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Soliton solution, breather
solution and rational wave
solution for a generalized
nonlinear Schrodinger equation
with Darboux transformation

Chengcheng Fan, Li Li** & FajunYu

In this paper, the exact solutions of generalized nonlinear Schrédinger (GNLS) equation are obtained
by using Darboux transformation(DT). We derive some expressions of the 1-solitons, 2-solitons and
n-soliton solutions of the GNLS equation via constructing special Lax pairs. And we choose different
seed solutions and solve the GNLS equation to obtain the soliton solutions, breather solutions and
rational wave solutions. Based on these obtained solutions, we consider the elastic interactions and
dynamics between two solitons.

The generalized nonlinear Schrédinger(GNLS) equation is an important nonlinear evolution equation, which
can describe physical models and phenomena, such as: the Bose-Einstein condensation, nonlinear optics, plasma
physics condensed matter physics, fluid mechanics, and so on. Latchio Tiofack, Mohamadou and Kofané con-
sidered the nonuniform 1 + 1dimensional coupled nonlinear schrédinger equations’, and presented some exact
solutions by using the transformation. Vijayalekshmi, Mahalingam and Mani-Rajan studied the propagation of
optical solitons in the nonautonomous nonlinear Schrédinger equation with a generalized external potential®.
The nonlinear Schrédinger equation has been extended to various soliton models® including variable coefficient,
complex coefficient, high dimensional, high order, nonlocal and fractional order equations*™. Some solitary
wave solutions’, rogue wave solutions®, bright and dark solitons’ are derived in nonlinear Schrédinger equation.

There are many methods to solve soliton equation, such as Hirota bilinear method!®!!, inverse scattering
method'?*?, homogeneous balance method!*!*, Darboux transform (DT) method'®!” and so on. Some solu-
tions are successfully solved in different types of partial differential equations via these above methods. Some
higher-order wave solutions and discrete rogue wave solutions of KE equation were constructed by using DT
and Taylor expansion in'®!?. Ablowitz and Musslimani proposed the nonlocal modified Korteweg-de Vries
(mKdV) equation and the nonlocal Sine-Gordon (SG) equation, and proved the integrability of these equations
in®. Ji and Zhu obtained a series of different types of exact analytical solutions of nonlocal mKdV equations
through constructing DT?!, including complexiton solutions, rogue wave solutions, kink soliton solutions and
anti-kink soliton solutions. Some bright soliton solutions, dark soliton solutions and breather solutions of the
super integrable equation are presented with DT?2. The non-autonomous multi-rogue wave solutions of the
spin-1 coupled nonlinear Gross-Pitaevskii equation with different dispersion, higher-order nonlinear terms,
gain (or loss) and external potential are considered in**-?. The multiple breather solutions and mixed solutions
of the Kundu equation are constructed with generalized Darboux transformation method, which have the Lax
pair of Kaup-Newell system in?.

The paper is organized as follows: in “Results”, we successfully solve the GNLS equation with DT, and obtain
several new sets of exact solutions, including 1-soliton solutions, 2-soliton solutions and n-soliton solutions. In
“Conclusions”, we select the non-zero seed solution and solve the GNLS equation by using the DT, and obtain
the breather solutions of the GNLS equation. In “Methods”, we also use the DT and Taylor expansion to derive
the rational wave solutions of the GNLS equation. Finally, we give some conclusions in “Rational wave solutions
for GNLS Eq. (4)”
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Results
Soliton solutions of GNLS equation. It is well known that the standard nonlinear Schrédinger(NLS)
equation

iut+yuxx+au|u|2 =0, o = =*1, (1)

is one of the most important integrable system among many branches of applied mathematics and physics, espe-
cially in optics, water wave and so on. The u = u(x, t) is a complex smooth function of x and ¢, the subscripts
denote partial derivatives and the parameter y is real constant in Eq. (1).

