were presented on black background. During the experiment, a central white fixation cross, accompanied by 
two lateralized empty white frame boxes (representing possible stimulus positions at about 1.1°–1.7° visual angle 
from the center), was continuously displayed on the screen. Each trial started with the simultaneous presenta-
tion of a single letter target stimulus (i.e., yellow “A” or “B”) and a distractor stimulus (three horizontal white 
lines; matching the letter stimulus in size) within the two white frame boxes for 200 ms (both sized approx. 0.6° 
visual angle in height and width). Crucially, the font of the letter stimulus indicated whether the current trial 
was a Go trial (normal font) or a NoGo trial (bold-italic font). In response to letter stimulus “A” in normal font, 
participants were instructed to press the left control button with their left index finger. In response to letter “B” 
in normal font, participants had to press the right control button with their right index finger. This rule applied 
irrespective of the side (left or right-hand side) that the letter stimulus was presented on. In Go trials, a speed-up 
sign (i.e., “Schneller!” / “Faster!”) was presented above the fixation cross in case no response was given within 
500 ms after stimulus presentation. When the letter stimulus was presented in bold-italic font (i.e., yellow “A” 
or “B”), participants had to withhold associated responses (NoGo trials). Trials in which the letter stimulus 
was presented in the spatial location matching the associated response hand (i.e., “A” or “A” presented on the 
left-hand side, “B” or “B” presented on the right-hand side) were coded as congruent trials. When the letter 

Figure 1.  Experimental paradigm: Simon NoGo Task. Illustrated are the possible stimulus–response 
combinations for congruent/incongruent Go condition (left) and congruent/incongruent NoGo condition 
(right). Congruent versus incongruent refers to the stimulus–response hand mapping of Go trials. Therefore, 
congruent trials required a response execution on the side the target letter stimulus was presented on in case 
of Go trials, whereas the stimulus presentation side does not match up with the stimulus–response hand in 
incongruent trials.
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stimulus was presented at the spatially opposite location with respect to the associated response hand (i.e., “A” 
or “A” presented on the right, “B” or “B” presented on the left), the trials were coded as incongruent trials. This 
creates the following four conditions: (1) congruent Go trials, (2) incongruent Go trials, (3) congruent NoGo 
trials, and (4) incongruent NoGo trials. Responses to Go condition trials within 1700 ms after stimulus presen-
tation were coded as “correct” or “incorrect”. Furthermore, trials in which no response was obtained until 1700 
ms post-stimulus presentation were, dependent on the condition, coded either as Go trial “misses” or NoGo 
trial “correct omissions”. In the NoGo trials, any response obtained within 1700 ms after stimulus presentation 
was coded as a “false alarm”. The inter-trial interval (ITI) was jittered between 1300 and 1700 ms. Overall, the 
experimental paradigm comprised 6 blocks with 120 trials each, resulting in a total number of 720 trials. 70% 
(504 trials in total, 84 trials per block) of the trials were Go-trials, and 30% (216 trials in total, 36 trials per block) 
were NoGo trials. In both the Go and NoGo conditions, half (50%) of the trials were congruent and the other 
half (50%) were incongruent. The order of trials in each block was randomized. Prior to the actual experiment, 
all participants completed a standardized practice run of 16 trials (without reward) to familiarize with the task.

Half of our participants performed the standard experimental paradigm (control), the other half performed 
a version to which we added the prospect of reward for good performance (reward group). Before the recording 
started, all participants were instructed to respond as fast and accurately as possible, so that they only rarely saw 
the speed-up sign appear. The reward group was additionally informed that each correct response execution (Go 
trials) or response omission (NoGo trials) could earn them a fixed monetary bonus that would be added up and 
paid as a reward for good performance on top of the standard monetary compensation in the end. They were 
also informed that they would only receive a bonus if the correct Go response was recorded before the speed-
up sign (e.g., “Faster!”) appeared. The performance-based reward was calculated based on the following rules: 
participants could earn a reward for Go trials in which the correct response was recorded within 500 ms or less 
after stimulus presentation, and for NoGo trials in which no response was recorded post-stimulus presentation. 
Specifically, with each correct response or response omissions participants could earn 0.008 €, resulting in a 
maximal reward of 1 € per block and an overall reward sum of (max.) 6 € for the entire experiment.

After each block, all participants could take a self-timed break (i.e., to rest their eyes), and resume via button 
press. Moreover, for the participants of the reward group, the accumulated bonus amount of the last block, as 
well as the overall winning/reward sum (summation of all block earnings) was displayed on the screen during 
the break. The experiment took approximately 30 min to complete in both groups.

EEG recording and analysis. During the experiment, a high-density EEG was recorded from 60 equi-
distant Ag–AgCl electrodes using the BrainVision Recorder software (Version 2.2) and a QuickAmp amplifier 
(Brain Products GmbH, Gilching, Germany). The reference electrode was positioned at Fpz and a ground elec-
trode was placed at the coordinates θ = 58, φ = 78. All electrode impedances were kept below 10 kΩ. The EEG 
data was initially recorded at a sampling rate of 500 Hz and offline down-sampled to 256 Hz. EEG preprocessing 
was performed using  Automagic45 and  EEGLAB46 on Matlab 2019a (The MathWorks Corp.). First, flatlined 
channels (i.e., channels that showed activity below 5 µV for more than 5 s) were removed, the EEG data was re-
referenced to the average reference, and missing channels were interpolated. Following this step, the PREP pre-
processing  pipeline47 and the EEGLAB clean_rawdata() pipeline were applied to remove irregular artifacts and 
detect noisy channels. In short, the PREP pipeline removes line noise (for data recorded in Europe: 50 Hz) by 
means of a multi-taper algorithm and after removing contaminations by bad channels, a robust common average 
reference is applied. The clean_rawdata() pipeline detrends the EEG data using a FIR high-pass filter of 0.5 Hz 
(order 1286, stop-band attenuation 80 dB, transition band 0.25–0.75 Hz). Furthermore, epochs with irregularly 
strong power (> 15 standard deviations relative to calibration data) were reconstructed using Artifact Subspace 
Reconstruction (ASR; burst criterion:  1548). Time windows that could not be reconstructed were removed and 
an additional bad channel detection was applied using high and minimum variance criterion. Furthermore, a 
low-pass filter of 40 Hz (sinc FIR filter; order:  8649) was applied. For EOG artifacts, a subtraction method was 
used (EOG  Regression50). Moreover, the Multiple Artifact Rejection Algorithm (MARA 51,52), that automatizes 
the process of independent component analysis (ICA), was applied to detect remaining artifacts in the data. 
Finally, missing and removed channels were interpolated using a spherical method. After visual inspection of 
the preprocessed EEG recordings, the EEG data were segmented into the corresponding four trial conditions 
(in/congruent Go/NoGo trials) using the BrainVision Analyzer software (Version 2.2, Brain Products GmbH). 
All of those segments were locked onto the stimulus onset. In Go conditions, only trials with correct responses 
within a response window of 100 to 1300 ms relative to the onset of the stimulus were considered valid trials. In 
NoGo conditions, valid trials were defined as trials in which no response was recorded within 0 to 1700 ms after 
stimulus onset. Each segment had a length of 2000 ms, starting 500 ms prior to stimulus onset until 1500 ms 
post-stimulus presentation. To remove any remaining artifacts, an automatic artifact rejection inspection was 
applied (rejection criteria: amplitude difference of more than 200 µV within 200 ms; amplitudes above 100 µV; 
activity below 0.5 µV in 100 ms). Finally, a baseline correction was applied to the time window of − 300 to 0 ms 
prior to the stimulus onset and the single-trial segmented EEG data was exported for further analysis.

