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Soliton solution, breather 
solution and rational wave 
solution for a generalized 
nonlinear Schrödinger equation 
with Darboux transformation
Chengcheng Fan , Li Li * & Fajun Yu 

In this paper, the exact solutions of generalized nonlinear Schrödinger (GNLS) equation are obtained 
by using Darboux transformation(DT). We derive some expressions of the 1-solitons, 2-solitons and 
n-soliton solutions of the GNLS equation via constructing special Lax pairs. And we choose different 
seed solutions and solve the GNLS equation to obtain the soliton solutions, breather solutions and 
rational wave solutions. Based on these obtained solutions, we consider the elastic interactions and 
dynamics between two solitons.

The generalized nonlinear Schrödinger(GNLS) equation is an important nonlinear evolution equation, which 
can describe physical models and phenomena, such as: the Bose–Einstein condensation, nonlinear optics, plasma 
physics condensed matter physics, fluid mechanics, and so on. Latchio Tiofack, Mohamadou and Kofané con-
sidered the nonuniform 1+ 1 dimensional coupled nonlinear schrödinger equations1, and presented some exact 
solutions by using the transformation. Vijayalekshmi, Mahalingam and Mani–Rajan studied the propagation of 
optical solitons in the nonautonomous nonlinear Schrödinger equation with a generalized external potential2. 
The nonlinear Schrödinger equation has been extended to various soliton models3 including variable coefficient, 
complex coefficient, high dimensional, high order, nonlocal and fractional order equations4–6. Some solitary 
wave solutions7, rogue wave solutions8, bright and dark solitons9 are derived in nonlinear Schrödinger equation.

There are many methods to solve soliton equation, such as Hirota bilinear method10,11, inverse scattering 
method12,13, homogeneous balance method14,15, Darboux transform (DT) method16,17 and so on. Some solu-
tions are successfully solved in different types of partial differential equations via these above methods. Some 
higher-order wave solutions and discrete rogue wave solutions of KE equation were constructed by using DT 
and Taylor expansion in18,19. Ablowitz and Musslimani proposed the nonlocal modified Korteweg–de Vries 
(mKdV) equation and the nonlocal Sine–Gordon (SG) equation, and proved the integrability of these equations 
in20. Ji and Zhu obtained a series of different types of exact analytical solutions of nonlocal mKdV equations 
through constructing DT21, including complexiton solutions, rogue wave solutions, kink soliton solutions and 
anti-kink soliton solutions. Some bright soliton solutions, dark soliton solutions and breather solutions of the 
super integrable equation are presented with DT22. The non-autonomous multi-rogue wave solutions of the 
spin-1 coupled nonlinear Gross–Pitaevskii equation with different dispersion, higher-order nonlinear terms, 
gain (or loss) and external potential are considered in23–25. The multiple breather solutions and mixed solutions 
of the Kundu equation are constructed with generalized Darboux transformation method, which have the Lax 
pair of Kaup–Newell system in26.

The paper is organized as follows: in “Results”, we successfully solve the GNLS equation with DT, and obtain 
several new sets of exact solutions, including 1-soliton solutions, 2-soliton solutions and n-soliton solutions. In 
“Conclusions”, we select the non-zero seed solution and solve the GNLS equation by using the DT, and obtain 
the breather solutions of the GNLS equation. In “Methods”, we also use the DT and Taylor expansion to derive 
the rational wave solutions of the GNLS equation. Finally, we give some conclusions in “Rational wave solutions 
for GNLS Eq. (4)”.
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Results
Soliton solutions of GNLS equation.  It is well known that the standard nonlinear Schrödinger(NLS) 
equation

is one of the most important integrable system among many branches of applied mathematics and physics, espe-
cially in optics, water wave and so on. The u = u(x, t) is a complex smooth function of x and t , the subscripts 
denote partial derivatives and the parameter γ is real constant in Eq. (1).

Fokas studied an integrable generalized nonlinear Schrödinger (GNLS) equation by means of bi-Hamiltonian 
operators

where γ and v are real constants. In fact, Eq. (2) can be transformed into Eq. (1) when the parameter v = 0 . 
Lenells investigated Eq. (2) by the dressing method, and presented a new form of Eq. (2) as following

under the transformation of u → β
√
αeiβxu , σ = −σ , where α = γ

ν
> 0,β = 1

v.
Without losing generality, let σ = −1 , then Eq. (3) will become the following form27:

and the Lax pair of Eq. (4) is as following

where η = √
α(�− β

2�
), r = −u∗ , the “∗′′ denotes the complex conjugate and the vector ϕ = (ϕ1,ϕ2)

T is an 
eigenfunction associated with � and potential u, which consists of two complex functions ϕ1 = ϕ1(x, t) and 
ϕ2 = ϕ2(x, t) . Trough direct calculations, we can verify that the integrability condition Ut − Vx + [U ,V ] = 0 
exactly can be derived from Eq. (4), where [U ,V ] = UV − VU .

