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Imagery in the entropic associative 
memory
Luis A. Pineda 1* & Rafael Morales 2

The Entropic Associative Memory is a novel declarative and distributed computational model of 
associative memory. The model is general, conceptually simple, and offers an alternative to models 
developed within the artificial neural networks paradigm. The memory uses a standard table as 
its medium, where the information is stored in an indeterminate form, and the entropy plays a 
functional and operation role. The memory register operation abstracts the input cue with the 
current memory content and is productive; memory recognition is performed through a logical test; 
and memory retrieval is constructive. The three operations can be performed in parallel using very 
few computing resources. In our previous work we explored the auto-associative properties of the 
memory and performed experiments to store, recognize and retrieve manuscript digits and letters 
with complete and incomplete cues, and also to recognize and learn phones, with satisfactory results. 
In such experiments a designated memory register was used to store all the objects of the same class, 
whereas in the present study we remove such restriction and use a single memory register to store 
all the objects in the domain. In this novel setting we explore the production of emerging objects 
and relations, such that cues are used not only to retrieve remembered objects, but also related and 
imaged objects, and to produce association chains. The present model supports the view that memory 
and classification are independent functions both conceptually and architecturally. The memory 
system can store images of the different modalities of perception and action, possibly multimodal, 
and offers a novel perspective on the imagery debate and computational models of declarative 
memory.

The Entropic Associative Memory (EAM)1–3 is a novel computational memory model in which functions rep-
resenting arbitrary concrete or abstract objects are stored in a bi-dimensional array or table, called Associative 
Memory Register (AMR), which is used as the representational medium. The columns and the rows stand for 
the arguments and their values, respectively, and the functional relation is represented by filling up the cell at 
the corresponding intersection, for all the columns. Hence, every object is stored by marking up one cell of 
each column in the AMR, and can be thought of as a memory trace. In this section we illustrate intuitively the 
structure and functionality of the model; its evolution from its original presentation; and state the goals and 
experiments of the present investigation.

Intuitive illustration of the EAM model.  The EAM model defines three memory operations in relation 
to a cue, which are called �-register, η-recognition and β-retrieval. The functions representing the inputs and the 
outputs are placed on another table, called the auxiliary register, with the same dimensions of the AMR. The �
-register is defined as the logical disjunction1,2 or the addition3 between the value of each cell in the auxiliary 
register and the value of the corresponding cell in the AMR; the η-recognition is defined through the logical 
material implication between the cells in the auxiliary register and the corresponding cells in the AMR, so the 
operation is true if the cue is included in the memory and false otherwise; and the β-retrieval selects a row of 
the AMR that corresponds to the value of the retrieved object, for all the cells used by the cue. These operations 
are illustrated diagrammatically in Figs. 1, 2 and 3. The �-register and η-recognition operations are cell-to-cell 
operations and can be performed in parallel if the appropriate hardware is provided. Likewise, β-retrieval is a 
column-to-column operation that can also be performed in parallel.

The functions that are input to and output from the memory constitute abstract amodal representations of 
the stored modality-specific concrete images. These are placed in input and output buffers, such as pixel buffers 
in the case of visual images1,2 and MFCC vectors in the case of phonetic information3. Such concrete images are 
mapped into their corresponding functions and vice versa through a coder and a decoder, respectively. The output 
of the coder and the input to the decoder are real values, but they are sampled into discrete levels that correspond 
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to the number of rows of the AMR. The whole of the memory system includes three representational levels: the 
first or bottom level in which the input and output concrete images are represented; the second or intermediate 
level where their corresponding abstract amodal representations as finite discrete functions with discrete values 
are placed; and the third or top level where the distributed representation is stored in the AMR. The three levels 
of representation are illustrated in Fig. 4. The image is a piece of clothing taken from the Fashion-MNIST data 
set4, as explained below.

Evolution of the EAM model.  The basic EAM1,2 uses AMRs with boolean values. The �-register and the η
-recognition operation are implemented directly with the logical inclusive disjunction and the material implica-
tion between cells of the auxiliary register holding the cue and the corresponding cells of the AMR, respectively. 
In addition to the overtly input cues, the distributed representation allows for the emergence of new functions or 
memory traces conformed by combinations of cells whose value is 1 by taking one cell of each column at a time. 

Figure 1.   Illustration of the �-register operation. The function {(a1, v3), (a2, v1), (a3, v6), (a4, v7)} representing 
the cue is placed in table format in the auxiliart register (Aux-Reg) and then registered in a the Associative 
Memory Register (AMR) which already has some content at the state t. The value of each cell used by the cue is 
added to its corresponding cell in the AMR at state t yielding the state t + 1.

Figure 2.   Illustration of the η-recognition operation. In the top diagram the cue is accepted as all the cells of the 
AMR corresponding to the cells used by the cue in the auxiliary register have weights different from zero. The 
result of the operation is shown in the auxiliary register at state t + 1 at the right, in which all cells have a value 
of 1—for clarity only the cells used by the cue are shown. The bottom diagram shows the opposite case in which 
the cue is rejected, as there are cells in the AMR corresponding to cells used by the cue whose values are zero. 
The result of the operation is shown in the auxiliary register at state t + 1 in which the value of one cell is zero.

Figure 3.   Illustration of the β-retrieval Operations. Each column of the auxiliary register is considered a 
normal probability distribution centered at the actual cell used by the cue, with standard deviation σ , which is a 
parameter of the operation. The columns of the AMR are also considered probability distributions, and the value 
retrieved for each column of the AMR is selected randomly from the product of the distribution representing 
the cue and the distribution of the AMR’s corresponding column.
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The emerging objects can be thought of as representations of potential objects related to the cues, and can be 
used for recognizing novel inputs and for constructing novel outputs. However, it is not possible to distinguish 
the overtly registered functions from the emerging ones, and the representation is indeterminate. Indeterminacy 
is measured with the entropy, and the memory has an entropy value at each state. Let νi be the number of non-
zero cells in column i; if there are not cells with value 1 then νi = 1 . The entropy ei of the column i is log2νi . The 
entropy e of the AMR is the average entropy of all columns. The number of functions stored at any given state in 
the AMR is the number of combinations that can be formed by selecting a cell whose value is 1 for each column 
at a time. Hence, the number of functions included in an AMR is 

∏n
i=1 νi where n is the number of columns. 

However, this also the average number of marked cells of all columns to the power of the number of columns. 
Hence, 

∏n
i=1 νi = (2e)n = 2en . This number is very large even for a small value of the entropy and a moderate 

number of columns, and allows for the construction of memories with a very large capacity and yet requiring a 
very limited amount of computing resources.

