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Adaptive parameter estimation 
for the expanded sandwich model
Guanglu Yang 1,2, Huanlong Zhang 2*, Yubao Liu 3, Qingling Sun 3 & Jianwei Qiao 3

An expanded-sandwich system is a nonlinear extended block-oriented system in which memoryless 
elements in conventional block-oriented systems are displaced by memory submodels. Expanded-
sandwich system identification has received extensive attention in recent years due to the powerful 
ability of these systems to describe actual industrial systems. This study proposes a novel recursive 
identification algorithm for an expanded-sandwich system, in which an estimator is developed on 
the basis of parameter identification error data rather than the traditional prediction error output 
information. In this scheme, a filter is introduced to extract the available system information based 
on miserly structure layout, and some intermediate variables are designed using filtered vectors. 
According to the developed intermediate variables, the parameter identification error data can be 
obtained. Thereafter, an adaptive estimator is established by integrating the identification error 
data compared with the classic adaptive estimator based on the prediction error output information. 
Thus, the design framework introduced in this research provides a new perspective for the design of 
identification algorithms. Under a general continuous excitation condition, the parameter estimation 
values can converge to the true values. Finally, experimental results and illustrative examples indicate 
the availability and usefulness of the proposed method.

In recent decades, although linear models that can describe the characteristics of an actual system have been 
developed, the ability of these systems to describe such a system with inherent nonlinear characteristics has 
been limited or even a failure1–3. Consequently, a variety of nonlinear models have been used to establish math-
ematical dynamic models for practice systems according to the requirements of users. Additionally, nonlinear 
models provide stronger representation abilities than linear models due to their nonlinear submodels. The 
block-oriented model (BOM) is one of the nonlinear models, including nonlinear sub-models4–6. By selecting 
different linear subsystems and nonlinear models, the BOM can describe the inherent characteristics of numerous 
actual systems. The traditional BOM uses memoryless elements to enhance the description ability of the model, 
but it is not ideal for an actual system with memory nonlinear characteristics. To solve the preceding problem, 
so-called expanded block-oriented models have been proposed by displacing memoryless elements based on 
memory nonlinear sub-models7,8. Among the extended BOMs, the extended sandwich model shown in Fig. 1 is 
a popular model because of its unique structure. Moreover, the extended sandwich model can establish effective 
mathematical models for numerous systems, such as stirred tank reactor systems9, optical transmitters10, medical 
surgical systems11, and servo systems12, etc. Thus, discussion of extended sandwich system identification method 
is beneficial to intuitively understand the modeling processes of actual systems and the presentation forms of 
inherent nonlinear characteristics.

Effective and novel identification schemes for the extended BOMs have been reported7,13,14. The majority of 
existing reports on extended BOM identification have mainly focused on expanded Hammerstein and expanded 
Wiener systems. Only a few published works have been conducted on the expanded Hammerstein-Wiener and 
Wiener-Hammerstein systems because these two systems are markedly challenging to system identification15–18. 
In the convergence performance aspect, Li19 proposed an improved multi-innovation gradient method for param-
eter estimations of the extended sandwich system, in which the multi-innovation length is modified to increase 
the data utilization rate, thereby enhancing the convergence rate. A least-squares method based on internal 
iteration was introduced as Vörös in20, in which the internal iteration idea produces a rapid convergence perfor-
mance. In21, Quaranta discussed the identification of an extended sandwich system with hysteresis nonlinearity 
by developing intelligent optimization algorithm. An adaptive identification scheme was investigated based on 
guaranteed performance, to reduce the convergence time. Additionally, a method with improved performance 
was proposed in22. Zhou et al.12 used a nonsmooth Kalman filter based on the nonsmooth stochastic state-space 
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equation to address noise signal, and to increase estimation accuracy. The preceding estimation methods can 
effectively achieve system identification for the extended BOMs. However, the adaptive law is mostly developed 
with prediction error output or observation error data because the identification regression form is easy to obtain. 
When noise intensity is slightly high or the estimation model is complex, prediction error data will produce 
biased estimation and minimum problems. To avoid this deficiency, we search for other error data to develop 
an adaptive law, which is the motivation of the current research. Note that the adaptive parameter estimation 
law is modified and updated according to the effective error data. If the adaptive law can be modified by the 
parameter estimation error, which is directly related to the parameter estimation process, then the estimation 
performance will be substantially improved. Therefore, we use parameter identification error data to derive an 
alternative adaptive law.

