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Entomotoxic efficacy 
of fungus‑synthesized 
nanoparticles against immature 
stages of stored bean pests
Eman Ahmed Mohamed Helmy 1,2*, Phyu Phyu San 2,3, Yao Zhuo Zhang 2, 
Charles Adarkwah 2,4,5* & Midori Tuda 2*

Nanopesticides, particularly biosynthesized ones using organic reductants, hold great promise as a 
cost‑effective and eco‑friendly alternative to chemical pesticides. However, their efficacy on stored 
product pests, which can cause damage to dried grains, has not been extensively tested, especially 
on immature stages. Here, we biosynthesized six types of nanoparticles (NPs) using extracts from 
the fungus Fusarium solani: silver (AgNPs), selenium (SeNPs), silicon dioxide  (SiO2NPs), copper oxide 
(CuONPs), titanium dioxide  (TiO2NPs) and zinc oxide (ZnONPs) ranging in size from 8 to 33 nm. To 
test their efficacy on stored bean pests, they were applied to the eggs and larvae of pest beetles 
Callosobruchus chinensis and Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae), 
which burrow into seeds as larvae. Susceptibility to the NPs was species‑dependent and differed 
between developmental stages; eggs were more susceptible than larvae inhabiting in seeds. SeNPs 
and  TiO2NPs reduced the hatchability of C. chinensis eggs by 23% and 18% compared to the control, 
respectively, leading to an 18% reduction in egg‑to‑adult survival by SeNPs. In C. maculatus,  TiO2NPs 
applied to eggs reduced larva‑to‑adult survivorship by 11%, resulting in a 15% reduction in egg‑to‑
adult survival. The egg mass of C. chinensis was 23% smaller than that of C. maculatus: the higher 
surface‑area‑to‑volume ratio of the C. chinensis eggs could explain their higher acute mortality caused 
by the NPs compared to C. maculatus eggs. The biosynthesized SeNPs and  TiO2NPs have potential for 
controlling major stored bean pests when applied to their eggs. This is the first to show the efficacy of 
biosynthesized SeNPs and  TiO2NPs on stored product pests and the efficacy of Fusarium‑synthesized 
NPs on insects.

The world population has reached 8 billion in 2022 and is projected to peak at 10.4 billion by the  2080s1. Pulses 
such as cowpeas (Vigna unguiculata), mung beans (Vigna radiata), and azuki beans (Vigna angularis) are among 
the most significant protein sources for the human populations of different cultures and  vegetarians2. However, 
storage losses caused by insect pests such as Callosobruchus beetles (Coleoptera: Chrysomelidae: Bruchinae) can 
have a significant impact on this important food supply. The cowpea beetle (C. maculatus) in tropical areas and 
azuki bean beetle (C. chinensis) in temperate areas are important stored product pests. These pests have wide 
host  ranges3,4 and can cause severe losses to a majority of dried beans (up to 20% and occasionally  higher5,6). 
Geographical habitat ranges are also  expanding7–9, making control of these stored product pests crucial in 
reducing such losses. Furthermore, Callosobruchus beetles serve as model organisms for population  studies10,11.

While chemical insecticides such as fumigants and inert materials such as dusts are effective in controlling 
bruchine beetles and other stored pests, their use in farmer’s storage facilities, which are often not airtight, can 
pose risks to human health and the  environment12. Therefore, researchers are exploring alternative insecticides 
to protect both agriculture and ecosystems. One promising approach for stored product protection is the use of 
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nanoparticle  formulations13,14. Nanoparticles (NPs) have unique features, such as a high surface-area-to-volume 
ratio, high reactivity, and enhanced catalytic and biological  properties15, making them suitable for a variety of 
applications, including  agriculture16.