Residue iteration decomposition (RIDE). In a next step, RIDE was run on the segmented and baseline-
corrected single-trial EEG data by using the “RIDE toolbox” (available at http:// cns. hkbu. edu. hk/ RIDE. htm) 
and applying previously established  protocols31,33. The RIDE temporal decomposition was conducted separately 
for each single electrode  channel35. In short, RIDE decomposes the ERP signal into a stimulus-locked compo-
nent cluster (S), a response time locked cluster (R) and a non-marker-locked intermediate cluster (C)32,53. RIDE 
presumes that in each single EEG trial, these three components (S, C and R) with variable intercomponent 
delays are linearly superimposed. Importantly, each component is associated with specific aspects of stimu-

http://cns.hkbu.edu.hk/RIDE.htm
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lus- and response-related processes. The S-cluster reflects stimulus-related attentional/perceptional processes, 
the R-cluster was shown to reflect response (execution)-associated processes and the central C-cluster (with 
variable latency) is representing stimulus evaluation and response selection  processes32,54. However, there is no 
correct motor response for NoGo trials. Therefore, it is not possible to reliably estimate the R-Cluster in correct 
NoGo  trials53. Against this background, only the S-cluster (reflecting stimulus-related  processes31) and the cen-
tral C-cluster were computed in the current study in order to disentangle stimulus-related and central aspects of 
processing and in order to account for the expected intra-individual variability within trials. After visual inspec-
tion of the pre-processed EEG data, time markers for the S-cluster were set from − 200 ms prior to 450 ms after 
stimulus onset. For the C-cluster, the estimation time window was set to 150–800 ms after stimulus presentation. 
Based on the initial time-markers, RIDE decomposes the ERP components in an iterative way by employing L1-
norm minimization (i.e., obtaining median waveforms), so that the C-cluster latencies were initially estimated 
and iteratively improved. The latency-corrected ERP waveforms obtained from the RIDE algorithm enable us to 
clearly ascribe the underlying processes to specific cognitive processing steps and can be interpreted analogous 
to classical ERPs. For further mathematical and methodological details on the established RIDE procedures, 
please refer to previous publications by its  creators32,35. Electrodes and time windows for the quantification and 
analysis of the resulting clusters were selected following visual inspection of the scalp topographies as well as 
electrode signals and are highly comparable with previous studies using the same experimental  paradigm26,42. 
The electrodes and time windows in which amplitudes were quantified are summarized in Table 1.

Ethics declaration. The study was approved by the Ethics Commission of the Medical Faculty of the TU 
Dresden (SR-EK-8012020) and conducted in accordance with the declaration of Helsinki.

Source localization
Source localization analyses were conducted to examine differences between the experimental groups regard-
ing the estimated functional neuroanatomical regions that are relevant to the modulation of the interplay of 
automaticity and cognitive control during response inhibition. For that, the sLORETA (standard low resolution 
electromagnetic  tomography55, software package was used. sLORETA provides a linear solution to the inverse 
problem and estimates sources without localization  bias55,56. Cortical and hippocampal gray matter is divided 
into 6239 voxels at 5 × 5 × 5 mm spatial resolution and used as the solution space. For each voxel, the standardized 
current source density (CSD) was estimated and log-transformed. We contrasted the decomposed EEG-data 
(C-cluster) Simon NoGo effect (i.e., the difference between congruent and incongruent NoGo trials) between 
reward and control group using the sLORETA statistical non-parametric mapping (SnPM) tool. Based on this, 
significant differences in source activity generators were determined performing 2000 permutations. The digi-
tized structural MRI template used in the current study was the MNI152 head model template. Results from 
the sLORETA analysis located in the MNI template (corrected for multiple comparisons, p < .05) are shown in 
the results section.

Statistical analysis
The behavioral data (i.e., accuracy and reaction times) and the neurophysiological data (RIDE cluster-derived 
ERP amplitudes and standard ERP amplitudes) were analyzed using IBM SPSS Statistics for Windows, ver-
sion 28.0.1.1 (IBM Corp., Armonk, N.Y., USA). Separate repeated-measures ANOVAs with “group” (reward 
vs control group) as between-subject factor and “condition” (Go vs NoGo) and “congruency” (congruent vs 
incongruent) as within-subject factors were run. The ANOVAs for the neurophysiological data additionally 
included the factor “electrode” as within-subject factor. Prior to running the ANOVAs, outliers were identified 
using the SPSS built-in exploratory outlier analysis. Whenever a case was identified as an extreme outlier (i.e., 
either 3rd quartile + 3*interquartile range, or 1st quartile—3*interquartile range) in a given measure for two or 
more experimental conditions, that case was no longer considered representative of the sample and was entirely 
excluded from the ANOVA for that respective measure. In case outliers were detected in the behavioral data, 

Table 1.  RIDE ERPs (for each cluster), corresponding electrodes and time windows (in milliseconds) in which 
the amplitudes were quantified as the mean activity in a given condition.