Noise coexists with system data during the process of collecting identification data. Several filters for reducing 
noise signals have been proposed23–27. A linear filter was used to obtain filtered input and output information, 
and an overparameterization scheme was proposed to recover parameter information in28. Ding29 reported an 
adaptive Kalman filter for nonlinear systems, in which the parameter and state could be effectively estimated. 
To decrease student-t-distributed noise, Wang proposed a robust filter to improve the estimation accuracy, 
and derived the Cramer-Rao bounds thereafter30. A diffusion particle filter was introduced by de Figueredo31 
to identify parameters of the unit sphere based on a network, in which the proposed algorithm outperformed 
the Kalman filter method. Subudhi used H∞ filter on the basis of a sparse model, and the error convergence 
accuracy of the identification model was improved32. The majority of the reported filters in the published papers 
can implement effective estimation under several assumptions. In applications, some of these assumptions are 
strict. Relaxing the filter assumption is an open topic, which also satisfies the requirements of practical applica-
tions. Accordingly, we propose a filter operator to obtain the beneficial identification data from contaminated 
system data.

Inspired by the related works, a novel recursive identification approach for an expanded sandwich systems 
is introduced. The main contributions of the paper are listed as follows:

	(A1)	 The introduced filter possesses a simple structure and relaxed assumptions about the considered system 
compared to those of some filters23–25.

	(A2)	 An estimation error extraction method is given based on some filtered matrices and vectors, this approach 
is different from the commonly used error construction method.

	(A3)	 A novel parameter estimation law is yielded by integrating the estimation error instead of the common 
prediction error output or observation error data7,13–19.

The remainder of this study is summarized as follows. In the next section, a brief summary of the system 
description is stated. The developed method is introduced in "Adaptive identification scheme" section. The theo-
retical analysis is described in “Convergence analysis” section. In Example verification and experiment section, 
examples are provided. The conclusion of this study is offered in the last section.

Problem statement
The expanded sandwich system shown in Fig. 1 can be described mathematically as follows:

The first linear subsystem:

The memory nonlinear submodel:

The second linear subsystem:

where A(q−1) , B(q−1) , C(q−1) and D(q−1) are polynomial with q. System input-output sequence is described 
by {u(t), y(t)} , the internal signals are denoted by v(t) and x(t), respectively. e(t) is an addition noise sequence. 
kl and kr are two slopes, bl and br be the intersections with the signal x(t) axis. q−1 be unit delay operator with 
q−1x(t) = x(t − 1) , A(q−1) , B(q−1) , C(q−1) and D(q−1) are given by

(1)B(q−1)x(t) = A(q−1)u(t),

(2)v(t) =

{
kl(x(t)+ bl) if x(t) < xl
v(t − 1) if xl ≤ x(t) ≤ xr
kr(x(t)− br) if x(t) < xr ,

(3)xl =v(t)/kl − bl , xr = v(t)/kr + br ,

(4)D(q−1)y(t) = C(q−1)v(t)+ e(t),

Figure 1.   Extended sandwich model.
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Assumption 1  The two linear subsystems are stable.

Assumption 2  The limited degrees m, n, z, w are set by user, the constants ai , bj , cj,di are unknown.

Assumption 3  The addition noise and input signal are independent.

Assumption 4  The initial states of the system are assumed to be zero.

Assumption 5  The system can be fully excited by selecting the input signal.

Assumption 6  The constants a1 = 1, c1 = 1 are set.

The working conditions of linear subsystems are shown in Assumption 1. Assumption 2 displays the system 
order information and the estimated parameter information. The noise assumption condition is described in 
Assumption 3. Assumption 4 indicates that the considered system is memoryless before identification data are 
collected. Assumption 5 shows the basic condition for system identifiability. In Assumption 6, a model unique-
ness condition is provided33.