From the above analysis, we could construct a N-fold Darboux matrix T for the GNLS equation (4), as follows

The lower forms are obtained by compatibility

If the Ũ , Ṽ  and U, V have the same types, the system (6) is called Darboux transformation of the GNLS equa-
tion. Let ψ = (ψ1,ψ2)

T , φ = (φ1,φ2)
T are two basic solutions of the systems (5), then we give the following 

linear algebraic systems:

with

where �j and v(k)j  should choose appropriate parameters, thus the determinants of coefficients for Eq. (9) are 
nonzero. Hereby, we take a 2× 2 matrix T as

where N is a natural number, the A(i)
mn(m, n = 1, 2, i ≥ 0) are some functions of x and t. Through calculations, 

we can obtain �T as following

(1)iut + γ uxx + σu|u|2 = 0, σ = ±1,

(2)iut − vutx + γ uxx + σ |u|2(u+ ivux) = 0, σ = ±1,

(3)utx + αβ2u− 2iαβux − αuxx + σ iαβ2|u|2ux = 0, σ = ±1,

(4)utx + αβ2u− 2iαβux − αuxx − iαβ2|u|2ux = 0,

(5)

ϕx =Uϕ, ϕt = Vϕ,

U =
(
−i�2 �ux
�rx i�2

)
, V =

(
− iαβ2

2
ur − iη2 iαβ2

2�
u+ α�ux

− iαβ2

2�
r + α�rx

iαβ2

2
ur + iη2

)
,

(6)ϕ̃n = Tϕn, T =
(
T11 T12

T21 T22

)
.

(7)ϕx =Ũϕ, Ũ = (Tx + TU)T−1
,

(8)ϕt =Ṽϕ, Ṽ = (Tt + TV)T−1
.

(9)

{∑N
k=1 Ak�

2k
j +

∑N
k=1 Bk�

2k−1
j M

(1)
j = −1,

∑N
k=1 −B∗k�

2k−1
j +

∑N
k=1 A

∗
k�

2k
j M

(1)
j = −M

(1)
j ,

(10)M
(1)
j =

ψ2 + v
(1)
j φ2

ψ1 + v
(1)
j φ1

, (1 ≤ j ≤ 2N), A∗
k = Dk , − B∗k = Ck ,

(11)
{
T11 = 1+

∑N
k=1 Ak�

2k , T12 =
∑N

k=1 Bk�
2k−1,

T21 =
∑N

k=1 −B∗k�
2k−1, T22 = 1+

∑N
k=1 A

∗
k�

2k ,

(12)�T = �2N
j=1(�− �j),
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which proves that �j (�j  = 0)(j = 1, 2, 3, . . . , 2N) are 2N roots of �T . Based on these conditions, we will proof 
that the Ũ  and Ṽ  have the same structures as U and V respectively.

The matrix Ũ  defined by (7) has the same type as U, that is,

in which the transformation formula between old and new potentials are defined by

the transformations (14) are used to get a Darboux transformation of the spectral problem (7).
Let T−1 = T∗

�T  and

it is easy to verify that Bsl(1 ≤ s, l ≤ 2) is 2N-order or 2N + 1-order polynomial of �.
Through some accurate calculations, �j(1 ≤ j ≤ 2, ) is the root of Bsl(1 ≤ s, l ≤ 2) . Thus, Eq. (15) has the 

following structure

where

and E(k)mn(m, n = 1, 2, k = 0, 1) satisfy the functions without � . Equation (16) can be rewritten as

Through comparing the coefficients of � in Eq. (18), we can obtain

In this section, we assume that the new matrix Ũ  has the same type with U, which means that they have the 
same structures only u(x, t), r(x, t) of U transformed into ũ(x, t), r̃(x, t) of Ũ . After careful calculation, we compare 
the ranks of �N , and get the objective equations as following:

from Eqs. (13) and (14), we know that Ũ = E(�) . The proof is completed.
The matrix Ṽ  defined by the second expression of (8) has the same form as V, in which the old potentials u 

and r are mapped into ũ and r̃  , that is,

We suppose the new matrix Ṽ  also has the same form with V. If we obtain the similar relations between 
u(x, t), r(x, t) and ũ(x, t), r̃(x, t) in Eq. (14), we can prove that the gauge transformations under T turn the Lax 
pairs U, V into new Lax pairs Ũ , Ṽ  with the same types.