RIDE Cluster RIDE ERP Electrode(s) Time window (group) Condition

S

S-N1 P7, P8 150–190 ms (both groups) Go & NoGo condition

S-P2 P7, P8 270–315 ms (both groups) Go condition

P7, P8 260–305 ms (both groups) NoGo condition

S-N2 Cz 245–290 ms (reward group) Go & NoGo condition

255–300 ms (control group)

FCz 260–305 ms (reward group) Go & NoGo condition

280–325 ms (control group)

C

C-P3 Cz 395–460 ms (both groups) Go condition

435–500 ms (both groups) NoGo condition

FCz 400–465 ms (both groups) Go condition

440–505 ms (both groups) NoGo condition
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the respective participants were also excluded from subsequent analyses of the neurophysiological data (but 
not vice versa. Yet, excluding the behavioral data of participants with statistical outliers in any neurophysiologi-
cal measure would not have altered the obtained pattern of significant vs non-significant effects in a relevant 
manner). Whenever appropriate, Greenhouse–Geisser correction was applied to the reported ANOVA values. 
Significant main effects or interactions were examined with post-hoc ANOVAs and post-hoc t-tests. All vari-
ables were tested for normal distribution using Kolmogorov–Smirnov tests. When the assumption of normal 
distribution was violated, significant main effects and post-hoc tests run on these measures were additionally 
confirmed using non-parametric Wilcoxon signed-rank tests / Mann–Whitney U-tests.

Furthermore, Pearson’s correlation coefficients were computed to measure the relationship/association 
between the RIDE decomposed ERPs of the NoGo condition and the behavioral Simon NoGo effect. In case 
there was evidence for a significant correlation, additional linear regression analyses were performed to inves-
tigate a possible causal relationship between NoGo ERPs quantified in the RIDE clusters and the behavioral 
Simon NoGo effect.

When there was a trend towards a significant main effect or interaction, (i.e., p < .150), add-on Bayesian 
analyses were conducted to examine the relative evidence for the  H0 compared to the  H1. Using the template 
by  Masson57, Bayes Factors  (BF01) were computed and interpreted as can be seen in the supplementary material 
(Table 1). In case of positive evidence for the alternative hypothesis, further exploratory post-hoc analyses were 
conducted.

For all descriptive statistics, the mean value and the standard error of the mean (SEM; measurement of vari-
ability) are reported.

Results
Exclusion criteria. As for the accuracy measure, no participant performed below 60% accuracy in two or 
more task conditions, or was identified as an extreme outlier (for details refer to the “Methods” section). Regard-
ing the reaction time data, n = 1 participant of the reward group was identified as an extreme outlier and thus 
removed from all subsequent analyses of the behavioral and neurophysiological data. Considering the neuro-
physiological data, n = 2 participants of the control group were identified as extreme outliers in the S cluster N1 
measure and therefore excluded from the analysis of the RIDE-decomposed N1. For the P3 quantified in the C 
cluster, n = 1 participant from the reward group was identified as an extreme outlier and thus excluded from this 
particular analysis.

A sensitivity power analysis (G*Power software, Version 3.1.9.758) was run to determine the statistical sen-
sitivity of the remaining (min. 74) participants. It showed that with n = 74 participants (split into two groups, 
across 4 conditions), we can reliably detect effect sizes as low as 2.9% of the explained variance (η2

p = 0.029) for 
within-between interactions (with a power of 95% and an alpha error probability of 5%). Evidence of studies 
employing the task at hand showed interactive effects with effects sizes of approximately ~ η2

p = 0.17–0.2727,59,60, 
and interactive effects including the group factor showed effect sizes between ~ η2

p = 0.035 and ~ η2
p = 0.25926,27,59, 

so that the study is likely sufficiently powered.

Behavioral data. Task effects. The ANOVA analysis for accuracy revealed a main effect of condition 
(F(1,73) = 53.712; p < .001; η2

p = 0.424), with overall higher accuracy in Go (95.45% ± 0.43) than in NoGo trials 
(89.60% ± 0.83). This result was confirmed by an additional Wilcoxon signed-rank test (Z = − 5.545, p < .001). 
Furthermore, there was a main effect of congruency (F(1,73) = 20.807; p < .001; η2

p = 0.222), indicating higher accu-
racy in incongruent (93.21% ± 0.50) than in congruent trials (91.84% ± 0.59). An add-on Wilcoxon signed-rank 
test confirmed the statistically significant difference (Z = − 4.214; p < .001). Notably, there was an interaction of 
congruency x condition (F(1,73) = 35.370; p < .001; η2

p = 0.326), which is the typical task effect usually observed 
in the Simon NoGo paradigm. Post-hoc paired t-tests indicated significant congruency effects in both Go trials 
(t(74) = 2.587; p = .012; congruent = 96.03% ± 0.47; incongruent = 94.90% ± 0.53) and NoGo trials (t(74) = − 6.346; 
p < .001; congruent = 87.73% ± 1.21; incongruent = 91.59% ± 0.84). The different direction of the Simon effect 
(congruent minus incongruent) in Go trials (0.56% ± 0.22) versus NoGo trials (− 1.93 ± 0.30) was confirmed to 
be meaningful/significant (t(74) = 5.642; p < .001). Notably, this finding is consistent with previous studies using 
this experimental  paradigm26,61, and was additionally confirmed by a Wilcoxon signed rank test (Z = − 5.030; 
p < .001).

For the Go reaction time (RT) measure (i.e., the time between target onset and correct Go response in ms), 
the obtained data is shown in Fig. 2. The ANOVA analysis revealed a main effect of congruency (F(1,73) = 66.917; 
p < .001; η2

p = 0.478), showing that responses were faster in congruent (493.57 ± 6.64 ms) than in incongruent 
trials (510.81 ± 6.61 ms). This result was also confirmed by an add-on non-parametric test (Z = − 6.294; p < .001).

Group effects. The repeated measures ANOVA for accuracy further showed a main effect of group (F(1,73) = 34.433; 
p < .001; η2

p = 0.321), indicating overall lower response accuracy in the reward group (89.44% ± 0.75) as com-
pared to the control group (95.60% ± 0.74). An add-on Mann–Whitney U test confirmed the significant dif-
ference (U = 209.50; Z = − 5.230; p < .001). Moreover, there were significant interactions of condition x group 
(F(1,73) = 19.600; p < .001; η2

p = 0.212) and of condition x congruency x group (F(1,73) = 5.670; p = .020; η2
p = 0.072). 