The β-retrieval operation constructs a novel object if the cue is accepted. For this, each column of the AMR 
is considered a probability distribution of the cells with non-zero values, and the cue is modeled as a triangular 
distribution centered in the cue’s actual value, for each column. The value retrieved for each argument is produced 
randomly from the product of the distribution representing the cue and the distribution of the column. Cues 
are determinate, even if they are incomplete, and β-retrieval produces determinate objects out of the cue and 
the indeterminate “memory mass”. The level of indeterminacy gives rise to the entropy trade-off: if the entropy 
is low the precision of the memory recognition and retrieval operations is high but the recall is low; conversely, 
if the entropy is high or very high, the recall is higher but the precision lowers; however, there is a range of 
moderate entropy values in which the precision and the recall are both high, and the memory has a satisfactory 
performance.

The basic EAM was used to store, recognize and retrieve reconstructions of objects using complete and 
severely occluded cues—e.g., manuscript digits1 and manuscript capital and lower-case letters2. A designated 
AMR was used for storing objects of the same class and cues were presented and recovered from all the AMRs, 
but memory register or learning was supervised. In such a setting cues are often accepted by more than one 
AMR and a system’s level mechanism to decide the right class of the stored object was defined, in addition to the 
basic memory operations. Such mechanism was simply to select the object produced by the AMR whose entropy 
was the lowest. Such architecture also required that the whole memory were constituted by a number of AMR 
using mutually exclusive local memory regions. However, we also showed that objects of different classes could 
be stored in the same memory register without degrading the performance of the system but at the expense of a 
small increment of the entropy. For instance, instead of using 10 memory registers to store the 10 digits we used 
only 5 registers, each including two digits, so the memory could retrieve a digit of one kind cued by a digit of a 
different kind1; and instead of storing all capital and lower case letters using 47 memory registers, we collapsed 
capital and lower case letters with different shapes into the same register, reducing the number of memory reg-
isters to 36, and the system could retrieve a capital letter cued by a lower-case one and vice versa2.

The next step in our research program was to introduce weights to the cells according to their frequency of 
use. This addition gave rise to the weighted model W-EAM3. In the new version the �-register operation was 
defined as the arithmetic sum of the value of the cell used by the cue in the auxiliary register, which is 1, and the 

Figure 4.   Illustration of the levels of representation. The lower representational level is constituted by modality-
specific buffers that hold the input and output cues, in the present case pieces of clothing of the Fashion-NMIST 
Corpus. The input concrete images are mapped by the coder into functions whose arguments correspond to 
the columns of the AMRs. These functions constitute abstract amodal representations of the input images at 
the second or intermediate level of representation. The functions are mapped back into their corresponding 
concrete images by the decoder. The quantized functions are the objects that are the subject of the memory 
operations and are included in the distributed representation at the top level.
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current value of its corresponding cell in the AMR, for all cells used by the cue. The operation reinforces all the 
cells used by the registered cue simultaneously and can be considered a form of Hebb’s learning rule. The entropy 
of each column becomes Shannon’s entropy directly, and the entropy of the memory as a whole is the average 
entropy of all the columns3. The number of functions or units of content held in the memory at any state, both 
overt and emerging, is still 2en but corresponds to the functions that are likely to be recovered according to the 
indeterminate state of the memory rather than the total number of functions that can be constructed using all 
cells with non-zero values.

The weights of the W-EAM version allow to model the sensitivity of the memory and the strength of a cue. 
For this we introduced three parameters in the definition of the η-recognition operation called ι , κ and ξ . The 
parameter ι modulates the minimum weight that a cell of the AMR must have to be considered on; κ controls the 
minimum average weight of the cells of the AMR hit by the cue, designed ρ , needed for the cue to be accepted. 
Large values of these parameters make harder that marginal cues are accepted, preventing false positives. How-
ever, this condition may be too strict and produce false negatives. This constraint is relaxed with the incorpora-
tion of the parameter ξ stating that a number of columns may fail to accept a cue, and yet the cue as a whole is 
accepted. In this setting a cue may be accepted by more than one AMR and the system level selection mechanism 
chooses the object accepted by the AMR with the lowest value of the product of the entropy and 1/ρ . The impact 
of these parameters is explored in the W-EAM model3; however, they are not the focus of the present study 
and in the experiments we use their default values, which impose no constraint to the η-recognition operation. 
In the W-EAM model the cue is modeled with a normal probability distribution with standard deviation σm
—where σ is a parameter of the operation and m is the number of rows—centered at its actual value, for each 
column, such that the object constructed by the β-retrieval operation is selected randomly from the product of 
the distribution representing the cue and the distribution of the corresponding column. Hence, the parameter 
σ models the degree of indeterminacy that is allowed in the construction. If σ = 0 the cue selects its own value 
and the memory becomes reproductive or photographic. The W-EAM was applied to store and learn Mexican 
Spanish phonetic information with satisfactory results, showing that the memory can store speech images in 
addition to the visual images studied in the initial experiments.

Remembering variability and association chains.  In this paper we take to the limit the capability of 
AMRs of overlapping arbitrary objects and use only one AMR to store all the objects of all classes. The resulting 
memory architecture overcomes the problem of partitioning the memory in local regions, optimizes the use 
of the medium, and learning is now unsupervised. The model demarcates explicitly the memory proper—all 
objects are stored in the medium independently of their classes—from the classifier, which operates on the input 
and output cues, and the memory and the classifier are independent modules, conceptually and architecturally. 
Objects are recognized and recovered in relation to complete or partial cues, and cues of one class can retrieve 
related objects of a different class, establishing genuine association chains. We consider that the act of remem-
bering is performed in relation to a context, and that agents have an intent when retrieving information from 
memory, and may focus on remembering objects, but also on retrieving objects related to the cue, or even on 
imagining novel objects. Here, we model such functionality by modulating the parameter σ of the β-retrieval 
operation, that controls the similarity of the rendered object in relation to the input cue. Lower values of σ result 
on remembering, and the lower the value, the more reproductive the recollection; moderate values are oriented 
to recover objects related to the cue, perhaps of a different class, allowing the production of association chains; 
and large values allow the retrieval of objects that are rather different from the cue, may be assigned a different 
class, possible faint and vague, and yet can have an interpretation, which are referred to here as imaged objects.

The present extension of the theory has been tested using the Fashion-MNIST data set4 through five experi-
ments, as follows: 

1.	 Experiment 1 Determine the optimal size of the memory register for the domain.
2.	 Experiment 2 Determine the performance of the memory retrieval operation; illustrate objects recovered from 

the memory using complete cues of all 10 classes of Fashion-MNIST, for different values of the parameter σ.
3.	 Experiment 3 Repeat (2) but using incomplete cues in the memory retrieval operations.
4.	 Experiment 4 Produce association chains on the basis of complete cues; in this scenario the object recovered 

from the initial memory retrieval operation is used as the cue to a new retrieval operation, and the process 
is repeated recurrently.