Let T−1 = T∗
�T  and

it is easy to verify that Csl(1 ≤ s, l ≤ 2) is 2N-order or 2N + 1-order polynomial of � . Through some accurate 
calculations, �j(1 ≤ j ≤ 2) is the root of Csl(1 ≤ s, l ≤ 2) . Thus, Eq. (22) has the following structure

where

(13)Ũ =
(
−i�2 �ũx
�r̃x i�2

)
,

(14)
{
ũx = ux + B1x ,
r̃x = rx + C1x ,

(15)(Tx + TU)T∗ =
(
B11(�) B12(�)
B21(�) B22(�)

)
,

(16)(Tx + TU)T∗ = (�T)E(�),

(17)E(�) =
(
E
(2)
11 �

2 + E
(1)
11 �+ E

(0)
11 E

(1)
12 �+ E

(0)
12

E
(1)
21 �+ E

(0)
21 E

(2)
22 �

2 + E
(1)
22 �+ E

(0)
22

)
,

(18)(Tx + TU) = E(�)T .

(19)

{
E
(0)
11 = 0,E

(1)
11 = 0,E

(2)
11 = i,E

(0)
12 = 0,E

(1)
12 = ux + B1x = ũx ,

E
(0)
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(1)
21 = rx + C1x = r̃x ,E

(0)
22 = 0,E

(1)
22 = 0,E

(2)
22 = i.

(20)
{
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(21)Ṽ =
(
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2
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2�
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2
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)
.
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,
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and F(k)mn(m, n = 1, 2, k = 0, 1) satisfies the functions without � . According to Eq. (23), the following equation 
is obtained

Through comparing the coefficients of � in Eq. (25), we get the objective equations as following:

In this section, we assume the new matrix Ṽ  has the same type with V, which means they have the same 
structures only u(x, t), r(x, t) of V transformed into ũ(x, t), r̃(x, t) of Ṽ  . From Eqs. (14) and (21), we know that 
Ṽ = F(�) . The proof is completed.

We will give some novel explicit solutions of Eq. (4) by applying N-fold DT. Firstly, we give a seed solution 
u = 0 and substitute the solution into Eq. (5), it is easy to find two basic solutions for these equations:

by using Eqs. (8) and (25), we obtain

with ν(i)j = e(2iFji) (1 ≤ i ≤ 2, 1 ≤ j ≤ 2N).
In order to derive the expression of N-order DT of Eq. (4) and obtain the matrix T

and

Solving Eq. (30) via the Gramer’s rule, we have

with

Using Eqs. (6), (20) and (31), we can derive the new formulas of N-soliton solutions for GNLS equation

(25)(Tt + TV) = F(�)T .

(26)


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4
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2
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2
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,

F
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2
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,

F
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4
, F

(2)
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(0)
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2
�u�r.
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)
,
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in order to understand solutions (33), we consider N = 1, 2 separately and plot their structure figures in Fig. 1a,b. 

	 (I)	 We take N = 1 with � = �j(j = 1, 2) . Solving Eq. (9), we can yield the 1-soliton solutions of the GNLS 
equation (4) as following: 

 with 

	 (II)	 We take N = 2 in the N-times DT with � = �j(j = 1, 2, 3, 4) . The linear algebraic system (9) leads to 
the 2-soliton solutions of GNLS (4) as following: 

(33)





�u(x, t) = �BN
�

,

�r(x, t) = �CN
�

,

(34)ũ(x, t) = �B1

�
, r̃(x, t) = −ũ∗(x, t),

(35)

� =
∣∣∣∣∣
�
2
1 e2(i�1x+iη2t+F1)�1

�
2
2 e2(i�2x+iη2t+F2)�2

∣∣∣∣∣, �B1 =
∣∣∣∣
�
2
1 − 1

�
2
2 − 1

∣∣∣∣,

�C1 =
∣∣∣∣∣
−e2(i�1x+iη2t+F1) �

2
1e

2(i�1x+iη2t+F1)

−e2(i�2x+iη2t+F2) �
2
2e

2(i�2x+iη2t+F2)

∣∣∣∣∣.

Figure 1.   Profiles of intensity distribution (a) |ũ(x, t)| of Eq. (34) with parameters 
�1 = 1− 0.8i, �2 = 0.6+ 0.4i,α = 0.0004,β = 1, F1 = 0.4+ i, F2 = 0.3+ 0.6i ; (b) |ũ(x, t)| of Eq. (34) 
with parameters �1 = 0.2i, �2 = 0.1,α = 0.4,β = 0.2, F1 = 0.01, F2 = 0.02 ; (c) |ũ(x, t)| of Eq. (36) with 
parameters �1 = 0.2, �2 = 0.3+0.2i, �3 = 0.3, �4 = 0.3−0.2i,α = 0.2,β = 0.3, F1 = 0.2+0.2i, F2 = 0.3−0.2i,

F3 = 0.3+ 0.2i, F4 = 0.3− 0.2i ; (d) |̃r(x, t)| of Eq. (36) with parameters �1 = 0.5, �2 = 0.2, �3 = 0.5, �4 = 0.3,

α = 0.004,β = 0.2, F1 = 0.5+ 0.2i, F2 = 0.5− 0.2i, F3 = 0.3+ 0.1i, F4 = 0.3− 0.1i.
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 with 

In order to understand solutions (36), we consider N = 2 and plot their structure figures in Fig. 1c,d.