Subsequent post-hoc tests separately investigating the magnitude of the Simon effect (congruent minus incon-
gruent) in both conditions revealed a significantly larger/more negative Simon NoGo effect in the reward group 
(− 2.66% ± 2.97), as compared to the control group (− 1.22% ± 2.06) (t(63.822) = 2.446; p = .017). This significance 
was confirmed by a Mann–Whitney U test (U = 458.50; Z = − 2.594; p = .009). In contrast to this, there was no 
significant group difference in the Simon effect of the Go condition (t(47.522) =  − 1.212; p = .231). Other interac-
tions with the group factor did not reach significance (F(1,73) = 2.155; p = .146). For the Go RTs, there was a main 
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effect of group (F(1,73) = 58.695; p < .001; η2
p = 0.446), with faster responses in the reward group (452.10 ms ± 9.31) 

than in the control group (552.28 ms ± 9.18). The interaction of group x congruency did not reach significance 
for Go RTs (F(1,73) = 0.828; p = 0.366).

For the accuracy measure (i.e. the Simon Go and the Simon NoGo effect), the obtained data for both groups 
is shown in Fig. 3.

Neurophysiological data: RIDE decomposition. In order to allow the reader to focus on the main research ques-
tion, only main and interaction effects including the “group” factor are reported in the main manuscript. Details 
on all main and interaction effects that do not include the “group” factor can be found in the supplementary 
materials (for general information on how the different task conditions affect common event-related potentials, 
please also refer to previous publications on the Simon NoGo  task26,42).

S‑cluster. The analyzed S-cluster ERPs are illustrated in Fig. 4.
N1. The repeated measures ANOVA for the S-cluster N1 revealed a main effect of group (F(1,71) = 6.820; 

p = .011; η2
p = 0.088), showing significantly larger N1 amplitudes in the reward group (− 4.352 μV ± 0.346), as com-

pared to the control group (− 3.066 μV ± 0.351). The interaction of congruency x group (F(1,71) = 3.261; p = .075; 

Figure 2.  Behavioral results: Reaction times. The boxplots show the reaction times in milliseconds for correct 
(congruent and incongruent) Go trials. The “x” and the horizontal line inside the boxplots indicate the mean 
and median, respectively. The asterisk indicates significant differences, at p < .05, and the error bars represent the 
95% confidence intervals. The cloud plot (right side) illustrates the data distribution.

Figure 3.  Behavioral results: Accuracy. The “x” and the horizontal line inside the boxplots indicate the mean 
and median, respectively. The asterisk indicates significant differences at p < .05, and the error bars represent the 
95% confidence intervals. The raincloud plots illustrate the data distribution (a and b right side) and data points 
(a and b left side). (a) Magnitude of the Simon NoGo effect (correct congruent MINUS incongruent NoGo 
trials) based on the percentage of correct response omissions. (b) Simon Go Effect (correct congruent MINUS 
incongruent trials) based on the percentage of correct response executions.
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η2
p = 0.044) did not reach significance, and an add-on Bayesian analysis provided anecdotal evidence for the  H0 

(BF01 = 1.66). No other interactions with the factor group were evident (all F < 1.522; all p > .221).
P2. The analysis for the S-cluster P2 showed an interaction of group x electrode (F(1,73) = 8.351; p = .005; 

η2
p = 0.103). In the reward group, post-hoc paired t-tests revealed significantly larger (t(36) =  − 3.736, p < .001) P2 

amplitudes at electrode P8 (2.659 μV ± 0.277) than at electrode P7 (1.439 μV ± 0.299). This lateralization effect 
was not found in the control group (p = .938). Other main or interaction effects with the factor group did not 
reach significance (all F < 1.662; all p > .201).

N2. For the S-cluster N2, the repeated measures ANOVA showed a main effect of group (F(1,73) = 12.662; 
p < 0.001; η2

p = 0.148), revealing larger N2 amplitudes in the reward group (− 2.634 μV ± 0.279), as compared to the 
control group (− 1.237 μV ± 0.276). As the assumption of normal distribution for the N2 component was violated, 
an additional Mann–Whitney U test was performed, which was significant (U = 401.0; Z = − 3.20; p = 0.001). Fur-
thermore, there was a significant interaction of electrode x group (F(1,73) = 5.139; p = 0.026; η2

p = 0.066). Post-hoc 
t-tests indicated a significantly larger difference (Cz minus FCz) in N2 amplitudes between Cz and FCz in the 
reward group (− 0.621 μV ± 0.167), as compared to the control group (− 0.022 μV ± 0.204) (t(73) = 2.267, p = .026). 
An additional Mann–Whitney U test confirmed the results (U = 498.00; Z = − 2.172; p = .030). Further interactions 
with the factor group did not reach significance (all F < 1.315; all p > .255).

C‑cluster. The analyzed C-cluster ERP is illustrated in Fig. 5.
P3. For the frontal C-cluster P3, the repeated measures ANOVA revealed a main effect of group (F(1,72) = 10.969; 

p = .001; η2
p = 0.132), indicating overall larger C-P3 amplitudes in the reward group (3.935 μV ± 0.354), as com-

pared to the control group (2.298 μV ± 0.345). There was also a significant interaction of condition × electrode 
× group (F(1,72) = 5.104; p = .027; η2

p = 0.066). Post-hoc tests revealed that for the control group, the interaction of 
condition × electrode was not significant (F(1,37) = 0.942; p = .338; η2

p = 0.025). For the reward group however, the 
analysis revealed a significant interaction of condition × electrode (F(1,35) = 15.123; p =  < .001; η2

p = 0.302). Further 
post-hoc tests showed that for the reward group, there were significantly larger condition differences (NoGo 
minus Go) at electrode FCz (3.735 μV ± 0.372) as compared to Cz (2.786 μV ± 0.368) (t(35) = − 3.889; p < .001).

The interaction of condition × congruency × group (F(1,72) = 2.747; p = .102; η2
p = 0.037) did not reach signifi-

cance, but add-on Bayesian analysis indicated moderate evidence for the  H1  (BF01 = 0.23). Subsequent exploratory 
post-hoc analyses revealed no interaction effects for Go trials (F = 0.223; p ≥ .638, but an interaction of congruency 
× group (F(1,72) = 4.672; p = .034; η2

p = 0.061) in NoGo trials. In line with this, post-hoc t-tests revealed a signifi-
cantly more negative P3 Simon NoGo effect (t(72) = 2.162; p = .034) in the reward group (− 0.108 μV ± 0.162) as 
compared to the control group (0.367 μV ± 0.149). An add-on source localization analysis (sLORETA) showed 
that modulations (contrasting the Simon NoGo effect of the control and reward group) in the P3 quantification 
time window were associated with activation differences in the following regions: right inferior parietal lobule 
(IPL, BA40), superior parietal lobule (BA7), right inferior frontal gyrus (IFG; BA 47), right superior temporal 
gyrus (STG; BA 38), ventromedial prefrontal cortex (vmPFC), nucleus accumbens and the precuneus (BA7). 