Fokas studied an integrable generalized nonlinear Schrédinger (GNLS) equation by means of bi-Hamiltonian
operators

iy — i + Yty + o |ul>(u + iviy) = 0, o ==+l1, (2)

where y and v are real constants. In fact, Eq. (2) can be transformed into Eq. (1) when the parameter v = 0.
Lenells investigated Eq. (2) by the dressing method, and presented a new form of Eq. (2) as following

Uty + aﬂzu — 2iaBuy — Qly, + aiaﬁzlulzux =0, o ==l1, (3)

under the transformation of u — B./ae?u,0 = —o, wherea = £ >0, =1
Without losing generality, let 0 = —1, then Eq. (3) will become the followmg form?”:

Upe + aﬁzu — 2icBuy — Oy, — iaﬂ2|u|2ux =0, (4)
and the Lax pair of Eq. (4) is as following
¢x =Up, ¢t = Vo,

U_(—iA"2 /lux) V= —%ur in? ’aﬁ U+ aluy (5)
s i22 ) ’aﬂ T+ adry lf ur+in? )

where n = /a(l — %), r = —u*, the “«” denotes the complex conjugate and the vector ¢ = (¢, )T is an
eigenfunction associated with 4 and potential u, which consists of two complex functions ¢; = ¢; (x,t) and
@2 = @a2(x, t). Trough direct calculations, we can verify that the integrability condition Uy — V, + [U, V] =0
exactly can be derived from Eq. (4), where[U, V] = UV — VU.

From the above analysis, we could construct a N-fold Darboux matrix T for the GNLS equation (4), as follows

~ _ (T T
on=Tow T= <T21 T22>'

The lower forms are obtained by compatibility

(6)

ox =Ugp, U= (T + TUT, 7)

g =Vo, V= (T +TV)T". (8)

Ifthe U, V and U, V have the same types, the system (6) is called Darboux transformation of the GNLS equa-

tion. Let ¢ = (Y1, ¥2)T, ¢ = (¢1, $2)T are two basic solutions of the systems (5), then we give the following
linear algebraic systems:

)

N ) N — 1
P 1Akﬂ2k + Zk=1Bk)~j2k IM( ) -1,
Zk . —B* 2k 1 + Zi\lflA 2kM(1) M(l)

with

1
o _ VY2t V( '
M: - J

. (1<j<2N), A{=Dy, —B{=C, (10)
! w+v<“¢

where /; and v® should choose appropriate parameters, thus the determinants of coefficients for Eq. (9) are
nonzero. Heref)y, we take a2 x 2 matrix T as

{ Ty =1+ Y0 A, T = S0, B2k,

_ 11
T21 = Z;cV:l —Bi)\,Zk 1, T22 =1+ zi\jzl A;}MZk, ( )

where N is a natural number, the A%,(m, n=1,2,i > 0) are some functions of x and t. Through calculations,
we can obtain AT as following

AT = n}ﬁl (A= 2, (12)
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which proves that 4; (4; # 0)(j = 1,2,3,...,2N) are 2N roots of AT. Based on these conditions, we will proof

that the U and ? have the same structures as U and V respectively.
The matrix U defined by (7) has the same type as U, that is,

~ (=il
v= ( A ) (13)
in which the transformation formula between old and new potentials are defined by
Uy = tyx + Bix,
{7): =r1x+ Cix, (14)

the transformations (14) are used to get a Darboux transformation of the spectral problem (7).
LetT™! = AT—; and

(15)

« _ ( Bii(%) Bia(h)
(Ty + TOHT* = (321(2) Bzz(/l)>

it is easy to verify that Bg(1 < 's,I < 2)is 2N-order or 2N + I-order polynomial of 4.
Through some accurate calculations, 4;(1 < j < 2,) is the root of By(1 < s,I < 2). Thus, Eq. (15) has the
following structure

(Tx + TU)T* = (AT)E(X), (16)
where
2) 1), (0) 1) (0)
E() = (E“ )Zm Fu ‘o Fu @ b2’ J<F1)E <0)) (17)
Ey A+ E) EY*+E5).+E
and E(k) (m,n = 1,2,k = 0, 1) satisfy the functions without 4 . Equation (16) can be rewritten as
(Ty + TU) = E()T. (18)

Through comparing the coeflicients of 4 in Eq. (18), we can obtain

@ (19)

B 0B R =B =0 = 4B =
Eé(;) =0, ES) =1x+ Cix :7X,E§g) = O,E;? =0, E22 = 1.