5.	 Experiment 5 Repeat (4) using incomplete cues to initiate the association chains.

The rest of this paper is structured as follows: in the second section we discuss the properties of associative memo-
ries and place the model in relation to the literature of the field; in the third we present the formal specification of 
the memory operations and in the fourth the system’s architecture, as well as the corpus used in the experiments; 
then we present the experiments and results and conclude with the general discussion.

Properties of associative memories and related work
Computational models of associative memory have a number of properties that allow their characterization—
although there is no universal agreement on their definition and scope. In the present framework these are 
understood as follows: 
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	 1.	 Associative The memory operations are performed relative to a cue. Associative memories are accessed by 
content and oppose memory systems that use memory registers with addresses, as the standard Random 
Access Memories (RAM) of digital computers.

	 2.	 Distributed The units of the memory medium can be used to store different concepts or units of content 
at the same time, and each unit of content can share units of the medium with other units of content. This 
is, the relation between the units of the medium and the units of content is many-to-many5. Hence, in dis-
tributed memories, different units of content can “overlapp” on the medium. This property opposes local 
memories in which memory locations or regions of the medium are mutually exclusive partitions, each 
assigned to store a specific content, such as standard RAM memories, or systems in which every unit of 
content is located at a particular region in some abstract space that does not intersect with other regions 
in such space.

	 3.	 Declarative The information is registered, recognized and retrieved through direct manipulations on the 
medium using very simple algorithms, which always terminate, and involve no search. Writing and read-
ing information in RAM registers are declarative operations. This property opposes procedural memories 
which are trained, usually involving complex algorithms and very large numerical matrices. While objects 
in declarative memories are remembered, information in procedural memories is deployed. This opposition 
differs from the traditional distinction between symbolic representations—which are normally assumed 
as local—versus sub-symbolic—which are assumed as distributed—and allows for symbolic distributed 
representations.

	 4.	 Abstractive The memory register operations makes an abstraction of the cue and the whole of the memory 
content, and produces a new state of the memory holding such abstraction.

	 5.	 Productive There are interactions between the units of content explicitly input through the memory register 
operation, from which novel units emerge. These units allow the recognition of variants of the registered 
inputs and even of novel inputs, and the construction of novel outputs, but also may cause the production 
of false memories.

	 6.	 Determinate Specific units of information have a clear demarcation within the medium and can be identi-
fied by inspection directly; this property opposes indeterminate memories in which the units are inter-
twined within the memory medium or the representation space and their identity within the medium is 
dissolved.

	 7.	 Entropic Indeterminate memories have an amount of entropy; the larger the entropy the larger the inde-
terminacy; conversely, the entropy of a fully determinate memory is zero.

	 8.	 Direct rejection Cues not included in the memory are rejected through a direct test without search. This is 
a natural property of human memory, which poses a strong challenge to memory theories6–9. Systems that 
never reject a cue may retrieve its most similar object within the memory, but such object is a false posi-
tive in a strict sense. If rejection does occur, a form of the so-called Closed-World Assumption (CWA) of 
knowledge-based system, to the effect that if a proposition cannot be proven is considered false, is adopted 
implicitly10. However, the CWA only holds if the stored knowledge is complete, in the sense that there are 
not facts in the world that falsify the system’s response. In the memory setting, the assumption is that if the 
search process fails, the sought object is not included in the memory; however, this only holds if the cue 
is searched exhaustive, which is implausible if the memory is very large. In addition, whether the search 
process terminates cannot be predicted in the most general case due to the halting problem11.

	 9.	 Constructive The objects produced by the memory retrieval operation are dynamic constructions; retrieved 
objects may be modifications of the originally stored objects, but also objects associated to the cue, and 
even objects imaged on the basic of the cue and the stored objects. This property opposes reproductive of 
photographic memories that retrieve the cue object exactly as it was originally registered. RAM memo-
ries, for instance, are reproductive or photographic. Systems that lack the direct rejection property but 
are unable to reject a cue, retrieve the object most similar to the cue, and hence an association, but not a 
genuine construction.

	10.	 Capacity The number of units of content that can be stored in the memory in relation to its structural and 
functional parameters. This parameter can be further specified into the number of objects that are stored in 
the memory at a particular state, and into the amount of stored information in which the system performs 
satisfactorily.

From the examples in Figs. 1, 2 and 3 and the previous discussion it can be readily seen that the EAM system 
is associative, distributed, declarative, abstractive, productive, indeterminate, entropic, supports direct rejec-
tion, is constructive and has a very large capacity, resembling the corresponding putative properties of human 
memory12–15. The EAM model is mostly consistent with the properties suggested for human associative memory 
in Hintzman’s framework and the Minerva system16, but such approach differs from the EAM in the representa-
tional format and the memory operations. In particular, although Minerva also uses a table as its representation 
medium, each new input is expressed as a new row, so the table grows with the number of stored objects. This 
opposes EAM in which the table is fixed, and the new inputs overlap with the current memory content.

Relation of EAM to ANN models.  Computational models of associative memory have been extensively 
studied within the Artificial Neural Networks (ANNs) paradigm. The literature on the subject is pretty abun-
dant, and there are two main conceptualizations: as a dynamical system implemented with recurrent neural 
network, such as Hopfield’s model17 and related work18–24, and as a feedforward network25–27. Recurrent neural 
networks have been used for modeling working memory28–30. Autoencoders31 can also be considered associa-
tive memories, as these systems reproduce the input cue, although are trained with standard back-propagation, 
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and updating the memory involves full retraining. It is argued that the class of memory models that use high 
dimensional vectors can be unified in a single ANNs framework32–38, even those that are not formulated as neu-
ral networks, such as Minerva39.