Figure 4.  RIDE decomposed S-cluster NoGo ERPs and corresponding scalp topography maps. The color 
coding of the decomposed ERP signals indicates the different experimental groups, i.e., control group (blue) and 
reward group (yellow). The different lines indicate congruent NoGo trials (solid line) and incongruent NoGo 
trials (dashed line). Timepoint zero denotes the target letter onset. (a) The decomposed NoGo-N1 and NoGo-P2 
for both groups are depicted at electrode P7 with corresponding scalp topography maps on the right (top P2, 
bottom N1). (b) The decomposed NoGo-N2 at electrode Cz is shown with corresponding scalp topography 
maps on the bottom right. The scalp topography maps show the voltage distribution in the time windows (area 
marked with grey boxes) in which the amplitudes were quantified as the average electrode activity (see Table 1 
for details).
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No other interaction with the factor group was evident in the ANOVA for the frontal C-cluster P3 (all F < 1.524; 
all p > .221).

Decomposed EEG data as a predictor of the behavioral Simon NoGo Effect. Taken together, the most important 
behavioral and neurophysiological group differences (i.e., those that were not merely main group effects) were 
restricted to the NoGo condition. Consequently, we decided to limit all subsequent analyses to the NoGo condi-
tion. We set out to determine whether there is a linear relationship between the behavioral NoGo performance 
(mean NoGo accuracy and mean Simon NoGo effect) and neurophysiological NoGo effects/ERPs quantified in 
the RIDE clusters. Overall, the conducted correlation analyses (see Table 2 for details) indicated clear differences 
between the control and the intervention/reward group: In the control group, there was a significant positive 
correlation between the behavioral Simon NoGo effect and the mean S-cluster NoGo N1 at electrode P7, as well 
as the mean S-cluster NoGo P2 at electrode P7. Furthermore, the control group showed a significant positive 

Figure 5.  RIDE decomposed C-cluster NoGo-P3 and sLORETA maps. (a) The distinct colors of the 
decomposed ERP signals indicate the different experimental groups, i.e., control group (blue) and reward 
group (yellow). The different lines indicate congruent NoGo trials (solid line) and incongruent NoGo trials 
(dashed line). The scalp topography maps show the voltage distribution in the P3 time window (area marked 
with a grey box) in which the amplitude was quantified as the average electrode activity (see Table 1 for details). 
Additionally, a 3D volume shows the sources of maximal differences (contrast of the Simon NoGo effect) on 
the right hemisphere between control and reward group. (b) sLORETA-derived maps show the contrast of the 
Simon NoGo effect (congruent MINUS incongruent NoGo trials), indicating the sources of maximal activation 
differences between the control group and reward group in the NoGo-P3 time window. vmPFC ventromedial 
prefrontal cortex, NAc nucleus accumbens, IFG inferior frontal gyrus, STG superior temporal gyrus, IPL inferior 
parietal lobule, SPL superior parietal lobule.

Table 2.  Pearson’s correlation of RIDE decomposed ERPs and accuracy measures of the NoGo condition. 
*Statistically significant at p < .05 level. Significant values are in [bold and italics].

RIDE cluster/behavior

Control group Reward group Control group Reward group

NoGo mean accuracy Simon NoGo effect

r p r p r p r p

N1 P7 mean NoGo 0.248 .144 − 0.063 .711 0.373* .025 − 0.127 .453

N1 P7 Simon NoGo effect −0.333* .047 0.144 .394 − 0.143 .405 0.059 .727

P2 P7 mean NoGo 0.134 .423 0.164 .331 0.322* .049 − 0.191 .258

P2 P7 Simon NoGo effect − 0.312 .056 0.334* .044 − 0.165 .321 0.154 .364

P3 Cz mean NoGo − 0.110 .511 0.196 .253 0.123 .463 0.002 .990

P3 Cz Simon NoGo effect 0.026 .877 0.145 .400 − 0.037 .826 0.309 .067
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correlation between the mean accuracy in NoGo trials and the S-cluster N1 Simon NoGo effect at electrode 
P7. In the reward group, a significant positive correlation between the mean accuracy in NoGo trials and the 
S-cluster P2 Simon NoGo effect (at electrode P7) was shown. For the control group, only a trend towards a nega-
tive correlation between the mean accuracy in NoGo trials and the S-cluster P2 Simon NoGo effect at electrode 
P7 was observed. This was however not confirmed with Bayesian analysis, which indicated substantial evidence 
for the  H0  (BF01 = 4.854). Additionally, there seemed to be a trend towards a positive correlation between the 
behavioral Simon NoGo effect and the C-cluster P3 Simon NoGo effect (at electrode Cz) for the reward group, 
but not for the control group. An add-on Bayesian correlational analysis for the reward group however indicated 
anecdotal evidence for the  H0  (BF01 = 1.453).

Nevertheless, an established linear association does not allow to postulate causality. To further investigate 
the assumed causal relationship, regression models were computed for all RIDE-Cluster ERPs that significantly 
correlated with the behavioral NoGo performance (i.e., mean accuracy in NoGo trials and Simon NoGo effect; 
see Table 2). Specifically, we set out to evaluate whether the amplitude of the NoGo trial ERPs quantified in the 
RIDE cluster are significant predictors of the behavioral performance in NoGo trials. All regression coefficients 
are summarized in Table 3. Using mean accuracy in NoGo trials as the dependent variable, the regression models 
yielded the following results: For the control group, variations in mean accuracy in NoGo trials were shown to be 
significantly predicted by the magnitude of the S-cluster N1 Simon NoGo effect (at electrode P7; F(1,34) = 4.252; 
p = .047). This indicates that for the control group, lower mean NoGo accuracy is evident as the N1 Simon 
NoGo effect (congruent minus incongruent) becomes more positive. For the reward group, the mean accuracy 
in NoGo trials was shown to be significantly predicted by the S-cluster P2 Simon NoGo effect (at electrode P7; 
F(1,35) = 4.383; p = .044). This means that the regression equation predicts that a smaller (i.e., less negative) S-cluster 
P2 Simon NoGo effect is associated with higher mean accuracy in NoGo trials. Additionally, the linear regression 
analysis showed that both the mean S-cluster NoGo N1 at electrode P7 (F(1,34) = 5.499; p = .025) and the mean 
S-cluster NoGo P2 amplitude at electrode P7 (F(1,34) = 4.154; p = .049) predicted the magnitude of the behavioral 
Simon NoGo effect in the control group. Accordingly, a smaller/less negative Simon NoGo effect is evident as 
N1 amplitudes decrease (i.e., become less negative) and P2 amplitudes increase in the control group. For the 
reward group, none of the ERPs quantified in the RIDE-clusters could explain the magnitude and direction of 
the observed behavioral Simon NoGo effect. Corresponding graphs illustrating the data presented in Table 3 are 
provided in the supplementary material.