In this section, we assume that the new matrix U has the same type with U, which means that they have the
same structures only u(x, t), r(x, t) of U transformed into u(x, t), 7(x, t) of U. After careful calculation, we compare
the ranks of A, and get the objective equations as following:

{ Uy = uy + Biy,

Ty = 1y + Cix, (20)

from Egs. (13) ind (14), we know that U = E(/). The proof is completed.
The matrix V defined by the second expression of (8) has the same form as V, in which the old potentials u
and r are mapped into 7 and 7, that is,

T —#Ef in? w”f u—|—omu)C (1)
B '“‘3 7+ adr; i o +i
L n

We suppose the new matrix V also has the same form with V. If we obtain the similar relations between
u(x, t), r(x, t) and u(x, t),7(x, t) in Eq. (14), we can prove that the gauge transformations under T turn the Lax
pairs U, V into new Lax pairs U, V with the same types.

LetT™! = Z—*T and

* Ci1(d) Cra2(4
v = (G &) @

it is easy to verify that Cy(1 <s,I < 2)is 2N-order or 2N + I-order polynomial of A. Through some accurate
calculations, 4;(1 < j < 2)is the root of Cy(1 < s,I < 2). Thus, Eq. (22) has the following structure

(T; + TV)T* = (AT)E()), (23)

where

F() =

< P2 1 FQ 4 FGP02 DG4 GV ) o0

F3+ pg;lu—l F02 + BYF; Y02
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and F(k)(m n=1,2,k = 0, 1) satisfies the functions without 4. According to Eq. (23), the following equation
is obtained

(Tt + TV) = F(WT. (25)
Through comparing the coefficients of 4 in Eq. (25), we get the objective equations as following:
Ffl_z) “"’3 Fﬁ) = —ia, Ff(l)) iaf — ’“ﬁ ur.
F1(2—1) 101,32 F(l) ANuxcngszaBN , o
FOD _@ F(l) _ Dyrya—2iaCy (26)
20 T 7% nfhr = AN J
Fy? = 8 = o, B = g+

In this section, we assume the new matrix V has the same type with V, which means they have the same
structures only u(x, t), r(x, t) of V transformed into u(x, t),7(x, t) of V. From Egs. (14) and (21), we know that
V =F(}). The proof is completed.

We will give some novel explicit solutions of Eq. (4) by applying N-fold DT. Firstly, we give a seed solution
u = 0 and substitute the solution into Eq. (5), it is easy to find two basic solutions for these equations:

—iX2x—in?t+C, 0
Y4 = (e ’ O]7 )’ P4 = (ei).2x+ir]2t+C2 )’ (27)

by using Eqgs. (8) and (25), we obtain
(1) —ir2x—in*t+C
m» = YC — R t+E) (28)
ei#2x+intt4+Cy
withv? = e@Fi) (1 <i < 2,1 <j < 2N).
In order to derive the expression of N-order DT of Eq. (4) and obtain the matrix T

N A N —
T= <1EZ"=1AMM iy Bt ) (29)
Sk —BEAT 1 3l A
and
N ) N —1,,0
P 1Akﬂ2k + 2 k=1 Bk'IjZk le( '+1=0, (30)
52k—1 N 1) 1
Yot —BEA T L AMY + MY =0
Solving Eq. (30) via the Gramer’s rule, we have
ABy ACN
By=—-,Cn=—— 31
N A ON X (31)
with
208 08 RN My M3 Y
200808 2N My, M3 MY
A=| 20 BN My MR MY |
, « : : . .
/L%N )%N /LSN . /1%% MZN)~2N MZN;%N . MZN;vg\] D
200808 0N M Miad L -1
Ve S /12N My M3 ... —1
ABy = ;% /131 }g /12 M3l3 M3}§ oo =1 , (32)
22y N Sy e 3N Mondon MonAdy ... —1
A1 Ai ),z o= M Mlﬂé MI)E Ml/};z
22 /L% ;% —M2 sz% Mz)% Mz{L%N
ACN= 23 A3 23 —M3 M3}~3 M3;\.3 M3A3
JaN N BN --- — Moy ManAZy Mon7iy - MZNJZN