As shown in Eq. (2), the memory block has backlash nonlinearity. The backlash characteristic widely exists in 
various pieces of mechanical equipment due to the presence of gears34,35. Hence, we use the backlash submodel 
to represent memory nonlinearity. The linear expression of backlash nonlinearity can be defined as in36,37

where

where g1(t) and g2(t) are used to describe the three branching mapping conditions, R(t) denotes a switching 
function.

Based on (1), (3) and (6), the compact formal identification model is described as

where the observation data is provided by
ξ(t) = [g1(t−1)u(t−2), · · · , g1(t−1)u(t−m−1),−g1(t−1)x(t−2), · · · ,−g1(t−1)x(t−n−1), g1(t−1),

g2(t−1)x(t−1),−g2(t−1), v(t−2)[1−g1(t−1)][1−g2(t−1)], v(t−2), · · · , v(t−z),−y(t−1), · · · ,−y(t−w)]T,
and the estimated parameter variable is written as
� = [klc1a1, · · · , klc1am, klc1b1, · · · , klc1bn, klc1bl , krc1, krbrc1, c1, · · · , cz , d1, · · · , dw]

T.

R e m a r k  1   A c c o r d i n g  t o  A s s u m p t i o n  6 ,  �  i s  t r a n s f o r m e d  i n t o 
� = [kl , · · · , klam, klb1, · · · , klbn, klbl , kr , krbr , 1, · · · , cz , d1, · · · , dw]

T . By using simple mathematical opera-
tions, the each estimated parameter can be obtained.

This research aims to develop an adaptive recursive identification method for an expanded sandwich system, 
investigate the convergence performance of the method from a theory perspective, and examine the efficiency of 
the developed method by using some examples to compare it with the existing identification methods.

Adaptive identification scheme
This section introduces a recursive estimation approach for the system considered in “Problem statement” sec-
tion, and compared with the classic recursive method, this paper provides an alternative estimation algorithm 
design. To ensure the integrity of the paper, Fig. 2 shows the flow chart of the developed method. First, a filter 
operator is introduced to yield the filtered identification information. Second, on the basis of the introduced 
filtered variables, identification error information is obtained. Finally, by using the error information of the 

(5)





A(q−1) = a1q
−1 + a2q

−2 + · · · + amq
−m,

B(q−1) = 1+ b1q
−1 + · · · + bnq

−n,

C(q−1) = c1q
−1 + c2q

−2 + · · · + csq
−z ,

D(q−1) = 1+ d1q
−1 + · · · + dwq

−w .

(6)
v(t) =klx(t)g1(t)+ klblg1(t)+ krx(t)g2(t)− krbrg2(t)

+ v(t − 1)g1(t)g2(t)+ v(t − 1)− g1(t)v(t − 1)

− g2(t)v(t − 1),

(7)
{
g1(t) = R[x(t)− xl]

g2(t) = R[xr − x(t)],

(8)R(t) =

{
0 t > 0,

1 t ≤ 0,

(9)y(t) = �Tξ(t)+ e(t),
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parameter identification process, a new adaptive law for parameter estimation can be developed, wherein the 
structure of a novel estimation method is given by using parameter error information rather than the popularly 
utilized prediction error output information.

A filter operator is introduced to relieve the above assumption and restrain the influence of noise. For this rea-
son, observation and output data need to be filtered. Meanwhile, defining the filtered data yǫ(t) and ξǫ(t) , it yields

where the constant α with simple form describes the filter operator. yǫ(0) = 0.001 , ξǫ(0) = 0.001.
To avoid the weakness of the prediction error output or observation error data, we use the estimation error 

data to develop a new adaptive law. To this end, we need to introduce a method for extracting estimation error 
data from the observed system data. By defining the intermediate variables �(t) and �(t) , we have

where the forgetting coefficient is denoted by γ (t) . �(0) = 0.001 , �(0) = 0.001.

Remark 2  The filter operator α with miserly form can obtain filtered data, thereby simplifying the filter design. 
The forgetting coefficient γ (t) improves the availability of identification data, to avoid the so-called data flooding 
phenomenon and enhance the convergence rate of the method.