The main difference between the Entropic Associative Memory and ANNs models is that EAM is not an artifi-
cial neural network. Although both approaches represent objects through feature-value structures, in EAM these 
are interpreted as functions representing objects, as in symbolic representational systems; while in the ANNs 
framework such structures are interpreted as vectors in a high dimensions geometric space. The memory system 
do uses a coder, a decoder and a classifier, implemented with neural networks, but these modules constitute 
only the scaffolding supporting the memory structure and the input and output operations. For this EAM differs 
from of ANNs models in the way its properties are understood, and on the values of some of such properties. 
A punctual comparison between EAM and ANNs models in relation to the memory properties is beyond the 
scope of the present paper. However, at an intuitive level, EAM’s declarative specification of the three memory 
operations allows that the information is remembered and retrieved constructively, and opposes the procedural 
nature of most ANNs models, where the memory is trained. The memory system as a whole differs from archi-
tectures including a bottom sub-symbolic layer implemented with ANNs and a top symbolic layer implemented 
with logical or linguistics structures40 or RAM registers41, as the representation held in EAM is symbolic but also 
distributed. Also, the abstractive form of �-registers supports a form of learning in which inputs are integrated 
directly into the memory mass of the distributed representation, where units of content are overlapped. Hence, 
learning corresponds to knowledge acquisition and may be unsupervised. In addition, the overlapping of units 
of content on the memory medium opposes most ANNs models which are rather focused on separating the 
input units in mutually exclusive points or regions of some abstract representation space. In Hopfield’s model, 
for instance, every object is stored in a local minimum of the energy function, so the representation of individual 
objects is fully determinate. The productivity of the memory is analogous to the generalization property of neural 
networks5 that give rise to classes, but not to individual novel instances, as in the present model. EAM’s notion of 
productivity is useful to recognizing novel inputs and enables the constructive character of the memory retrieval 
operation. It also may be useful for modeling the false recall phenomenon42 and may play a role in imagination15. 
The indeterminacy in EAM is due to the superposition of the represented units, and the entropy is a functional 
and operational parameter of the memory, in opposition to most ANNs models in which the entropy has no 
functional role or is not event used. The ability to reject directly cues not contained in the memory through 
a declarative test is neither normally found in ANNs memories, and the η-recognition operation may have 
empirical support6–9. Another distinctive feature of EAM is the bayesian nature of the β-retrieval operation, 
where both the cue and the memory are considered probability distributions, corresponding to a likelihood and 
a prior, respectively—where the degree of indeterminacy of the constructive process is controlled by a single 
parameter—has neither a clear counterpart in ANNs models. The constructive character of EAM opposes most 
ANNs models, as was mentioned above for Hopfield’s model, in which in memory retrieval recovers the stored 
object exactly. Such model is often argued to be constructive, but this perception is due to the use of incomplete 
cues which select complete objects, and their retrieval is seen as a construction. The reproductive character of 
Hopfield’s memory can be appreciated directly if only complete cues are used. Finally, the memory capacity 
of EAM is very large, its content at a given state is computed directly in terms of the entropy and the number 
of columns of the AMRs, and its operational range depends on the entropy trade-off. In addition, EAM uses 
a very small number of units of the memory medium; the memory operations are implemented with minimal 
algorithms that always terminate, and the relation of its capacity to its cost is very satisfactory.

Memory operations
For the experiments we use the formal definition of the operations of the W-EAM system3 with the exception 
of the functionality for selecting the class of a cue at the system level, whenever there is more than one memory 
register accepting the cue, that is not required in the experiments below. For clarity and for making this paper 
self-contained, we include the explicit definition of the memory operations but specified to the case in which 
only one memory register is used.

Let the sets A = {a1, . . . , an} and V = {v1, . . . , vm} be the domain and the codomain of a weighted relation 
r : A → V  stored in the memory, and let the function R : A× V → {0, . . . , l} , where l is an integer greater than 
zero, specify the weights of r, such that R(ai , vj) = wij and wij  = 0 if and only if (ai , vj) is in the relation r. Let 
rf  and ra be two arbitrary relations from A to V—which are held in the memory and in the auxiliary register, 
respectively; let fa a function with the same domain and codomain representing the cue; and �i for 1 ≤ i ≤ n 
the probability distribution defined by the weights assigned to (ai , vj) , for all 1 ≤ j ≤ m . The operations are 
defined as follows: 

1.	 Memory Register �(rf , ra) = q such that q = rf ∪ ra , so Q(ai , vj) = Rf (ai , vj)+ Ra(ai , vj) for all ai ∈ A.
2.	 Memory Recognition η(ra, rf , ι, κ , ξ) is true if Ra(ai , vj) → g(Rf (ai , vj)) for all vj for at least n− ξ arguments 

ai of rf  (i.e., material implication relaxed by ξ ) and ρ ≥ κ� , and false otherwise, such that: 

(a)	 ωi =
1
k

∑m
j=1 Rf (ai , vj) where k is the number of cells in column i in rf  such that wij  = 0 ; i.e., the 

average weight of the argument ai among all the none-zero cells in the column;
(b)	 g(Rf (ai , vj)) = 1 if Rf (ai , vj) ≥ ιωi , and 0 otherwise.
(c)	 � = 1

n

∑n
i=1 ωi ; the average weight ωi of all columns i.

(d)	 ρ = 1
n

∑n
i=1 Rf (ai , vcue) where vcue is the value = vj of the argument ai in the cue Ra(ai , vj) ; i.e., the 

weight of the cue.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9553  | https://doi.org/10.1038/s41598-023-36761-6

www.nature.com/scientificreports/

3.	 Memory Retrieval β(fa, rf , σ) = fv such that if η(ra, rf , ι, κ , ξ) holds fv(ai) is some vj that is selected randomly 
from rf (ai)—i.e., the column i. Let ζ a normal distribution centered at the cue fa(ai) with standard devia-
tion σm . Let �i be the product of �i and ζi . fv(ai) is selected randomly from �i for all the arguments i. If 
η(ra, rf , ι, κ , ξ) does not hold then β(fa, rf , σ) is undefined—i.e., fv(ai) is undefined—for all ai.

System’s architecture
The memory system includes three representational levels from bottom to top—see Fig. 4—as follows: 

1.	 The modal specific input and output representations of the domain. In the present study we use the corpus 
Fashion-MNIST4 of pieces of clothes, bags and shoes of ten classes, including 70,000 images of 28 × 28 pixels 
with 256 gray levels, as specified in Table 1. The corpus is balanced and there are 7000 images of each class.

2.	 The abstract amodal representations of the modal objects in the first level. These are finite discrete functions 
with n arguments with real values representing the corresponding concrete images. For this study, domains 
with cardinalities of 32, 64, 128, 256 and 512 were considered.

3.	 The abstract amodal distributed representation held in the memory. The memory has n columns as in (2) 
and m rows. The value of each argument at this level is the quantized value, in m levels, of the corresponding 
argument of the local representation in (2).

The system’s architecture is analogous to our previous work and includes a coder and a decoder mapping the 
modal and concrete representations at the first level to the abstract amodal representations at the second and 
vice versa; these modules are implemented with standard convolutional deep-neural networks—an encoder and 
a decoder, constituting and autoencoder. The architecture includes also a classifier, trained in conjunction with 
the encoder and the decoder, and used for classifying the outputs from the memory. The functional architecture 
is illustrated in Fig. 5.