Using Egs. (6), (20) and (31), we can derive the new formulas of N-soliton solutions for GNLS equation
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Figure 1. Profiles of intensity distribution (a) [z1(x, t)| of Eq. (34) with parameters

J1=1—08i,1; = 0.6+ 0.4i,a = 0.0004, 8 = 1,F; = 0.4 + i, F, = 0.3 + 0.6i; (b) [ii(x, t)| of Eq. (34)

with parameters 4; = 0.2i, 4 = 0.1, = 0.4, 8 = 0.2, F; = 0.01, F, = 0.02; (¢) |z1(x, t)| of Eq. (36) with
parameters 41 = 02, /2 = 0340.2i, 23 = 0.3, 14 = 0.3—-0.2i,a = 0.2, § = 0.3, F; = 0.2+0.2i, F, = 0.3—0.2i,
F3 = 0.3 4 0.2i, F4 = 0.3 — 0.2i; (d) [F(x, t)| of Eq. (36) with parameters A; = 0.5, 1, = 0.2, A3 = 0.5, 24 = 0.3,
o =0.004,8 =0.2,F; =05+ 0.2i,F, =0.5—0.2i,F3 =0.34 0.1, F;, = 0.3 — 0.1i.

U(x, 1) = 45

(33)

7(36, t) = %:

in order to understand solutions (33), we consider N = 1, 2 separately and plot their structure figures in Fig. la,b.

(I)  Wetake N = 1with 2 = 4;(j = 1,2). Solving Eq. (9), we can yield the 1-soliton solutions of the GNLS
equation (4) as following:

- AB; s
u(x, t) = T, r(x, t) =—Uu (x) t), (34)
with
lf 62(i11x+inzt+FI)ll i% 1
= 72 62(i12x+in2t+F2))'2 » AB1= 2 o—1)

L o, (35)
_ 22 x+in"t+Fy) 1%62(121x+m t+Fp)
_ ez(i/lzx+m2t+Fz) /1% ez(izzx+in21+F2)

ac =‘

(I) We take N = 2 in the N-times DT with A = 4;(j = 1,2, 3,4). The linear algebraic system (9) leads to
the 2-soliton solutions of GNLS (4) as following:
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- AB, o
u(x,t) = N r(x,t) = —u (x,t), (36)
with
A% /1411 ez(i;.1x+in2r+Fl> 11 eZ(i/llirinthrFl) ;g /1% /1411 ez(i/tlx+in2r+Fl) Mo—1
. .2 iy .2 e .2
A j.% /13 62(1).2x+1r]2t+F2))v2 62(1/L2x+1172t+F2)}v% ABZ B j.% j'ﬁzl 62(1/~2x+1n2t+F2);'2 -1
= . . Lo R = L R
j—% A;& 62(17.3x+1r] t+F3)),3 62(1/L3x+1n t+F3);§ j.% 1431 62(1/v3x+1n t+F3);’3 -1
/ﬁ /12 62(1‘/14x+i172t+F4) 4 62(i14x+in2t+F4) ;'131 /13; /11 62(i14x+in2t+F4) Ja —1
, , , 37
2 _62(i/»1x+i772t+F1) ;L%eZ(imaninthrFl) ;LélleZ(iAlx+in2t+F1) (37)
AC s _ez(i/lzx+in2r+F2) ;%eZ(iisznther) /*éeZ(i/lsznther)
2 =

3 _62(i2»3x+in2t+F3) ;%eZ(iigx+in2t+F3) /*éeZ(i)ngnthng) :
Jy — 62(i14x+in2t+F4) ;LieZ(ii4x+in2t+F4) Aiez(“‘l”""z”ﬂ)

In order to understand solutions (36), we consider N = 2 and plot their structure figures in Fig. 1c,d.

Conclusions

The integrable GNLS equation can describe the propagation of nonlinear light pulses in optical fibers, the high-
order nonlinear effects are taken into consideration. In this paper, we investigate the exact solutions (including
soliton solutions, breather solutions, and rational wave solutions) of a GNLS equation via DT method. And the
1-solitons, 2-solitons and N-soliton solutions of the GNLS equation are obtained via constructing special Lax
pairs. And we choose different seed solutions and obtain three kinds of solutions. Based on these obtained solu-
tions, we consider the elastic interactions and dynamics between two solitons for the GNLS equation.