Based on (12)–(13), the auxiliary variable �(t) is defined by using the following form

where �̂(t) denotes the estimated value of �(t).
Define the identification error �̃(t − 1) , �̃(t − 1) = �− �̂(t − 1) , (15) can be rewritten from (12)–(13) as 

follows

where ε(t) = −eǫ(t)ξ
T
ǫ (t)/(1+ γ (t)) , eǫ(t) is filtered variable of e(t).

Remark 3  The majority of adaptive parameter laws are induced based on the prediction error output or obser-
vation error data. The reason for this is that the accessibility of these two types of error data, which leads to an 
adaptive update law, is corrected by using information indirectly that is related to the parameter error. When 
the parameter estimation error is used to modify the adaptive law, the parameter estimation process achieves 
superior performance because the estimation error is directly related to the parameter estimation. This result is 
consistent with the principle of using feedback error data to correct the actual error.

(10)yǫ(t) =
α

α + 1
yǫ(t − 1)+

1

α + 1
y(t),

(11)ξǫ(t) =
α

α + 1
ξǫ(t − 1)+

1

α + 1
ξ(t),

(12)�(t) =
1

1+ γ (t)
�(t − 1)+

1

1+ γ (t)
ξǫ(t)ξ

T
ǫ (t),

(13)�(t)=
1

1+ γ (t)
yǫ(t)ξ

−1
ǫ (t)�(t − 1)+

yǫ(t)ξ
T
ǫ (t)

1+ γ (t)
,

(14)γ (t) =e−τ t/(1+ e−τ t)2, τ > 0,

(15)�(t) = �̂T (t − 1)�(t)−�(t),

(16)�(t) = −�̃T (t − 1)�(t)+ ε(t),

Figure 2.   Flow chart of developed method.
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As stated in Remark 3, the estimation error data can enhance the identification behaviour. Thus, the follow-
ing adaptive law is written

To achieve the operability of online implementation, the modified gain Ŵ(t) with recursive form is designed. 
Based on the system data �(t) , the expression of Ŵ(t) is given as

where E represents unit matrix with appropriate dimension.

Remark 4  From (16), we define �(t) as an extended identification error variable because the estimation error 
�̂(t − 1) is integrated into �(t) . Thereafter, the identification error variable is used to construct an adaptive 
update law, in which a new perspective for designing an estimation method by using parameter error data is 
shown and compared with the classic identification scheme. The recursive modified gain Ŵ(t) improves the 
efficiency of the online operation, and the speed of the parameter update process in comparison with that of the 
common constant gain.

It can be observed from Fig. 1, x(t) and v(t) are immeasurable. We need to address these unmeasured variables 
to obtain an effective parameter estimation using the developed method. One solution based on the original 
system is to design reference models38–40 specifically by using the reference model output data to substitute 
for the unmeasured x(t) and v(t), as shown in Fig. 3. Thereafter, the reference models of xax(t) and vax(t) are 
described as follows

Next, the convergence of the developed method is introduced from theoretical analysis perspective.

Convergence analysis
This section will introduce the convergence analysis of the proposed estimation approach. Firstly, we establish an 
extended Lyapunov function based on error data. Secondly, we use the martingale difference convergence theo-
rem and scaling principle to gradually deduce the estimation error expression. Lastly, when the time approaches 
infinity, it is verified whether or not the estimation error approaches zero.

Theorem 1  It is assumed that {ε(t),Ft} is martingale difference sequence, {Ft} is produced by using the observa-
tion data when 0 ≤ t ′ ≤ t . ε(t) satisfies the conditions41

(F1) E[ε(t)|Ft−1] = 0,

(F2) E[ε2(t)|Ft−1] ≤ σ 2
ε < ∞,

(F3) α0In ≤ 1/t
∑t

i=1 �(i)�T (i) ≤ α1In , α0 > 0,α1 > 0

(17)�̂(t) = �̂(t − 1)− Ŵ(t)�(t)�T (t).