Discussion
The aim of the current study was to investigate whether the prospect of a reward for good performance modulates 
the interplay of automaticity and cognitive control during response inhibition. Therefore, the neurophysiological 
processes that reflect the interaction of reward prospect and cognitive control were assessed using a rewarded 
Simon NoGo Task. We further set out to determine whether relevant neurophysiological processes could predict 
successful motor response inhibition in the context of controlled and automatic response selection processes. 
Most importantly, the current study shows that reward prospect increases the influence of the interactive effects 
of automatic and controlled processes on response inhibition (i.e., reflected by a larger Simon NoGo effect), but 
not on response selection. Notably, stimulus–response translation processes (as reflected by the NoGo-P3) paral-
leled the reward-specific modulation of the behavioral interference effect. Add-on source localization analyses 
revealed underlying activation differences in the inferior frontal and somatosensory cortex. Additionally, our 
results indicate a correlative relationship between early attentional processes (as reflected by the N1) / resource 
allocation processes (as reflected by the P2) and successful motor response inhibition.

Well in line with previous findings, we found inverse effects of S-R congruency. That is, congruent S–R 
relations which allow to rely on automatic response selection processes (i.e., “direct-route”) were beneficial for 
response selection, but detrimental when response inhibition was required. In contrast, incongruent S-R rela-
tions increase the need for cognitive control to overcome the pre-potent automatic response tendencies, which 
is beneficial for response  inhibition26. In incongruent NoGo trials, the interaction between incorrect automatic 
response tendencies and the “indirect route” (i.e., controlling the influence of automatic response tendencies) 
facilitates inhibitory control, leading to the inverted Simon effect in NoGo trials. Our results show that reward 
prospect had particularly detrimental effects on inhibitory performance in the more automatized (congruent) 

Table 3.  Regression coefficients for predicting the behavioral performance in the NoGo condition.

Dependent Variable Predictor

Control group Reward group

B R2 F B R2 F

Mean NoGo accuracy
N1 P7 Simon NoGo effect − 2.090 0.111 4.252 1.755 0.021 0.744

Constant 93.819 85.040

Mean NoGo accuracy
P2 P7 Simon NoGo effect − 2.242 0.098 3.895 2.970 0.111 4.383

Constant 94.226 85.102

Simon NoGo effect
N1 P7 mean NoGo 0.448 0.139 5.499 − 0.146 0.016 0.575

Constant 0.097 − 3.301

Simon NoGo effect
P2 P7 mean NoGo 0.288 0.103 4.154 − 0.301 0.036 1.323

Constant − 1.817 − 2.163



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10903  | https://doi.org/10.1038/s41598-023-37524-z

www.nature.com/scientificreports/

NoGo trials. It is therefore possible that reward prospect increased the automaticity of pre-potent responses and 
thereby raised the need for inhibitory control, and the associated likelihood of commission errors.

Moreover, the current data indicates an overall performance-impeding effect of reward prospect that was 
reflected in lower performance (i.e., response accuracies) in the reward group, as compared to the control 
group. Our results further suggest that the groups differed in the employed speed-accuracy trade-off strategy 
(SATS), which is an omnipresent process regulating the competing demands in decisional  processes62. Based 
on this, higher false alarm rates in the reward group are likely the result of a liberal/less informed decision strat-
egy leading to faster and less accurate  responses63. Contrastingly, the control group showed a more cautious/
informed strategy, that is reflected in slower but more accurate responses. The results for both groups indicate 
the characteristical disadvantages for response inhibition when processing is mediated via the automatic  route26, 
i.e., more false alarms in congruent as compared to incongruent NoGo trials. In the reward group, the typical 
task effect was amplified by SATS to a larger extent (due to the monetary reward prospect), than in the control 
group. Importantly, there is no response time (as participants are required to withhold their responses), based 
on which a “speed” and potential accuracy-tradeoff could have been determined in NoGo trials. In principle, 
it would be possible to use the reaction times of false alarms committed in this condition, however these were 
(and typically are) too scarce, varied and non-informative to base reliable analyses/assumptions on them. The 
possibility exists that the applied reward-rule/instructions (i.e., rewards only for accurate response selection/
omissions before the speed-up sign appeared), contributed to an emphasis on speed over accuracy, which in 
turn reduced the quality of stimulus(-response)  processing64,65. Additionally, the ratio of Go versus NoGo trials 
(i.e., 7:3) may have further increased the emphasis on response execution and increased the willingness of the 
reward group to trade response speed in Go trials at the cost of correct response selection/omission in NoGo 
trials. As suggested by previous  evidence37,66, this tilted distribution of trials was essential to induce strong 
automated response tendencies, consequently imposing high demand on inhibitory control processes. Thus, 
different intertrial intervals and/or Go versus NoGo ratio configurations may not lead to the same  results37,66. In 
accordance with the current results, liberal SATS have been shown to decrease response times and lead to lower 
response accuracies in Simon  Tasks63. Furthermore, and in agreement with previous research (using flanker and 
decision-making  tasks67,68), participants who were rewarded for good performance responded significantly faster 
than participants who had no reward prospect. Altogether, it hence seems that the performance-based monetary 
reward in combination with implicit (i.e., verbal instructions) and explicit (i.e., speed-up sign) response deadlines 
fostered an exploitation of time at the cost of response  accuracies69.