Conclusions
The integrable GNLS equation can describe the propagation of nonlinear light pulses in optical fibers, the high-
order nonlinear effects are taken into consideration. In this paper, we investigate the exact solutions (including 
soliton solutions, breather solutions, and rational wave solutions) of a GNLS equation via DT method. And the 
1-solitons, 2-solitons and N-soliton solutions of the GNLS equation are obtained via constructing special Lax 
pairs. And we choose different seed solutions and obtain three kinds of solutions. Based on these obtained solu-
tions, we consider the elastic interactions and dynamics between two solitons for the GNLS equation.

Methods
Breather solutions for GNLS equation (4).  Now we choose there kinds of seed solutions of (4) as fol-
lows:

and

where γ0 , ω0 , a and b are arbitrary constants.
Case 1: We give a seed solution u = c0e

iσγ 2
0 x with c0 = β+σγ 2

0

βγ0
 . According to Eq. (5), we can yield the fol-

lowing systems

without loss of generality, we assume that σ = −1 , ψ1 = αepx , ψ2 = γ epx−iσγ 2
0 x , then Eq. (41) is solved by

Based on Eq. (5), we obtain

we can derive the following system form Eq. (43)
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,

(39)u = ω0

βγ0
e−i(γ 2

0 x+δ0t), δ0 = α[(β + σγ 2
0 )

2 − ω2
0]γ−2

0 ,

(40)u = eiθ , θ = ax + bt,

(41)

{
−i�2ψ1 + iσγ 2

0 c0�e
iσγ 2

0 xψ2 = ψ1x ,

iσγ 2
0 c0�e

−iσγ 2
0 xψ1 + i�2ψ2 = ψ2x ,

(42)





p = (i�2α−iαγ 2
0 −i�2)±

√
(iαγ 2

0 −i�2α+i�2)2−4α(�4−γ 2
0 �

2+γ 4
0 c

2
0α�

2)

2α
,

γ = −iγ 2
0 c0�α

β+iγ 2
0 −i�2

.

(43)





�
iαβ2

2
c20e

−2iγ 2
0 x − iη2

�
ψ1 + e−iγ 2

0 x
�
iαβ2c0
2�

− iαc0γ
2
0 �

�
ψ2 = ψ1t ,

e−iγ 2
0 x
�
iαβ2c0
2�

+ iαc0γ
2
0 �

�
ψ1 +

�
− iαβ2c20

2
e−2iγ 2

0 x + iη2
�
ψ2 = ψ2t ,

(44)





�
iαβ2

2
c20e

−2iγ 2
0 x − iη2 − �11

�
a+

�
e−iγ 2

0 x iαβ2c0
2�

− e−iγ 2
0 xiαc0γ

2
0 �

�
b = 0,

�
e−iγ 2

0 x iαβ2c0
2�

+ eiγ
2
0 xiαc0γ

2
0 �

�
a+

�
− iαβ2c20

2
e−2iγ 2

0 x + iη2 − �12

�
b = 0.
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with

substituting the above solutions and Eq. (44) into Eq. (5), it is easy to find two basic solutions for these equations:

It is easy to find two basic solutions for Eqs. (42) and (45):

we can obtain by using Eq. (10),

with ν(i)j = eFj (1 ≤ i ≤ 2, 1 ≤ j ≤ 2N).

	 (I)	 We take N = 1 with � = �j (j = 1, 2). We can yield the 1-soliton solutions of the GNLS equation (4) 
from Eq. (9) as following: 

 with 

	 (II)	 We take N = 2 in the N-times DT with � = �j(j = 1, 2, 3, 4) . The linear algebraic system (9) leads to 
2-soliton solutions of GNLS Eq. (4) as following: 

 with 

Some periodic and breather solutions for GNLS equation (4) are shown, we consider N = 2 and plot their 
structure figures in Fig. 2.