(18)Ŵ(t) = Ŵ(t − 1)−
Ŵ(t − 1)�(t)�T (t)Ŵ(t − 1)

E +�T (t)Ŵ(t − 1)�(t)
,

(19)
xax(t) = −b̂1xax(t − 1)−, · · · ,−b̂nxax(t − n)+ â1u(t − 1)

+, · · · ,+âmu(t −m),

(20)
vax(t) =k̂lxax(t)g1(t)+ k̂lblg1(t)+ k̂rxax(t)g2(t)− k̂rbrg2(t)

+ vax(t − 1)g1(t)g2(t)+ vax(t − 1)− g1(t)vax(t − 1)

− g2(t)vax(t − 1).

Figure 3.   Expanded sandwich system with reference model.
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Then, the error obtained by the proposed method converges to zero, i.e.,

Proof  By subtracting � at both ends of (17), it obtains

where �̃(t) is defined by �̃(t) = �̃T (t − 1)�(t).
To analyse the convergence of estimation error, define X(t) = �̃T (t)Ŵ−1(t)�̃(t) , by substituting (21) into 

X(t), it yields

By applying matrix inversion theory to (18), the following inequality holds

According to (23), (22) has

By using the martingale convergence theorem to (24) and combining (F1)–(F2), the following expression is 
derived

where the conditional expectation is described by E(· | ·).
Continuing with the following derivation, define H(t) = X(t)

[ln |Ŵ−1(t)|]ρ
, ρ > 1 , it yields

Based on martingale theorem, H(t) has the following expression

where the finite random variable is denoted by H0.
(27) can be rewritten as

where the large variable is given as κ.

lim
t→∞

��̃(t)� = ��̂(t)−��2 = 0

(21)�̃(t) = �̃(t − 1)+ Ŵ(t)�(t)[−�̃(t)+ ε(t)],

(22)

X(t) =[�̃(t − 1)+Ŵ(t)�(t)(−�̃(t)+ε(t))]TŴ−1(t)

× [�̃(t − 1)+ Ŵ(t)�(t)(−�̃(t)+ ε(t))]

=�̃T (t − 1)Ŵ−1(t)�̃(t − 1)+2�̃T (t − 1)�(t)

× (−�̃(t)+ε(t))+�T (t)Ŵ(t)�(t)(−�̃(t)+ε(t))2

=X(t − 1)− �̃2(t)+ 2�̃(t)ε(t)+�T (t)Ŵ(t)

×�(t)�̃2(t)+�T (t)Ŵ(t)�(t)ε2(t)

− 2�T (t)Ŵ(t)�(t)�̃(t)ε(t)

=X(t − 1)− [1−�T (t)Ŵ(t)�(t)]�̃2(t)

+ 2[1−�T (t)Ŵ(t)�(t)]�̃(t)ε(t)+�T (t)Ŵ(t)

×�(t)ε2(t).

(23)

1−�T (t)Ŵ(t)�(t) =1−�T (t)[Ŵ(t − 1)

−
Ŵ(t − 1)�(t)�T (t)Ŵ(t − 1)

E +�T (t)Ŵ(t − 1)�(t)
]

×�(t)

=1−
�T (t)Ŵ(t − 1)�(t)

E +�T (t)Ŵ(t − 1)�(t)
]

=
E

E +�T (t)Ŵ(t − 1)�(t)
> 0.

(24)
X(t) ≤X(t − 1)+�T (t)Ŵ(t)�(t)ε2(t)

+ 2[1−�T (t)Ŵ(t)�(t)]�̃(t)ε(t).

(25)E[X(t)|Ft−1] ≤ X(t − 1)+ 2�T (t)Ŵ(t)�(t)σ 2
ε ,

(26)
E[H(t)|Ft−1] ≤

X(t − 1)

[ln |Ŵ−1(t)|]ρ
+

�T (t)Ŵ(t)�(t)σ 2
ε

[ln |Ŵ−1(t)|]ρ

≤ H(t − 1)+
�T (t)Ŵ(t)�(t)σ 2

ε

[ln |Ŵ−1(t)|]ρ
.

(27)H(t) =
X(t)

[ln |Ŵ−1(t)|]ρ
→ H0 < ∞, a.s.