Earlier studies have shown that Simon effects are stronger for fast responses than for slow responses (for 
review  see59). In the current study, however, differences between the groups in the magnitude of the accuracy-
based Simon effect were only found when response inhibition was required. According to the activation-sup-
pression  model41, faster response selection tendencies in the reward group (i.e., before the response conflicts 
had been fully processed), may have led to the overall observed higher rate of false alarms. However, this does 
not fully explain the larger interference effect in NoGo trials. On another account, action inhibition success has 
been described as a race between two competing processes, in which the timing of go and stop processes is the 
crucial determinant of successful  inhibition71. Consequently, the stopping process needs to be completed in time 
to interfere with the ongoing go process and therefore for inhibition to be successful. Based on the horse-race 
 model71,72, the current results indicate that go processes were too fast for inhibitory processes to be completed in 
time. In the employed experimental paradigm, the NoGo condition required both “interference inhibition” and 
“action inhibition”. The latter was especially the case in congruent NoGo trials in which the level of automatic-
ity of pre-potent responses is high, thus increasing the inhibitory requirements. Taken together, it is therefore 
reasonable to conclude that the overall emphasis of the reward group on fast (less accurate) response execution 
did not only increase the conflict effects, but also left no time for action inhibition to be completed in time to 
withhold erroneous responses. This was particularly detrimental for the more automatized congruent trials, 
leading to the observed larger Simon NoGo effect in the reward context.

On the neurophysiological level, we were able to shed light on the mechanisms and neuroanatomical struc-
tures underlying the impeding influence of reward prospect on interference effects during motor response inhi-
bition. When there was a prospect of reward for good performance, successful inhibition of automatic response 
tendencies appears to be related to the strength and direction of the cognitive resource allocation conflict that 
arises between controlled versus automatic response contexts. The impeding effects of reward prospect on the 
ability to inhibit automatic pre-potent responses (i.e., Simon effect) were mirrored by the C-cluster, which reflects 
the intermediate processes between stimulus (S) encoding and response (R)  selection31,54. The C-cluster is likely 
to be modulated by inhibition of pre-potent automated responses and to reflect conflict and increased cognitive 
load, which is mostly reflected in the (NoGo)-P331. Our data provides substantial evidence that reward prospect 
increased the recruitment of cognitive resources needed for the resolution of response conflicts during response 
inhibition (reflected by a larger/more negative P3 Simon NoGo effect as compared to the control group), which is 
in accordance with a recent  study73. However, it has also been suggested that the C-cluster may reflect a purpose-
ful deceleration of motor  processes74. Thus, the lower amplitude in the congruent NoGo trials may correspond 
to deficient “braking” of pre-potent motor responses in the condition where this would be most  necessary27. 
Add-on source localization analyses in the P3 time window revealed that the reward group was characterized by 
higher activation differences in the right inferior parietal lobule (IPL; BA 40) and the superior parietal regions 
(SPL; BA 7). In the context of Go/NoGo tasks, IPL and SPL activation were suggested to reflect the difficulty 
to inhibit pre-potent  responses75. Furthermore, the activity in both regions has been shown to be sensitive to 
response conflict modulations, with greatest activity for high conflict  trials76,77. In accordance with the current 
results, the IPL has been shown to reflect SR-mappings and task-reward  associations78. Taken together, we pro-
pose that the increased activation differences in the reward group in the IPL (BA 40) and SPL (BA 7) reflect the 
difficulty to inhibit the reward-triggered pre-potent automatic responses in the presence of a response conflict. 



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10903  | https://doi.org/10.1038/s41598-023-37524-z

www.nature.com/scientificreports/

Prefrontal circuits, especially those including the IFG, can interfere with subcortical action selection processes 
(via the subthalamic nucleus) through which automatic and prepotent response tendencies can be  suppressed24. 
In line with this, the reward group had lower activity differences in the right IFG (BA 47) during the P3 time 
window (as compared to the control group). The rIFG is known to mediate inhibitory control  processes79, thus 
the reward prospect may have triggered lack of ‘behavioral break’, and/or the cognitive resources invested in 
response inhibition were not sufficiently adapted to the degree of automaticity versus control in the selection of 
the pre-potent responses. Moreover, the reward group also displayed lower activity differences in the right STG 
(BA 22). Both the IFG and STG are core regions of the ventral attention  network80, which is thought to facilitate 
the quick adjustments to sudden changes and has been suggested to facilitate response inhibition (i.e., by draw-
ing attention to appropriate S-R mapping processes). The diminished activity differences in the right STG in 
the reward group may further indicate deficiencies in visual information processing as compared to the control 
 group81,82. Higher activation differences in the control group were also shown in a cluster spanning the ventrome-
dial prefrontal cortex (vmPFC) and the nucleus accumbens. Earlier studies suggested that activity implications 
in the nucleus accumbens and the strongly connected vmPFC reflect failures to engage in behavioral control 
(e.g., impulsivity or speeded responses)23. Importantly, the nucleus accumbens is known to be involved in action 
monitoring as well as the optimization of goal-directed  behavior83, therefore diminished activity differences in 
the reward group may relate to a lack of response strategy adjustment, consequently leading to the observed 
behavioral effect. Together, we argue that the difference in the extent to which the interactive effects of controlled 
and automatic processes influenced response inhibition are largely due to processes related to the association 
of stimuli with appropriate responses (i.e., S-R mapping) found in the C-cluster. We further suggest that the 
overall larger C-cluster P3 in the reward context indicates increased cognitive processing needed for stimulus 
classification and conflict resolution during response inhibition through top-down inhibitory  processes84,85. 
Additionally, the fronto-central P3 has commonly been associated with the evaluation of motor inhibition 
 processes86,87, and decreases in amplitude have been related to impaired inhibitory performance through a lack 
of behavioral performance evaluation. The larger P3 amplitudes in incongruent NoGo trials possibly reflect a 
higher extent of control mediated via the “indirect route”, which supported inhibitory control and sustained 
behavioral performance evaluation. Consequently, incongruent NoGo trials were protected to a larger extent 
from the influence of reward-triggered speeded responses than the more “automatized” congruent NoGo trials. 
Yet, strong evidence for a causal relationship between the behavioral Simon NoGo effect and the C-cluster could 
not be established. This lack of correlation effects indicates that the central aspects of S-R mapping alone do not 
provide a sufficient explanation for the impeded response conflict resolution triggered by the reward prospect. 
It is therefore possible that the reflection of the behavioral effects in the NoGo trials by the fronto-central P3 
indicates stronger behavioral performance evaluation in the reward context.