Case 2: We consider a solution u = ω0

βγ0
e−i(γ 2

0 x+δ0t) with δ0 = α[(β + σγ 2
0 )

2 − ω2
0]γ−2

0  . Based on Eq. (5), we 
can yield the following systems

without loss of generality, we assume that σ = −1 , ψ1 = α1e
β1x , ψ2 = γ1e

β1x+i(γ 2
0 x+δ0t) , then Eq. (52) is solved by

�11 =

√

αβ2c20η
2 − η4 − α2β4c20

4�2
, �12 = −

√

αβ2c20η
2 − η4 − α2β4c20

4�2
,

a =


 iαc0γ

2
0 �e

−iγ 2
0 x − iαβ2c0

2�
e−iγ 2

0 x

iαβ2c20
2

− iη2 − �11


b,

(45)
�
ψ1

ψ2

�
= C1e

�11t




iαc0γ
2
0 �−

−iαβ2c2
0

2
e−iγ 2

0
x

iαβ2c2
0

2
e−2iγ 2

0
x−iη2−�11

1


+ C2e

�12t




1
iαβ2c2

0
2

e−2iγ 2
0
x+iη2+�12

e−2iγ 2
0
x iαβ2c0

2�
−e−iγ 2

0
x iαc0γ

2
0 �


.

(46)
�
ψ

φ

�
=




αC1e
�11t+px

�
iαc0γ

2
0 �e

−iγ 2
0
x− iαβ2c0

2�
e−iγ 2

0
x

iαβ2c2
0

2
−iη2−�11

�
+ αC2e

�12t+px

γC1e
�11t+px+iσγ 2

0 x + γC2e
�12t+px+iσγ 2

0 x

�
eiγ

2
0
x iαβ2c0

2�
−eiγ

2
0
x iαc0γ

2
0 �

iαβ2c2
0

2
−iη2+�12

�



,

(47)Mj =
C1γ e

Fj+iγ 2
0 x+�11t + C2γ e

Fj+2iγ 2
0
x+�12 t (iαβ2c0−2iαc0�

2γ 2
0 )

�(iαβ2c20−2iη2+2�12)

C2αe�12t + C1αe
�11 t−iγ 2

0
x
(2iα�2c0γ

2
0 −iαβ2c0)

�(iαβ2c20−2iη2−2�11)

, 1 ≤ j ≤ 2N ,

(48)ũ(x, t) = c0e
iσγ 2

0 x + �B1

�
, r̃(x, t) = −ũ∗(x, t),

(49)� =
∣∣∣∣
�
2
1 M1�1

�
2
2 M2�2

∣∣∣∣, �B1 =
∣∣∣∣
�
2
1 − 1

�
2
2 − 1

∣∣∣∣, �C1 =
∣∣∣∣
−M1 �

2
1M1

−M2 �
2
2M2

∣∣∣∣.

(50)ũ(x, t) = c0e
iσγ 2

0 x + �B2

�
, r̃(x, t) = −ũ∗(x, t),

(51)� =

∣∣∣∣∣∣∣∣

�
2
1 �

4
1 M1�1 M1�

3
1

�
2
2 �

4
2 M2�2 M2�

3
2

�
2
3 �

4
3 M3�3 M3�

3
3

�
2
4 �

4
4 M4�4 M4�

3
4

∣∣∣∣∣∣∣∣
, �B2 =

∣∣∣∣∣∣∣∣

�
2
1 �

4
1 M1�1 − 1

�
2
2 �

4
2 M2�2 − 1

�
2
3 �

4
3 M3�3 − 1

�
2
4 �

4
4 M4�4 − 1

∣∣∣∣∣∣∣∣
, �C2 =

∣∣∣∣∣∣∣∣

�1 −M1 �
2
1M1 �

4
1M1

�2 −M2 �
2
2M2 �

4
2M2

�3 −M3 �
2
3M3 �

4
3M3

�4 −M4 �
2
4M4 �

4
4M4

∣∣∣∣∣∣∣∣
.

(52)





−i�ψ1 − iω0γ
2
0

βγ0
e−i(γ 2

0 x+δ0t)ψ2 = ψ1x ,

− iω0γ
2
0

βγ0
ei(γ0x+δ0t)ψ1 + i�ψ2 = ψ2x ,
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we can obtain �1 = −γ 4
0 β

4 − 4β2(ω2
0γ

2
0 + �

2β2 − �γ 2
0 β

2) . By using Eq. (5), we obtain

without loss of generality, we assume that ψ1 = a1e
ct , ψ2 = b1e

ct+i(γ 2
0 x+δ0t) , then Eq. (54) is solved by

It is easy to find two basic solutions for Eqs. (53) and (55) as following

we can derive by using Eq. (10),

with ν(i)j = eFj (1 ≤ i ≤ 2, 1 ≤ j ≤ 2N) . 