Methods
Breather solutions for GNLS equation (4). Now we choose there kinds of seed solutions of (4) as fol-
lows:

. + o 2
u =coe"’V02x, co = u. (38)
Bvo
wo  _i2 _
u=——e 0D 5 = a[(B + oy — iy (39)
Bvo
and
u=¢?, 0=ax+bt, (40)
where yy, wo, a and b are arbitrary constants.
_ Broyg

Case 1: We give a seed solution u = coe'@Y% with co = T According to Eq. (5), we can yield the fol-
lowing systems

{ —i2y + iUV()2‘30)~€i"V‘]2xll’2 = Y1x (41)

. iov? )
ioydcoie VoY + i3y = Yoy,

without loss of generality, we assume that o = —1, ¢ = aef, ¥, = )/ef”‘*"‘”’o2 *, then Eq. (41) is solved by

_ ((RPa—iayd =il Gayd —iPa+i®): —sa (M —yF i +yi dal?)
- >

p 2
_ —iyozcoia * (42)
V= Brig—ie
Based on Eq. (5), we obtain
s R2 . . .02
(%536_2”’02" - iﬂz)lﬁl + e_ly‘}zx(‘mzs,tco - iOfCoJ’ozfl) Y2 = Vs )
. R . 822 ) 43
e (lagaco + iO“OVo”) Y1+ (_mﬁz Dem2rix 4 i”2> V2 = Yo,
we can derive the following system form Eq. (43)
(#cgfz%z" —in? — 211>a + (e*iy(%x—iagico — e*iV&xiaCOVoZ/l)b =0,
o iom2 . B2 (44)
(ef’y(’zx TR e”’ozxiaco)/ozl) a+ (_ L AN i — 112) b=0.
We obtain that
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2ﬁ462 (x2,3462
2.2 0 — 2212 4 0
211—\/5 con? —n* T /112——\/04ﬂ Q=N = e

. a2 : v R2 a2
iocoyd AeTox — Lﬁf‘)e ox
a= ﬁ b,
1% C
2 —in?2 =i

with

substituting the above solutions and Eq. (44) into Eq. (5), it is easy to find two basic solutions for these equations:

CiwB22 2
" wIC()Vo} Aaf 0 gy x - 1
1 11t J1at i _2iy2x | .
( " ) = Cje™t! ’”ﬁ;“,o x| Cae™ BP0 2t gy, . (45)
—2iy2x iap? _ivl2x; R
1 R R T )

It is easy to find two basic solutions for Egs. (42) and (45):

iydx Wﬂ iapcy fwo

2 iacoylie”
aCyenitpx 0% e + aCyetnttex
—5—in?=in

) = ’ e 2 ) (46)
¢ ) .2 s . <eiy0“a’§;0—e"VO"iacoyOZ}h>

A t+px+ioyyx A12t+px+ioyyx
yCie +yCe praE
2

—in?+12
we can obtain by using Eq. (10),

, Fi42iy2x+iat )
ClVeF/+iVOZX+A11f + Cap eI e, 2iacoZ2yg)
Miap2ct—2in2+2412) ,
M; = - , 1 <j=<2N, (47)
Crarelat + Clae/'lltf’yo (ia22coyd—iaprc)
2 Wi E—2in?—2711)

withvj(i) =efil<i<21 <j<2N).

(I)  We take N = 1with 4 = /; (j = 1, 2). We can yield the 1-soliton solutions of the GNLS equation (4)
from Eq. (9) as following:

AB;

u(x) t) = Coem-yox + T) ’F(X, t) = _ﬁ*(xa t): (48)
with
12 2 12
R Ml;\.l _ )\.1 -1 . —M; /LlMl
A= Bmn A= 2 1) 29T oy 2m | (49)

(I)  We take N = 2 in the N-times DT with 4 = 4;(j = 1,2, 3,4). The linear algebraic system (9) leads to
2-soliton solutions of GNLS Eq. (4) as following:

U(x, ) = cpel®"* %, Fot) = —u(x 1), (50)
with
/1; ;ﬁ M1 Ml/lz zi /lz My —1 o — M )éMl /“ﬁMl
A=A b | 2% = A s J1 A= |0 D 6
73 23 Mady Myl 7308 Mydy —1 Ja — My 23My J3My

Some periodic and breather solutions for GNLS equation (4) are shown, we consider N = 2 and plot their
structure figures in Fig. 2.