Interestingly, our results indicated that early attentional (i.e., S-cluster N1) and resource allocation (i.e., 
S-cluster  P242) related processes significantly modulate the interaction of automatic and controlled processes 
during response inhibition (with and without reward prospect). Notably, lower attention/sensory processing 
(smaller N1 amplitudes) of the target stimuli were associated with lower interference effects during response 
inhibition in the control group. Therefore, increased early sensory processing in the reward context may have 
led to a more active representation of the stimuli, increasing the difficulty to suppress pre-potent automatic 
responses. In line with this, it may be speculated that the reward-triggered dopamine release may have further 
increased this perceptual  sensitivity4, which is in line with accounts suggesting that rewards influence attentional 
 processes18. Yet again, a causal relationship could however not be established. Here we show that increases in 
attentional resource allocation (i.e., reflected by the S-cluster NoGo-P2 amplitudes) facilitated response inhibition 
performance in the absence of a reward for good performance, possibly due to top-down attentional processes 
preventing the formation of automatic response tendencies (leading to lower interference effects during response 
inhibition)88. In line with this argumentation, we found smaller activity differences in the precuneus (BA 7) in 
the reward group, likely reflecting lower top-down allocation of cognitive  resources88,89. This further supports the 
notion that the larger activity difference in the control group, as compared to the reward group, may indicate a 
higher degree of top-down suppression of precuneal cue-reactivity90, leading to the observed lower interference 
effect during response  inhibition59. In the reward context, successful response inhibition of automatic response 
tendencies appeared to be related to the strength and direction of the cognitive resource allocation conflict that 
arises between controlled versus automatic response contexts (reflected by the S-cluster P2-Simon NoGo effect). 
Previous evidence suggests that the NoGo-P2 reflects perceived difficulty to inhibit an automatic response, prob-
ably due to underlying conflicts/impairments in inhibitory control  processes91. Thus, it seems that the previously 
reported P2-modulation42 is to some degree also present in the context of reward prospect for good performance, 
further underlining the importance of early resource allocation in contexts in which response inhibition in 
more automatic versus controlled contexts is required. In agreement with previous studies, increased resource 
allocation processes were recruited during response inhibition, where cognitive control demands are higher as 
compared to response selection  trials92.

The current results further suggest that the perceived pre-response conflict (which is typical for this  task26) 
and mental effort needed to generate correct responses increased when there was a reward prospect, as reflected 
in larger N2 amplitudes. Previously, a positive relationship between larger N2 amplitudes and improved response 
inhibition was  suggested93. In our study, however, rewarded individuals with larger N2 amplitudes made more 
errors and false alarms as compared to individuals from our control group. The results can be explained in the 
context of recent studies showing that the N2 is not specific to (motor) response inhibition, but arises whenever 
effort is increased (i.e., modulated by stimulus probabilities), or when a response conflict is  detected37, and there 
is a need to overcome pre-potent response tendencies, that would otherwise yield incorrect  responses36. Other 
evidence from stop signal tasks suggests that the N2 amplitude reflects successful (when compared to failed) 
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 stopping94,95. Notably, no linear relationship between behavioral performance and the differences in perceived 
response conflict prior to response selection (i.e., S-cluster N2) could be established.

It is possible that the current behavioral effects of reward prospect may have been in part due to the general 
emphasis of the reward group on speed over accuracy, leading to the observed improvements in response speed, 
but not in conflict resolution processes. Following this line or argument, larger interference effects would be 
expected in both Go and NoGo conditions. However, reward prospect only increased the magnitude of interfer-
ence effects when response inhibition was required. We therefore argue that both the speed-accuracy trade-off 
and the reward-induced enhancement of attention to the implementation of goal-directed action execution 
affected performance. This may sound counterintuitive, yet evidence suggests that reward facilitates response 
 preparation96, even before the response-indicating stimulus has been  presented97,98. In the context of the task 
at hand, high automaticity of pre-potent motor responses is detrimental, especially when response inhibition 
is required in an automatic versus controlled response context. On another account, the observed behavioral 
results may have been due to opportunity cost of time shifts in the speed-accuracy tradeoff on trials that required 
more cognitive control (i.e., the more difficult response inhibition trials), in favor of speeded but less accurate 
 responses99. Adding to this, it has been suggested that monetary reward can counteract behavioral conflict 
 adaptation16, so that a lack of conflict adaptation may have contributed to the larger interference effect during 
response inhibition in the reward context. On the one hand, the apparent speed-accuracy trade-off might have 
been an intentional decision, possibly even a reward-maximizing strategy that participants employed as they 
noticed that in a larger proportion of trials responses had to be executed rather than inhibited. This may have 
been further increased by the inherent and easier S-R mapping between reward and response execution (as 
compared to inhibition)100. On the other hand, there were no monetary losses for incorrect response selection/
omissions in the current task, which would have aided the signaling of need for adjustment of cognitive control 
processes. These factors may have equally contributed to the lack of behavioral, and conflict adaptation that 
rewarded participants showed in our study.

Conclusion
Taken together, rewarded participants responded faster, but less cautiously, leading to overall lower behavioral 
response accuracies. Importantly, our findings show that a prospect of reward for good performance further 
increased the influence of interactive effects of automatic versus controlled processes during response inhibition 
(i.e., larger Simon NoGo effect as compared to the control group), but not during response selection (i.e., no dif-
ferences in the regular Simon effect in Go trials). The reward-specific behavioral effect was reflected in distinct 
modulations of the neurophysiological data, also indicating a larger P3 Simon NoGo effect of the reward group. 
In the absence of a performance-contingent reward, but not in the reward context, attentional/resource alloca-
tion processes were found to predict the magnitude of the behavioral Simon NoGo effect. The current results 
thus underline SR-mappings as a crucial (but not sole) determinant of distinctive Simon effects during response 
inhibition. Importantly, shining light on possible underlying mechanisms of the reward-specific behavioral effect, 
the reward group showed different modulatory effects (associated with the larger P3 Simon NoGo effect) in the 
inferior frontal, parietal and somatosensory cortex. Specifically, rewarded participants showed lower activation 
differences in the rIFG, rSTG, vmPFC, NAc and precuneus. In contrast to this, the sources of the larger activa-
tion differences, compared to the control group, were the IPL and SPL. Considering the overall impeding effect 
of reward on behavioral performance, the current results add to the account of possible dysfunctional effects of 
reward incentives on cognitive and consequently on motor inhibitory performance. We further provide novel 
insights into the reward-triggered performance trade-offs and associated neuroanatomical structures.

Data availability
All study data are available upon request to Anna Helin Koyun (AnnaHelin.Koyun@ukdd.de).
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