We divided the original autoencoder into the coder and the decoder which were used as independent net-
works. In the original presentation of EAM1,2 the coder, the decoder and the classifier were trained together, 
and then we simply removed the classifier for the memory experiments proper. Next, in the W-EAM model3, we 
first trained the coder and the classifier; then the decoder, and for the memory experiments we used the three 
components independently. In particular, the classifier was used for enriching the phonetic corpus in incremental 
stages. Finally, in the current experiments we trained the three components together again, but used them as 
independent neural networks as their inputs and outputs can be communicated flexibly.

Experiments and results
Experiment 1.  For the experiments the fashion-MNIST corpus was partitioned in three mutually exclusive 
partitions, as follows:

•	 Training Corpus TrainCorpus: For training the coder and the decoder, and the classifier (70%);
•	 Remembered Corpus RemCorpus: For filling up the memory (20%);
•	 Test Corpus TestCorpus: For testing the full classifier (encoder-classifier), the autoencoder (encoder-decoder), 

and the memory (10%).

The memory system was set up using the following procedure: 

1.	 Train the classifier and the autoencoder simultaneously with the TrainCorpus, for domains of 2n where 
5 ≤ n ≤ 9 , using 80% and 20% of the corpus for training and validating, respectively.

2.	 Test the full classifier and the autoencoder using the full TestCorpus, for the five domain sizes;

Table 1.   Classes of the fashion-MNIST corpus4.

Class Id Class name

0 T-shirt/top

1 Trouser

2 Pullover

3 Dress

4 Coat

5 Sandal

6 Shirt

7 Sneaker

8 Bag

9 Ankle boot
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3.	 For all memory registers of size 2n × 2m , where 5 ≤ n ≤ 9 and 0 ≤ m ≤ 10 , fill up the whole of the Rem-
Corpus, including all objects of the ten classes, and test the performance of the η-recognition operation 
using each object included in TestCorpus as the cue, by classifying all the retrieved objects and comparing 
the assigned class to that of the cue; then select the memory registers with the best number of arguments. 
Previous experiments show that values of n ≤ 4 are less satisfactory.

4.	 Test the performance of the η-recognition operation for the registers with 2n columns selected in (3) and the 
best 2m rows by filling them with different amounts of the RemCorpus, or entropy levels; select the register 
of size 2n × 2m with the best performance.

5.	 Test the procedure with a standard tenfold cross-validation procedure.

The behavior of the system on this first experiment depends on the performance of the full classifier, on the 
memory size, and on the recognition’s parameters3. Here we use the setting in which the parameters’ values are 
ι = 0 , κ = 0 , ξ = 0 and σ = 0.1 . The results of steps (1) and (2) of the procedure are presented in Tables 2 and 3. 
The former shows that the average accuracy of the classifier grows steadily up to the memory with 512 arguments, 

Figure 5.   System architecture. The system has four modules: encoder, decoder, associative memory, and 
classifier. The encoder is a convolutional neural network based on VGG1643 with an input of 28× 28× 1 
parameters ( p = 784 in total), and an output of n values, where n is the number of columns of the unique 
associative memory register. The decoder is a convolutional and upscaling neural network that receives n 
parameters as input and generates a 28× 28 grayscale image, whereas the classifier is a dense neural network 
with two layers that receives the same number of parameters as input and produces a probability distribution of 
c = 10 elements. The system as a single input, an image to the encoder, and two possible outputs, a classification 
and an image. The encoder can connect directly to the decoder and the classifier (e.g. for training and testing), 
but it is used mainly to feed the assocative memory, that in turn feeds the other two modules.

Table 2.   Performance of classifier for different number of columns.

Number of arguments Accuracy mean Accuracy STD Difference of means

32 70.2 8.6 0

64 80.8 0.6 10.7

128 85.9 0.6 5.0

256 88.2 0.5 2.3

512 89.3 0.3 1.1

Table 3.   Performance of autoencoder for different number of columns.

Number of arguments Scaled RMSE mean Scaled RMSE STD Difference of means

32 16.3 3.68 0

64 12.5 0.15 − 3.8

128 10.7 0.14 − 1.8

256 9.4 0.12 − 1.3

512 9.0 0.08 − 0.4
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but the gain rate between memory sizes diminishes significantly; while the latter shows that the average root mean 
squared error (RMSE) of the autoencoder—scaled to a percentage of the maximum value of a pixel in the images 
(255)—shrinks steadily as the domain size doubles but, as in the case of the classifier, the gain diminishes greatly.

The results of step (3) of the procedure are shown in Fig. 6, where the label Range Quantization Levels indicates 
the number of rows and the vertical axis indicates the percentage of the precision and recall for the corresponding 
columns and rows. All the objects in the TestCorpus belong to one of the ten Fashion-MNIST classes, so there 
are no true negatives. The output of the classifier may be a right response, a wrong response and no respond; the 
first corresponds to a true positive; the second to both a false positive of the selected class and a false negative of 
the right one; and the third means that the cue was rejected by the memory, so there was no retrieved object to 
be classified. Hence, in this setting, accuracy, precision and recall coincide if there is a response, while accuracy 
and recall decrease otherwise.

Figure 6 is consistent with Table 2, as the performance increases with the number of columns, but the gain 
decreases significantly too. The best performances for each number of columns are achieved with 2 to 32 rows, 
and correlate well with the ones obtained by the full classifier, as shown in Table 2. For example, the best accuracy 
of 85.7% for a domain of 256 arguments is achieved with a memory register of four rows, and corresponds to a 
full classifier accuracy of 88.2%. Hence, the memory contributes only to 2.5% of the total system error of 14.3%, 
achieving over 97% of accuracy at producing objects considered in the same class than the cue, with σ = 0.1.

We selected the memory with 256 columns for the rest of the experiments, as it provides a good compromise 
between performance and size. Next, we tested the performance of the memory for 4, 8 and 16 rows—which have 
the best performances—filling it with different amounts of the RemCorpus—1%, 2%, 4%, 8%, 16%, 32%, 64% and 
100%, with the corresponding entropy levels, as shown in Fig. 7. In all three cases the memory is operative with 
only 16% of the remembering corpus, and the performance is sustained filling it with the whole of RemCorpus. 
Although the performance of the memory registers with the three number of rows is very similar at the opera-
tional range, the memory with 4 rows is slightly better, and the memory register of size 256× 4 was chosen for 
the the experiments 2 and 3. This memory register is very small—i.e., 22 × 28 = 1024 two bytes cells holding 
integer values—and yet can contain a huge number of remembered objects of the domain. The experiments 4 
and 5 required a larger variability and the best results were obtained with 16 rows using 4 K bytes.