Case 2: We consider a solution u = 5’; e 05X +800) ith do = a[(B + U)/Oz)2 — cuo]y0 . Based on Eq. (5), we
can yield the following systems

_Mw MJOVo e_’(VO x+80t) WZ ‘ﬁlx;

(52)
_% l(y0x+6°t)1/f1 + il = Yo

without loss of generality, we assume thato = —1,9 = a1ef1%, 9, = ePrxti(vgx+60) then Eq. (52) is solved by
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T
20 =

Figure 2. Profiles of intensity distribution (a) [7(x, t)| of Eq. (48) with parameters

J1=02+403i 7, =02 —03ia =028 =03,y =020 = —1,F =0.3,F, = 0.2; (b)[7(x, )| of Eq. (48)
with parameters 41 = 0.3i,4; = 0.2 — 0.4i,0 = 0.2, = 0.3, = 02,0 = —1,F; = 0.3, F, = 0.2; (¢) [(x, t)|
of Eq. (50) with parameters A; = —0.3i, 4, = 0.2 4+ 0.3i, A3 = 0.1 — 0.3i, 44 = 0.4i,0 = 0.6, 8 = 0.2, = 0.1,
0 =—1,F =03,F, =0.2,F; = 04,F4 = 0.1, (d) [F(x, t)| of Eq. (50) with parameters

A1 =0.1i,7p = 0.2 — 0.4i, /3 = 0.3i, A4 = 02,0 = 02,8 = 03,59 = 05,0 = —1,F] = 0.3,F, = 02,F3 = 04,F; = 0.1,

280 (53)

__ —iwoyon
1= BBi+id)’

{ﬂl — _iyozi\/Fl

we can obtain A} = —yip* — 482 (w3 yE + 282 — Ly p?). By using Eq. (5), we obtain

; 2 N A
ey 2 iaBwy —i(ygx+dot) _ iAyomo ,—i(ydx+8ot) —
(2702 m )1//1 + ( 27y e B e Y2 = Ve,

. L oy il . (54)
(zgf;«;o _ ’“‘g"""’)e’(y‘] x+5°t)1//1 + (_% + ”72) Vo = Vars

without loss of generality, we assume that Y, = aje®, ¥, = by ectHGx+800) then Eq. (54) is solved by

_ ialﬂw§72iiﬂn2y02+iaﬂ2woy072io¢/12y03w0
o 22Bv¢m ’
Y] i 32,3, 2 ) 2
ay (iaf” yowo —2iaA” yg wo—ia ABwg+2in° 2Bys)
iaJBw —2i)Bn*yE+iaprwyyo—2ia it yg wo+2ilpy¢soar

_ (55)

by =

It is easy to find two basic solutions for Eqgs. (53) and (55) as following
v _ C3ef31x+ct
< ¢ ) = \ g e+t ) (56)

oFi edt+2i(y02x+60 t)

M=, 1=j <N, (57)

we can derive by using Eq. (10),

with vj(i) =efi(l<i<21<j<2N).

() Wetake N = 1with 4 = 4; (j = 1, 2), and yield the 1-soliton solutions of the GNLS equation (4) as

following:
~ wOo _i,2 Sot) AB] _ ~%
Ux, ) = ——e 100X 0D L T8 Tk 1) = ¥ (x, 1), 58
Bvo A (58)
with
|2 ik 12 - |-y 22
A=102 My | AP T2 <) 29T oy 22, | (59)

(IT) We take N = 2 in the N-times DT with A = 4;(j = 1,2, 3,4). The linear algebraic system (9) leads to
the 2-soliton solutions of GNLS Eq. (4) as following:

~ ; AB - ~

(o, ) = 080 1 22 R 1) = (e, ), (60)

By A
0

with
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720 Myay My23 20 Midy —1 Ji =My 22My 24M;y
|23 08 Mydy Mads 304 Mydy —1 | =My My AM,

A=17278 Mydy M3 POB2= 02 28 sy — 12T 0 S 2205 i | (61)
73 23 Mady M4/ 7374 Mady —1 Ja — My 23My J3My

Some periodic solutions for GNLS equation (4) with seed ,, _ 5)0 e—i(vgx+8ot) are shown, we consider N = 2
7

and plot their structure figures in Fig. 3.