(28)X(t) ≤ κ[ln |Ŵ−1(t)|]ρ , a.s., t → ∞,
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By using the definition of X(t), �̃(t) has

where the minimum eigenvalue is denoted by �min[·] , the matrix trace is described by tr(·).
By using (F3) and (18), the following inequalities hold

where Ŵ−1(0) describes a finite initial value.
By substituting (30)–(31) into (29), it obtains

	�  �

The proof of Theorem 1 is finished.

Example verification and experiment
This section applies the considered identification schemes to estimate the extended sandwich system. The com-
parison methods in this paper are chosen based on the prediction error method because such approach methods 
(e.g, least square type and gradient type) are the most widely used identification schemes in system identification 
community. As stated in the introduction, the purpose of this paper is to design an alternative identification 
algorithm to improve upon the shortcomings of prediction error methods. Hence, we choose the identification 
algorithms based on the prediction error method as the comparison schemes.

Illustrative example.  The extended sandwich system is listed as follows:
The first linear subsystem:

The backlash nonlinear submodel:

The second linear subsystem:

where the expected values of the above system parameter are a1 = 1 , a2 = 0.35 , b1 = 0.5 , b2 = 0.45 , kl = kr = 0.8 , 
bl = br = 0.2 , c1 = 1 , c2 = 0.1 , d1 = 0.4 , d2 = 0.3 . In this paper, we propose a recursive identification framework 
to obtain the parameter information.

The considered system is excited using a random signal with zero mean and unit variable. The system data 
are contaminated by using a white noise with zero mean and finite variable. The multi-innovation stochastic 
gradient (MI-SG) in39 and the extended recursive identification algorithm (E-RIA)42 are chosen as two com-
parison methods.

To guarantee the parameter estimation implementation process, the initial parameters of the considered 
estimation methods are provided.

1.	 P r o p o s e d  m e t h o d :  α = 2   ,  γ (0) = 0.95   ,  τ = 3   , 
Ŵ(0) = 200 ∗ diag([0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01])T , θ̂ (0) = I/p0, p0 = 103 ,  xax(0) = 0.001 , 
vax(0) = 0.001 , N = 800.

2.	 E-RIA: θ̂ (0) = I/p0, p0 = 103 , xax(0) = 0.001 , vax(0) = 0.001 , N = 800 , µ(0) = 0.9,ρ(0) = 0.95.
3.	 MI-SG: �̂(0) = I/p0, p0 = 103 , r = 1 , xax(0) = 0.001 , p = 6 , vax(0) = 0.001 , N = 800

Figures 4, 5 and 6 provide the estimation profiles of the parameter identification results obtained by the three 
estimators. Note that the estimated parameters immediately and sharply tend toward the desired values as the 
samples are fed into the estimators. Additionally, the estimated values converge to the desired parameters as the 
data length reaches the preset sample length. It is also intuitive that the parameter estimation performance of 
the developed method yields better convergence than MI-SG and E-RIA. In Fig. 7, the parameter identification 
curves are shown, in which when the sample increases, all estimation errors decrease gradually, thereby show-
ing that the three identification methods can realise the system’s parameter estimation. The developed method 
uses minimal time to approach the real value, and its result can be close to the real value, thereby showing the 
advantage of the developed algorithm.

(29)��̃(t)�2 ≤
κ[ln |Ŵ−1(t)|]ρ

�min[Ŵ−1(t)]
≤

κ[ln |tr(Ŵ−1(t))|]ρ

�min[Ŵ−1(t)]
,

(30)tr(Ŵ−1(t)) ≤ nα1t + nŴ−1(0),

(31)�min[Ŵ
−1(t)] ≥ α0t,

(32)lim
t→∞

��̂(t)−��2 ≤ lim
t→∞

κ[n ln(nα1t + nŴ−1(0))]ρ

α0t
= 0, a.s..