Figure 7 illustrates the entropy trade-off for memories with a satisfactory operational size. If the memory 
content is very low—and the entropy is very low as well—the cue must be very precise to match an object within 
the memory, but when it does, the selection is most likely right; conversely, if the memory is too dense and the 
entropy is too high most cues will match an object within the memory, but the selection will be often wrong; but 
whenever there is a moderate amount of memory content, cues are likely to match an object, which is often the 
right one. In the present illustration the operational range is quite large and AMRs with the three sizes have a 
satisfactory performance using only the 16% of the RemCorpus, and the precision does not decrease at the higher 
entropy level, suggesting that a much larger amount of objects can be registered in the memory.

Experiment 2.  The register selected in Experiment 1 was filled up with the totality of the RemCorpus and 
the β-retrieval operation was performed using each object of the TestCorpus as the cue. Fig. 8 shows instances 
of cues—selected randomly, on the condition to belong to the 88.2% of cases accurately processed by the classi-
fier—and the corresponding retrieved objects for the respective values of σ . The class assigned by the classifier 
to the retrieved object is shown below the corresponding image. The first row in Fig. 8 illustrates the input cues; 
the second, the objects produced by the autoencoder directly, which never rejects a cue. The third shows the 
reproduction of the cue with σ = 0.05 ; the fourth with σ = 0.1 , and so on until the last row, where σ = 0.5 . The 
objects reproduced by the autoencoder and recovered from the memory with a value of σ up to 0.1 are visually 
similar and are assigned the correct class by the classifier, and can be thought as remembered objects. When σ is 
0.2, most of the constructed images look alike the input cue and are assigned the right class in four cases: T-shirt, 
Shirt, Sneaker and Bag (classes 0, 6, 7 and 8, respectively); the remaining six are assigned a different class: the 
trouser (class 1) retrieves a sandal (class 5); the pullover (class 2) a bag (class 8); the dress (class 3) an ankle boot 
(class 9); the coat (class 4) a dress (class 3); the sandal (class 5) an ankle boot (class 9); and the boot (class 9) 
a bag (class 8). These retrieval operations may be considered associations. For largest values of σ the retrieved 
objects have a faint shape and are assigned a different class in most cases. Some resemble the cue vaguely; others 
resemble objects of a different class, others suggest compositions between objects, and some are too vague to 
be assigned an interpretation. In this latter condition the retrieved objects can be considered imaged objects or 
just noise.

Experiment 3.  The third experiment is analogous to the second one but using incomplete cues. In our previ-
ous work we showed that the retrieved objects were satisfactory reconstruction of severely occluded cues1,2; in 
the present one we use cues with large amounts of noise. Half of the original pixels were randomly chosen, and 
their values were updated with random values—from 0 to 255. Figure 9 shows the results of this experiment. 
The cue and the output of the autoencoder are shown in the first and the second row, as before. In this case the 
autoencoder recovers the input image although with a lower quality and there are exceptions—e.g., the trouser 
(class 1) and the sneaker (class 7)—and half of the outputs are assigned the wrong class by the classifier—the 
t-shirt/top, the coat, the sandal, the shirt and the sneaker. The remaining rows show the objects recovered from 
the memory, as before. The black squares indicate that the cue was rejected and no object was retrieved, as was 
the case for the sneaker for all values of σ . Some of the objects recovered with σ = 0.05 and σ = 0.1 have the 
right shape and are assigned the correct class—the coat (class 4), the sandal (class 5), the bag (class 8) and the 
ankle boot (class 9)—and can be considered remembered, but the rest are assigned the wrong class and can be 
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better thought of as associations or imaged objects. The objects recovered with values of σ = 0.3 and σ = 0.4 can 
be considered associated or imaged, and when σ = 0.5 they may be imaged or just noise. Although the pictures 

Figure 6.   Precision and recall of the memory output for tables with with different sizes. The pair of graphs in 
each row correspond to the number of columns (arguments) shown on their left. The horizontal axis in each 
graph indicates the number of rows and the vertical axis indicates the percentage of precision and recall for the 
corresponding columns and rows.
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have a lower quality than in the case with complete cues, the overall pattern of recovery increasing the value of 
σ is sustained.

Experiment 4.  This experiment consisted on producing association chains starting up from a complete cue 
and using the retrieved object as a cue to a new retrieval operation, repeating the procedure recurrently. A form 
of this problem has been addressed within the ANNs literature but using a heteorassociative memory44. Fig-
ure 10 shows an association chain at each column, started with an object of each of the ten classes, using an AMR 
of size 256× 16 and σ = 0.15 . The top row shows the initial cues; the second, the object produced directly by the 
autoencoder. The third shows the object produced by the β-retrieval operation using the top object as the cue; 
the fourth, the constructed object using the third as the cue; and so forth until a chain of length six is produced.

The classifier assigns the right class to the objects generated by the autoencoder and to seven objects retrieved 
from the memory using the original cue; the exceptions are the dress that is classified as a sandal, the coat as 
a shirt and the ankle boot as a sneaker. The visual shapes of all ten recovered objects are alike to the original 
cue, and the objects that have a different class assigned can be considered associations. The shape of the objects 
retrieved at the second time is also visually alike the cued objects although the chain of sandals is interrupted, as 
shown by the dark square. Six objects are also assigned the correct class but the pullover is classified as a dress, 
and the dress and the shirt as pullovers, which are also similar enough. The trend is sustained in the third retrieval 
operation, where four object are assigned a different class—the t-shirt is considered a dress, the pullover and 
the coat are classified as shirts, and the shirt as a pullover—which are visually similar and can also be seen as 
associations, although the quality of the images is lower and some are faint and vague. The pattern is continued 
further down the chain in the fourth, fifth and sixth recollection rounds, where the number of objects assigned 
a different class is increased by one or two at each turn, although the t-shirt/top recovers its initial class which 
sustains all the way to the last round; the sneaker is recognized as such in all but the last turn, the bag is assigned 
the original class in all but the fourth round, where is considered a dress, and the classifier assigns a class that 
looks similar to the original one in most cases, although some figures in the fifth and sixth recollection are faint 
and vague, and can be considered imaged objects or just noise.