Case 3: We consider a seed solution u = e/’ with 6 = ax + bt, b =

following systems from Eq. (5)

{

—i2%g
—ile”

1 .
%(xﬁz + 2aB + aa. We can yield the

- ilem(/& = P1x>

Bo1+i220) = o, (62)

(a)

13.4441
13,43
13421 |
13,41
Il 1340
13.39.
1338

1337

Figure 3. Profiles of intensity distribution (a) [zi(x, t)| of Eq. (58) with parameters
M =02,4=030=03,8=51y=050=—-1w) =04,F =0.3,F, = 0.4; (b)|u(x, t)| of Eq. (58) with
parameters z; = 0.3 +0.2i, 23 = 03 — 0.2i,a = 0.4, 8 = 5,59 = 0.6,0 = —L,wp = 0.2, F] = 0.2+ 0.3i, F; = 0.2 — 0.3i; (¢) [7(x, 1)

of Eq. (60) with parameters 4; = 0.3, 4,
wy = 03 F1 = 031 F2 = —0.3i,F1 = 0.5i,F1 =
parameters 2; = 0.3, 4,
wy = 0.2,F; =0.3i,F,

= —0.2i,A3 = 0.4i, 14 =
—0.5i; (d) [u(x, t)| of Eq. (60) with
—02,)3 = 04,74 = 0.5,0 = 0.4, 8 = 8,10 = 0.5,0 = —1,
—0.3i, F3 = 0.5i,F4, = —0.5i.

—0.5i,0 = 04,8 =5, =02,0 = —1,
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without loss of generality, we assume that 0 = —1, ¢ = me*, o, = pec1%~, then Eq. (62) is solved by
552
"= li«/zg/1 2/ m,
1+
1 = T\/E

We can obtain s = 1 + 44% We derive the system through Eq. (5),

2

- . ,
O i Y+ (1 — iad) ey = i,
;vR2 . -2

W —iaz)e Oy + (i — )y = v,

(63)

(64)

without loss of generality, we assume that ¥r; = peSt, v, = get* ¥, 0 = 1, = —1,n = Ja(h — %), then Eq.

(64) is solved by

_ i—2i)2

P = Gz ®

s — (4024 +8i22) /22— 644y
1 =

324 >

we can obtain z and y as following : z = 40iA* + 8i1%, y = 1618 — 24)° — 87> — 824 — 43 — 8> + 1.
It is easy to find two basic solutions for Egs. (63) and (65):

(i Qx+(B—4a) 92— At
¢ 5€ 207,

[/ 20+ Qxt+G-ar/922—rpt |’

C6e —2i6

2ik

(65)

(66)

2 2
we can obtain that: Ay = J2(a?B* — 4an?p? + 6ap? + 4n* — 12n% — 4022 + 4a?)%) + af*,Cs = 72%'7;#’

2
Co = 2071 g =3 —4,/972 — A,.

According to Eq. (10), we obtain

G5 g
T 200

Mj=e 1 <j<2N,

withv? = efi(1 <i<2,1<j<2N).