	 (I)	 We take N = 1 with � = �j (j = 1, 2), and yield the 1-soliton solutions of the GNLS equation (4) as 
following: 

 with 

	 (II)	 We take N = 2 in the N-times DT with � = �j(j = 1, 2, 3, 4) . The linear algebraic system (9) leads to 
the 2-soliton solutions of GNLS Eq. (4) as following: 

 with 

(53)

{
β1 = −iγ 2

0 ±
√
�1

2β2 ,

α1 = −iω0γ0γ1
β(β1+i�) ,

(54)





�
iαω2

0

2γ 2
0

− iη2
�
ψ1 +

�
iαβω0

2�γ0
e−i(γ 2

0 x+δ0t) − iα�γ0ω0

β
e−i(γ 2

0 x+δ0t)
�
ψ2 = ψ1t ,�

iαβω0

2�γ0
− iα�γ0ω0

β

�
ei(γ

2
0 x+δ0t)ψ1 +

�
− iαω2

0

2γ 2
0

+ iη2
�
ψ2 = ψ2t ,

(55)





c = iα�βω2
0−2i�βη2γ 2

0 +iαβ2ω0γ0−2iα�2γ 3
0 ω0

2�βγ 2
0 a1

,

b1 = a1(iαβ
2γ0ω0−2iα�2γ 3

0 ω0−iα�βω2
0+2iη2�βγ 2

0 )

iα�βω2
0−2i�βη2γ 2

0 +iαβ2ω0γ0−2iα�2γ 3
0 ω0+2i�βγ 2

0 δ0a1
.

(56)
(
ψ

φ

)
=

(
C3e

β1x+ct

C4e
β1x+dt+2i(γ 2

0 x+δ0t)

)
,

(57)Mj =
eFj edt+2i(γ 2

0 x+δ0t)

ect
, 1 ≤ j ≤ 2N ,

(58)ũ(x, t) = ω0

βγ0
e−i(γ 2

0 x+δ0t) + �B1

�
, r̃(x, t) = −ũ∗(x, t),

(59)� =
∣∣∣∣
�
2
1 M1�1

�
2
2 M2�2

∣∣∣∣, �B1 =
∣∣∣∣
�
2
1 − 1

�
2
2 − 1

∣∣∣∣, �C1 =
∣∣∣∣
−M1 �

2
1M1

−M2 �
2
2M2

∣∣∣∣.

(60)ũ(x, t) = ω0

βγ0
e−i(γ 2

0 x+δ0t) + �B2

�
, r̃(x, t) = −ũ∗(x, t),

Figure 2.   Profiles of intensity distribution (a) |̃r(x, t)| of Eq. (48) with parameters 
�1 = 0.2+ 0.3i, �2 = 0.2− 0.3i,α = 0.2,β = 0.3, γ0 = 0.2, σ = −1, F1 = 0.3, F2 = 0.2 ; (b) |̃r(x, t)| of Eq. (48) 
with parameters �1 = 0.3i, �2 = 0.2− 0.4i,α = 0.2,β = 0.3, γ0 = 0.2, σ = −1, F1 = 0.3, F2 = 0.2 ; (c) |̃r(x, t)| 
of Eq. (50) with parameters �1 = −0.3i, �2 = 0.2+ 0.3i, �3 = 0.1− 0.3i, �4 = 0.4i,α = 0.6,β = 0.2, γ0 = 0.1,

σ = −1, F1 = 0.3, F2 = 0.2, F3 = 0.4, F4 = 0.1 ; (d) |̃r(x, t)| of Eq. (50) with parameters 
�1 = 0.1i, �2 = 0.2− 0.4i, �3 = 0.3i, �4 = 0.2i,α = 0.2,β = 0.3, γ0 = 0.5, σ = −1, F1 = 0.3, F2 = 0.2, F3 = 0.4, F4 = 0.1.
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Some periodic solutions for GNLS equation (4) with seed u = ω0

βγ0
e−i(γ 2

0 x+δ0t) are shown, we consider N = 2 
and plot their structure figures in Fig. 3.

Case 3: We consider a seed solution u = eiθ with θ = ax + bt , b = 1+a
a αβ2 + 2αβ + aα . We can yield the 

following systems from Eq. (5)

(61)� =

∣∣∣∣∣∣∣∣

�
2
1 �

4
1 M1�1 M1�

3
1

�
2
2 �

4
2 M2�2 M2�

3
2

�
2
3 �

4
3 M3�3 M3�

3
3

�
2
4 �

4
4 M4�4 M4�

3
4

∣∣∣∣∣∣∣∣
,�B2 =

∣∣∣∣∣∣∣∣

�
2
1 �

4
1 M1�1 − 1

�
2
2 �

4
2 M2�2 − 1

�
2
3 �

4
3 M3�3 − 1

�
2
4 �

4
4 M4�4 − 1

∣∣∣∣∣∣∣∣
,�C2 =

∣∣∣∣∣∣∣∣

�1 −M1 �
2
1M1 �

4
1M1

�2 −M2 �
2
2M2 �

4
2M2

�3 −M3 �
2
3M3 �

4
3M3

�4 −M4 �
2
4M4 �

4
4M4

∣∣∣∣∣∣∣∣
.