Experiment 5.  This experiment is analogous to experiment 4—the AMR size is 256× 16 and σ = 0.15 
too—but using noisy cues to start the association chains. Figure 11 shows that the autoencoder recovers the 
shapes with the right classes in all ten instances again, but memory retrieval is weaker than in the previous 
case. Most images are vague and faint since the first recollection; only the t-shirt/top, the coat and the shirt 
are assigned the right class, and the dress, the sandal and the sneaker are rejected directly, interrupting the 
corresponding remembering chains. The recollections of the remaining objects down the chain are vague and 
noisy, although some objects, such as the t-shirt, the coat and the shirt are visually alike the original cue, but are 
assigned related classes—the coat is classified twice as a pullover and twice as a dress; the shirt is assigned its 
right class up to the fourth cycle, and then is classified as a coat and a dress; the bag is classified as a shirt at the 
first turn, but back as a bag in the second and third rounds, although as a shirt, a pullover, a shirt and a coat in 
the remaining turns; and the ankle boot is also classified as such in the second, third and fourth round; but as 
t-shirt/top in the first, a sandal in the fifth and a dress in the sixth, although these latter images are rather noise. 
The overall pattern of the remembering chains is similar to the experiment with complete cues, although the 
images have a lower quality, and some chains are interrupted much earlier, as expected.

Discussion
Summary of experimental results.  In experiment 1 we computed the optimal size of the memory reg-
ister for the Fashion-MNIST, which is 256× 4 cells—each using 2 bytes holding integer values—as shown in 
Fig. 6. The remembered corpus consisted of 14,000 images—i.e., 20% of the 70,000 total images—all held distrib-
uted using only 2 K Bytes. The entropy is 0.9 when the memory is filled up with with only 1% of the RemCorpus, 
grows to 1.0 when 16% is included, and remains at that level all the way until the whole of remembered corpus 
is included, as shown in Fig. 7. As there are 14,000 explicitly registered objects and e = 1 , the productivity of the 

Figure 7.   Performance of the memory recognition operation with different amounts of RemCorpus. The size 
value in each graph corrresponds to the number of rows of the register, as its number of columns has been set to 
256.
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memory is 2256 − 14, 000 emerging objects, providing a huge space for recognizing unseen inputs and retrieving 
novel constructions, but also false recollections.

Experiment 2 shows the impact of the parameter σ on the retrieved objects of the ten classes of clothes, bags 
and shoes, as shown in Fig. 8. The images reproduced by the autoencoder and the ones recovered by the memory 
β-retrieval operation are similar to the input cue and are assigned the right class by the classifier up to a value 

Figure 8.   Recovered objects of all ten classes for different values of the parameter σ . The sample was elected 
randomly, on the condition to belong to the cases accurately processed by the classifier, and the class assigned by 
the classifier to the retrieved object is shown below the corresponding image. The first row shows the input cues; 
the second, the objects produced directly by the autoencoder; the remaining rows shows the images produced 
by the decoder from the memory outputs using distinct values for σ.

Figure 9.   Recovered objects with noisy cues. The sample is the same as in Fig. 9, and the class assigned to the 
retrieved object by the classifier is shown below the corresponding image. The first row shows the input (noised) 
cues; the second, the objects produced directly by the autoencoder, while the remaining rows shows the images 
produced by the decoder from the memory outputs using distinct values for σ.
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of σ of 0.1. For larger values of σ the images are less similar and even noisy and often are assigned the wrong 
class. As σm is the standard deviation of the probability function ζ representing the cue, the smaller its value, 
the more reproductive or “photographic” the retrieved object in relation to the cue and vice versa. Experiment 
3 shows the images produced when the cue is noisy. In previous work we showed that severely occluded objects 
can be reconstructed on the basis of incomplete cues and the memory content, and here we use noise instead 
of occlusions. The results of this latter experiment are analogous to the results of Experiment 2 although the 
images have a lower quality.

Experiments 4 and 5 show the production of association chains starting up with complete and noisy cues 
but using an AMR of size 256× 16 and σ = 0.15 , as shown in Figs. 10 and 11, respectively. Preliminary experi-
ments showed that the images produced using registers with only 4 rows were vague and faint from the start, 
and using 16 rows provided more variability to the argument’s values. The remembering chains where visually 
coherent although the quality of the imaged was diminished along the recollection cycles, as expected. The images 
generated with complete cues have a better quality than the ones produced out of incomplete cues, which was 
also expected. Objects recovered that have a good image quality and were assigned the class of the cue can be 
considered remembered. However, if they are assigned a different class can be considered associations; if the 
quality is diminished severely and the class varies, but can still be assigned an interpretation can be considered 
imaged objects; if these conditions are not met, the objects may be just noise.

The autoencoder never rejects a cue and its behavior opposes the η-recognition operation which rejects cues 
to objects not contained in the memory directly. The objects produced by the autoencoder in the second row 
should be copies of the cue—the decoder should compute the encoder’s inverse function—and both input and 
output should be of the same class. This condition is satisfied when the cues are complete, but there are exceptions 
when the cues are noisy—see Fig. 9—which is a known problem of objects synthesized by autoencoders. Memory 
retrieval may also produce similar objects of different classes, but as these are always constructions, the concep-
tual incoherence does not arise. However, it still remains the problem that visually similar synthesized objects 
can be assigned different classes. The present results suggest that such problem is due to the classifier’s precision, 
which is lower when classes are very similar, the images are vague, and the cues have poor quality or are noisy.

Functional dissociation between storing and classification.  In our previous work we used a desig-
nated associative memory register (AMR) for storing objects of the same class, and the memory system had a 
number of AMRs. In such architecture the �-register operation was performed on the register corresponding to 
the class of the stored object and involved a form of supervised learning. We also showed that objects of different 
classes could be stored in the same register at the expense of a small increment of the entropy, and cues belonging 
to one class could retrieve objects of a different class. Nevertheless, these were very limited kinds of associations 
and storing and classifying were intertwined functions. In the present study we removed such restriction and 
used a single memory register for storing all the objects on a global medium. Hence, registering information is 
an unsupervised learning function; the stored objects are not classified within in the memory but classification 

Figure 10.   Associations chains from initial complete cues using an AMR of size 256× 16 and σ = 0.15 . The 
sample is the same as in Fig. 8, and the class assigned by the classifier to the retrieved object is shown below the 
corresponding image. The first row shows the original cues; the second, the objects produced directly by the 
autoencoder; the third, the objects produced by the memory from the original cues, and the remaining rows 
show the ojects produced by the memory from the images in the previous row.
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is performed on the retrieved objects externally; and storing and classifying are conceptually and architecturally 
independent.

Kinds of stored objects.  The EAM system has been used to store manuscript digits and letters1,2 which 
are conventional visual signs, and its W-EAM extension to store and learn Mexican Spanish phones3, which are 
natural acoustic images. In the present experiment we used natural visual images of clothes and shoes, although 
with a very low resolution—the same used to store manuscript digits and letters. All these are instances of 
modality-specific images that have a spatial or a temporal extension, and are used as “units of remembering”.