(I)  Wetake N = 1with 4 = /; (j = 1, 2) and derive the 1-breather solutions of the GNLS equation (4) as

following:

- ; AB _ .
Ux,t) =€ + Tl, 7(x, t) = —u"(x, 1),

with
72 MiAq 12 —1 —M; /lel
A=|73 1 AB = | 7] , AC) = 101
)% My, ! }v% —1 Cl —M; )L%MZ

(68)

(69)

(I) Wetake N = 2 in the N-times DT with A = 4;(j = 1,2, 3,4). The linear algebraic system (9) leads to

the 2-breather solutions of GNLS Eq. (4) as following:

- o ABy -
u(x,t) = e + Tz, T(x, 1) = —u*(x, 1),
with
7208 Mydy M3 2 Midy —1 1 — My 2AMy Jim
7375 Mado Mo/ 305 My —1 Ja — My 2My I5M,
A=|"5"% , sLABy=|"5 )% S AC = 2 4 .
/13 A3 M3A3 M3/13 ;,3 23 M3/13 —1 ;»3 —M3 )~3M3 A3M3
15 2% Mydy M/ 2204 Mydg —1 Ja — My 23My 23My

(70)

Some breather solutions for GNLS equation (4) with seed u = ﬂw—%e_i(yéxw‘”) are shown, we consider N = 2

and plot their structure figures in Fig. 4.

Rational wave solutions for GNLS Eq. (4)

In this section, we construct the rational wave solutions of the GNLS Eq. (4). In fact, the rational wave solutions

can be obtained by the limits of the eigenfunctions or the limits of the breather solutions.
Based on Eq. (66), we can get a new eigenfunction of the Lax pair (5)

Ri(e) = (g’

with

(72)
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(a)
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e | T
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Figure 4. Profiles of intensity distribution (a) [7(x, )| of Eq. (68) with parameters

M =-034+5i,A=03+4i,a=1,=—-l,a=—-1,b=3,0 = —1,F; =1i,F, = 2i;(b)|u(x, t)|of Eq.
(68) with parameters 4y = 0.5, 4, = 0.3i,a = 1, = —l,a= —1,b =3,0 = —1,F| = i, F, = 2i; (¢)[7(x, 1)|
of Eq. (70) with parameters A =050, = —0.3i,A43 =02i,44 = —04i,a =1, =—1,a=—1,b=3,

o =—1,F =i,F, =2i,F3 = 3i,Fy = 2i;(d) [7(x, t)| of Eq. (70) with parameters

A1 = 0.03+0.5i, 4y = 0.03—0.5i, A3 = 0.02+0.3i, 44 = 0.02—0.3i, 0 = 1,8 = —1l,a = —1,

b = 3,(7 = —1,F1 = i,FZ = 2i,F3 = 3i,F4 = 2i.

i/ Qx+(3—4r/) 972~ M)t 2014/ Qx+(3—4+/ 972~ M)t .
fi =Cse 207 , g1 = Cge 2i7 _2’9,
—20/% + ap? 2% — -1
R L R RNt
as

Ay =22 (0% B* — 4an®B? + 6aB% + 4n* — 120 — 40 B% + 40 1%) + B,

where ¢ is a small parameter, if we fix 1; = % + %i, and let A = % + %i + &2, then Ry (¢) can be expanded at
& = 1, so we have

Ri(e) = R + RMe? 4+ RPPet + RIS + .. (73)
where
Fx+Qt
Cze i1
REO] = ZFSerQtJrlﬁ(i—l) > (74)
ng i—1
and
—2ig? (Fx+Qt) Berlr
R = e T i (75)
. ) ) Q2061 |
49(1—1)—21[2ff-1&-Qt+29(1—1)] ngﬁ
with

Q=3—-4V92— Ay, F=24+/Q
We present the rational wave solution of the GNLS Eq. (4) as following:

* 2
_ fMe g2 = 2
Ur =u+ PPIRT oo (76)
2121224+ gy 124%)

with

—2ig?(Fx+Qt) [y c 40(i — 1) — 2i[2Fx + Qt +20(i — 1)]
AT Ky = Cs )

[ _
fl =G5 (i—1)2 > &1 i—1

Some rational wave solutions for GNLS equation (4) are shown with the limits of the breather solutions, we plot
their structure figures in Fig. 5.
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Figure 5. Profiles of intensity distribution (a) [tir (x, t)| of Eq. (76) with parameters
A=2+Lia=-038=05a=—1,b=3;(b)|ur(x, t)| of Eq. (76) with parameters

)= % + %i,cx =09,8=—-08,a=—1,b = 3; (c)|ur(x, t)| of Eq. (76) with parameters
i=31—-i0=06pf=-06a=—-1b=3
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