(62)
{
−i�2ϕ1 − i�eiθϕ2 = ϕ1x ,

−i�e−iθϕ1 + i�2ϕ2 = ϕ2x ,

Figure 3.   Profiles of intensity distribution (a) |ũ(x, t)| of Eq. (58) with parameters 
�1 = 0.2, �2 = 0.3,α = 0.3,β = 5, γ0 = 0.5, σ = −1,ω0 = 0.4, F1 = 0.3, F2 = 0.4 ; (b) |ũ(x, t)| of Eq. (58) with 
parameters �1 = 0.3+ 0.2i, �2 = 0.3− 0.2i,α = 0.4,β = 5, γ0 = 0.6, σ = −1,ω0 = 0.2, F1 = 0.2+ 0.3i, F2 = 0.2− 0.3i ; (c) |̃r(x, t)| 
of Eq. (60) with parameters �1 = 0.3i, �2 = −0.2i, �3 = 0.4i, �4 = −0.5i,α = 0.4,β = 5, γ0 = 0.2, σ = −1,

ω0 = 0.3, F1 = 0.3i, F2 = −0.3i, F1 = 0.5i, F1 = −0.5i ; (d) |ũ(x, t)| of Eq. (60) with 
parameters �1 = 0.3, �2 = −0.2, �3 = 0.4, �4 = 0.5,α = 0.4,β = 8, γ0 = 0.5, σ = −1,

ω0 = 0.2, F1 = 0.3i, F2 = −0.3i, F3 = 0.5i, F4 = −0.5i.
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without loss of generality, we assume that σ = −1 , ϕ1 = mec1x , ϕ2 = nec1x−iθ , then Eq. (62) is solved by

We can obtain s = 1+ 4�4 . We derive the system through Eq. (5),

without loss of generality, we assume that ψ1 = pes1t , ψ2 = qes1t−iθ , α = 1 , β = −1 , η = √
α(�− β

2�
) , then Eq. 

(64) is solved by

we can obtain z and y as following : z = 40i�4 + 8i�2 , y = 16�8 − 24�6 − 8�5 − 8�4 − 4�3 − 8�2 + 1.
It is easy to find two basic solutions for Eqs. (63) and (65):

we can obtain that : �2 = �
2(α2β4 − 4αη2β2 + 6αβ2 + 4η4 − 12η2 − 4α2β2 + 4α2

�
2)+ αβ4, C5 = −2α�2+αβ2

α�β2 , 

C6 = 2�2−
√
Q−1

2�
, Q = 3− 4

√
9�2 −�2.

According to Eq. (10), we obtain

with ν(i)j = eFj (1 ≤ i ≤ 2, 1 ≤ j ≤ 2N) . 

	 (I)	 We take N = 1 with � = �j (j = 1, 2) and derive the 1-breather solutions of the GNLS equation (4) as 
following: 

 with 

	 (II)	 We take N = 2 in the N-times DT with � = �j(j = 1, 2, 3, 4) . The linear algebraic system (9) leads to 
the 2-breather solutions of GNLS Eq. (4) as following: 

 with 

Some breather solutions for GNLS equation (4) with seed u = ω0

βγ0
e−i(γ 2

0 x+δ0t) are shown, we consider N = 2 
and plot their structure figures in Fig. 4.

Rational wave solutions for GNLS Eq. (4)
In this section, we construct the rational wave solutions of the GNLS Eq. (4). In fact, the rational wave solutions 
can be obtained by the limits of the eigenfunctions or the limits of the breather solutions.

Based on Eq. (66), we can get a new eigenfunction of the Lax pair (5)

with

(63)

{
n = 1±√

s−2�2

2�
m,

c1 = 1±√
s

2i .

(64)





�
iαβ2

2
− iη2

�
ψ1 +

�
iαβ2

2�
− iα�

�
eiθψ2 = ψ1t ,�

iαβ2

2
− iα�

�
e−iθψ1 +

�
iη2 − iαβ2

2

�
ψ2 = ψ2t ,

(65)





p = i−2i�2

4i�4+2i�2+4�2s1+i
q,

s1 = −(40i�4+8i�2)±
√

z2−64�4y

32�4
,

(66)
�

φ

ψ

�
=


 C5e

(�+�
√
Q)x+(3−4

√
9�2−�2)t

2i�

C6e
2�(1+

√
Q)x+(3−4

√
9�2−�2)t

2i� −2iθ


,

(67)Mj = e
(�+�

√
Q)x

2i� +Fj−2iθ
, 1 ≤ j ≤ 2N ,

(68)ũ(x, t) = eiθ + �B1

�
, r̃(x, t) = −ũ∗(x, t),

(69)� =
∣∣∣∣
�
2
1 M1�1

�
2
2 M2�2

∣∣∣∣, �B1 =
∣∣∣∣
�
2
1 − 1

�
2
2 − 1

∣∣∣∣, �C1 =
∣∣∣∣
−M1 �

2
1M1

−M2 �
2
2M2

∣∣∣∣.