(1+ b1q
−1 + b2q

−2)x(t) = (a1q
−1 + a2q

−2)u(t)

v(t) =

{
kl(x(t)+ bl) if x(t) < xl
v(t − 1) if xl ≤ x(t) ≤ xr
kr(x(t)− br) if x(t) < xr

(33)(1+ d1q
−1 + d2q

−2)y(t) = (c1q
−1 + c2q

−2)v(t)+ e(t)
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One criterion for judging the rationality of an estimation model is to verify whether the estimation model 
output can effectively track the actual system output performance. The model output and actual system output are 
presented in Figs. 8 and 9, respectively. Note that the estimation models obtained based on the three estimators 
can track the real output,thereby demonstrating the effectiveness of MI-SG, E-RIA and the proposed approach. 
The smallest output error can be obtained by the developed method in comparison to those of MI-SG and E-RIA, 
in which the superiority of the designed scheme in "Adaptive identification scheme" section is demonstrated. 
The estimation errors with monte-carlo method are shown in Fig. 10. Note that in 100 independent tests, the 
estimation error curve fluctuates within a small range without large fluctuations, thereby validating the stability 
of the proposed method.

Experiment.  As described in Fig. 11, a servo manipulator system is used to test the usefulness of the devel-
oped algorithm. A permanent magnet synchronous motor drives the skew-wheel, and which drives the manipu-
lator thereafter to move according to a given trajectory. The platform consists of a permanent magnet synchro-
nous motor (ZLAC60ASM200), a digital signal processing (TMS320F2809), and an encoder (HF154S-A48), etc. 
The given signal is chosen as yd = 2 sin(1/3π t).

The system is described as

where θ1 = −K2

J ,θ2 = K1

J  , θ3 = Tc
J  , θ4 = B

J  , x = [x1, x2]
T = [d, ḋ]T . d and ḋ represents the angular position and 

velocity.
The identification results are displayed in Fig.12, in which the estimated parameters fluctuate rapidly in the 

beginning of the parameter estimation. With increase in time, the estimated parameter curves tend to have sta-
tionary values. The developed scheme has fast convergence performance because the proposed algorithm can 
approach the stationary value in the shortest amount of time. The tracking performance and output error curves 
are described in Figs. 13 and 14, respectively. The three tested estimation models can represent the dynamics of 
the actual system output, indicating that MI-SG, E-RIA and the developed approach can effectively identify the 

{
ẋ1 = x2
ẋ2 = θ1x2 + θ2u− θ3sign(x2)− θ4x2)

Figure 4.   Comparison parameter estimations for first linear subsystem.
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parameters of the servo manipulator system. The tracking error results show the advantages of the developed 
algorithm because of the minimum tracking output error.

Quantitative analysis can further verify the effectiveness of the proposed algorithm. By using the model output 
error data, some performance indicators are provided.

1.	 Root Mean Square, RMS =

√
1
L′
∑L′

j=1 e(j)
2,

2.	 Prediction Error Mean, PEM = 1
L′
∑L′

j=1 e(j),

where predicted output length is described by L′ , e(j) = y(j)− ŷ(j).
Based on the model output error data and performance indicators, the calculated indicator results are listed in 

Table.1. It can be seen that the indictors provided by the three estimation methods have small values. It indicates 
that the three considered estimation methods can achieve effective parameter estimation for an actual system. 
However, the developed algorithm has smaller values than the MI-SG, E-RIA methods, demonstrating excellent 
identification performance compared with that of the other two estimators.

Conclusion
This study presents an optional identification structure for an expanded sandwich system using identification 
error data. This research allows us to use other errors to design adaptive parameter laws instead of prediction or 
observation errors. System data can be efficiently used based on the developed filter technology and forgetting 
coefficient, in which the utilization rate of new data in each recursive step is higher than that of old data. The 
usefulness and effectiveness of the developed algorithm have been demonstrated by using a numerical exam-
ple and an experiment conducted on a servo manipulator system. In particular, the parameter identification 
error convergence performance can be shown from a theoretical perspective by using the martingale difference 

Figure 5.   Comparison parameter estimations for backlash.
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convergence theorem. In future work, we will extend the proposed scheme to the identification of other systems, 
such as extended Hammerstein-Wiener systems, bilinear systems and linear systems with varying parameter, etc.

Figure 6.   Comparison parameter estimations for second linear subsystem.

Figure 7.   Comparison parameter estimation errors.
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Figure 8.   Established model outputs.

Figure 9.   Output errors.
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Figure 10.   Estimation errors with Monte Carlo method.

Figure 11.   Servo drive system.
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Figure 12.   Parameter estimation profiles.

Figure 13.   Tracking performance.
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