Indeterminacy and unconscious knowledge.  The indeterminate character of the memory prevents 
inspecting the memory content independently of a cue. The indeterminacy also impacts on the number of objects 
stored—i.e., 2en—and seems to be a necessary representational property for holding the very large amount rec-
ollections of natural memories, which are hidden from conscious inspection within the storage medium, and 
yet can be made readily available when the memory is queried with a relevant cue. The relation between the 
indeterminate nature of memory and the determinate character of the objects retrieved through the β-retrieval 
operation can be illustrated with an analogy to the interpretation of ambiguous images, such as the famous 
duck-rabbit picture popularized by Wittgenstein in the Philosophical Investigations45. The ambiguous figure is a 
concrete image but the representation of the concepts of the duck and the rabbit are indeterminate. The memory 
retrieval operation recovers a concrete interpretation out of the concrete cue and the indeterminate representa-
tion, which may be the duck or the rabbit. However, the interpretation is unstable and easily faints and vanishes, 
but the process may be carried on recurrently. Another illustration is provided by the interpretation of emerging 
objects in geometric diagrams, as in the proof of the Theorem of Pythagoras46. The genuine indeterminate char-
acter of the human memory allows for storing a huge amount of unconscious knowledge, which can be probed 
and retrieved through appropriate cues. Such recollection may constitute real experiences, but one has to keep 
in mind that they may also be false recollections.

The imagery debate.  The present theory provides a computational notion of “image” and informs 
the imagery debate47. This debate confronts the view that all knowledge is propositional and has a linguistic 
character48 with the view that there are mental images49,50. The propositional side poses there is a language of 
thought using abstract symbols and an abstract syntactic structure, in which thought and reasoning are car-
ried out51, while the imagery side holds that there is, in addition, a medium holding mental images which are 
inspected and manipulated directly by the mind’s eye and hand. In our model images do present the world to the 
computational agent but they are not the subject of mental manipulation. They are rather mapped into the corre-
sponding amodal abstract representations at the second level as functions, which are mathematical objects, have 
a propositional character and may be used in thought processes, according to the intuitions of the propositional 

Figure 11.   Association chains from initial noisy cues using an AMR of size 256× 16 and σ = 0.15 . The sample 
is the same as in Figure 9, and the class assigned by the classifier to the retrieved object is shown below the 
corresponding image. As in Fig. 10, the first row shows the initial cues; the second, the objects produced directly 
by the autoencoder; the third, the objects produced by the memory from the initial cues, and the remaining 
rows show the objects produced by the memory from the images in the previous row.
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side, but functions are not symbolic expressions of an internal language. Such function may be abstracted away 
into the amodal indeterminate distributed representation stored in the declarative memory at the third level, and 
it is plausible that inference takes place by direct operations on such distributed representations, some of whose 
properties correspond to the intuitions underlying the imagery side, but these are not images; and it is also plau-
sible that the mind uses both kinds of representations and their corresponding inference strategies. The heart 
of the debate seems to be that the propositional side does not allow for declarative–distributed–indeterminate–
productive–constructive representations, while the imagery side acknowledges a form of them, although predi-
cated on the images themselves rather than on the distributed representations from which they are produced.

Natural declarative memory.  Episodic13 and semantic memory14 are the paradigmatic forms of declara-
tive human memory. These memories are relational, constructive and reject cues not included in the memory 
directly. In particular, episodic memory relies on a distributed memory network involving the hippocampus, the 
parahippocampal gyrus and the retrosplenial cortex, which supports not only memory register and retrieval but 
also is involved in the generation, maintenance and visualization of complex spatial context and imagination15. 
Cues are asserted and can be reinforced and strengthen, but episodic and semantic memory are not trained. 
Motor abilities are learned by repeated rehearsal but using procedural memory instead. The dissociation between 
registering episodic events and semantic facts, on the one hand, and acquiring abilities by rehearsing procedural 
memory, on the other, seems to be well established13,14. In our model this dissociation is reflected in the func-
tional and architectural independence of the memory system proper, which is declarative, and the support-
ing coder, decoder and classifier, which are procedural. An autoencoder can be seen as a procedural memory 
because it reproduces the input cue, and action schemes, motor and linguistic, can be modeled with such kind of 
devices. However, the declarative memory augments the power of the cognitive agent as the recollections can be 
used on demand by language and thought process, independently of the schematic machinery provided by pro-
cedural memories. Episodic and semantic memory involve a larger functionality that the declarative machinery 
alone; for instance, episodic memory relates recollections with the self and involves the subjective sense of time 
to codify the autobiography of the agent13; and the semantic memory stores meanings rather than episodes, and 
has independent components, such as the terminological and the encyclopedic knowledge, that need further 
levels of structure. It is also plausible that there are several declarative memory modules associated to specific 
kinds of knowledge, such as a phonological memory, as suggested in our previous work3, the mental lexicon, and 
declarative memories for faces, shapes, and other kinds of objects of common experience.

Perspectives and future work.  One goal of our research program is to store more complex images that 
have spatial and temporal extension, and a multimodal character, such as videos and movies, which can in prin-
ciple be represented as a single function with designated arguments for each of the modalities involved, coded 
and decoded with the corresponding modality-specific coder and decoder modules. Such representations could 
include features of other modalities of perception, as the somatic, gustatory and olfactory, and even internal 
arguments of the computational agent, such as the emotional state associated to registering the images. The func-
tions at the second abstract amodal level of representation can be seen as a features-value structures including 
segments for each modality, and total or partial cues to the η-recognition and β-retrieval operations can be used 
to recognize and recover multimodal images that constitute units of remembering. Once such complex images 
are stored can be retrieved using different values of σ and cues would be reconstructed as remembered, associ-
ated or imaged objects, as shown for clothes, bags and shoes in the present study. Likewise, chains of recollec-
tions can be established by using the recovered object as the cue to a new retrieval operation recurrently. Such 
images would lower their quality along the recollection chain and would be perceived as faint but novel recon-
structions or imaged objects, possibly with a spatial and temporal extension. We also leave for future research the 
composition of images and the production of more general association chains, and the extension of the model 
to the hetero-associative case.

Experimental setting
The experiments were programmed in Python 3.10 on the Anaconda distribution. The neural networks were 
implemented with TensorFlow 2.10.0, and the graphs were produced using Matplotlib, ImageMagik, and Ink-
scape. The experiments were run on an Alienware Aurora R5 with an Intel Core i7-6700 Processor, 16 GBytes 
of RAM and an NVIDIA GeForce GTX 1080 graphics card.

Data availibility
The dataset used in the present study is available at https://​github.​com/​zalan​dores​earch/​fashi​on-​mnist. The full 
code and the detailed experimental results are available at https://​github.​com/​eam-​exper​iments/​fashi​on.
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