(70)ũ(x, t) = eiθ + �B2

�
, r̃(x, t) = −ũ∗(x, t),

(71)� =

∣∣∣∣∣∣∣∣

�
2
1 �

4
1 M1�1 M1�

3
1

�
2
2 �

4
2 M2�2 M2�

3
2

�
2
3 �

4
3 M3�3 M3�

3
3

�
2
4 �

4
4 M4�4 M4�

3
4

∣∣∣∣∣∣∣∣
,�B2 =

∣∣∣∣∣∣∣∣

�
2
1 �

4
1 M1�1 − 1

�
2
2 �

4
2 M2�2 − 1

�
2
3 �

4
3 M3�3 − 1

�
2
4 �

4
4 M4�4 − 1

∣∣∣∣∣∣∣∣
,�C2 =

∣∣∣∣∣∣∣∣

�1 −M1 �
2
1M1 �

4
1M1

�2 −M2 �
2
2M2 �

4
2M2

�3 −M3 �
2
3M3 �

4
3M3

�4 −M4 �
2
4M4 �

4
4M4

∣∣∣∣∣∣∣∣
.

(72)R1(ε) = (f1, g1)
T
,
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where ε is a small parameter, if we fix �1 = 1
2
+ 1

2
i , and let � = 1

2
+ 1

2
i + ε2 , then R1(ε) can be expanded at 

ε = 1 , so we have

where

and

with

We present the rational wave solution of the GNLS Eq. (4) as following:

with

Some rational wave solutions for GNLS equation (4) are shown with the limits of the breather solutions, we plot 
their structure figures in Fig. 5.

f1 =C5e
(�+�

√
Q)x+(3−4

√
9�2−�2)t

2i� , g1 = C6e
2�(1+

√
Q)x+(3−4

√
9�2−�2)t

2i� −2iθ
,

C5 =
−2α�2 + αβ2

α�β2
, C6 =

2�2 −
√
Q − 1

2�
, Q = 3− 4

√
9�2 −�2,

�2 =�
2(α2β4 − 4αη2β2 + 6αβ2 + 4η4 − 12η2 − 4α2β2 + 4α2

�
2)+ αβ4

,

(73)R1(ε) = R
[0]
1 + R

[1]
1 ε2 + R

[2]
1 ε4 + R

[3]
1 ε6 + · · ·

(74)R
[0]
1 =

(
C5e

Fx+Qt
i−1

C6e
2Fx+Qt+2θ(i−1)

i−1

)
,

(75)R
[1]
1 =

( −2iε2(Fx+Qt)
(i−1)2

C5e
Fx+Qt
i−1

4θ(i−1)−2i[2Fx+Qt+2θ(i−1)]
i−1

C6e
2Fx+Qt+2θ(i−1)

i−1

)
,

Q = 3− 4
√

9�2 −�2, F = �+ �
√

Q.

(76)uR = u+ f
[1]
1 g

[1]∗
1 (�2 − �

∗2)

|�|2(|f [1]1 |2�+ |g [1]1 |2�∗)
,

f
[1]
1 = C5

−2iε2(Fx + Qt)

(i − 1)2
, g

[1]
1 = C6

4θ(i − 1)− 2i[2Fx + Qt + 2θ(i − 1)]
i − 1

.

Figure 4.   Profiles of intensity distribution (a) |̃r(x, t)| of Eq. (68) with parameters 
�1 = −0.3+ 5i, �2 = 0.3+ 4i,α = 1,β = −1, a = −1, b = 3, σ = −1, F1 = i, F2 = 2i ; (b) |ũ(x, t)| of Eq. 
(68) with parameters �1 = 0.5i, �2 = 0.3i,α = 1,β = −1, a = −1, b = 3, σ = −1, F1 = i, F2 = 2i ; (c) |̃r(x, t)| 
of Eq. (70) with parameters �1 = 0.5i, �2 = −0.3i, �3 = 0.2i, �4 = −0.4i,α = 1,β = −1, a = −1, b = 3,

σ = −1, F1 = i, F2 = 2i, F3 = 3i, F4 = 2i ; (d) |̃r(x, t)| of Eq. (70) with parameters 
�1 = 0.03+0.5i, �2 = 0.03−0.5i, �3 = 0.02+0.3i, �4 = 0.02−0.3i,α = 1,β = −1, a = −1,

b = 3, σ = −1, F1 = i, F2 = 2i, F3 = 3i, F4 = 2i.
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