Metal and metallic oxide NPs such as silver (Ag), zinc oxide (ZnO), copper oxide (CuO), silica (silicon 
dioxide,  SiO2), titanium dioxide  (TiO2), gold (Au), and aluminum oxide  (Al2O3) are being developed for pest 
and disease control. For instance,  SiO2NPs have been demonstrated to have physisorption in cuticle lipids of 
insects, leading to their  mortality17.  SiO2NPs have also been found to alter volatile emissions from infested plants, 
which attracts  predators18. Selenium nanoparticles (SeNPs) possess  antioxidant19,  antibacterial20,  anticancer21, 
 neuroprotective22,  antimicrobial23, and plant-growth-promoting  properties24, and can be used in various medi-
cal and agricultural  treatments25. Recent studies have demonstrated the insecticidal effect of SeNPs on a moth 
and a  beetle14,26.  TiO2NPs are used in suncreens and cosmetics to protect from UV and in paint and food col-
oration.  TiO2NPs can affect soil invertebrates as well as control insect pests such as moths, coleopterans and 
 hemipterans27–31.

Biosynthesized NPs are expected to transform the field of integrated pest management (IPM) in the  future32,33. 
Compared to chemical synthesis, the biological synthesis of nanopesticides using plant extracts and microbes is 
greener, and the produced NPs are stable, environmentally friendly, and cost-effective: They do not require high 
temperature, high pressure, high energy, or toxic chemicals and do not produce by-products with mammalian 
 toxicity34–38. For example, SeNPs can be synthesized using  bacteria23 and fungi (e.g. Mariannaea sp.39). Simi-
larly,  TiO2NPs can be synthesized using  bacteria40 and plant  extracts41. Various species of fungi have also shown 
potential for use in biogenic synthesis of NPs with different  characteristics42. The fungus Fusarium sp. has been 
used for the extracellular biosynthesis of  AgNPs43. However, the efficacy of biosynthesized NPs on stored product 
pest beetles has been studied on a limited number of species (Sitophilus oryzae, Tribolium castaneum, Tenebrio 
molitor, and C. maculatus44–47). For example, ZnONPs synthesized with leaf extract or  entomopathogens48,49 and 
NiNPs synthesized using plant  extracts44,50 have been tested on adult C. maculatus.

In almost all cases, the targeted developmental stage of the studied stored product pests by NPs has been the 
adult stage, and the comparison of NP efficacy has rarely been made between developmental stages of  pests44–46,51. 
Abdel-Raheem et al.52 tested the efficacy of AgNPs synthesized with entomopathogenic fungi on the egg, larva, 
and adult stages of the red palm weevil Rhynchophorus ferrugineus. However, it is not yet known whether the 
result of this comparison can be applied to immature stages of other coleopterans (weevils and beetles) that have 
the potential to be exposed to pesticides to different extents. Therefore, in this study, we aimed to test the efficacy 
of biosynthesized NPs of Ag, CuO, Se,  SiO2,  TiO2, and ZnO by Fusarium solani extract as insecticides against two 
Callosobruchus beetle species at two immature stages, egg (attached to the surface of seeds) and larva (feeding 
seeds internally). We hypothesized that the biosynthesized NPs would reduce the survival of both species, regard-
less of the developmental stage treated. This is the first study to test the control efficacy of Fusarium-synthesized 
NPs on insects, as well as biosynthesized Se,  SiO2, and  TiO2 NPs on stored product pests.

Results
Control efficacy on Callosobruchus chinensis. Treatment on eggs of C. chinensis. For eggs treated 
with NPs, there was a significant effect of NP element on hatchability of eggs [LR (likelihood-ratio) χ2

6 = 19.09, 
P = 0.004]. Specifically, SeNPs and  TiO2NPs reduced the egg hatchability by 22.8% and 17.7%, respectively, 
compared to the control (posthoc comparison with the control, SeNPs, P < 0.001;  TiO2NPs, P = 0.008, Fig. 1a). 
Larva-to-adult survival was not affected by NP element (LR χ2

6 = 5.09, P = 0.533, Fig. 1a). However, egg-to-adult 
survival was affected (LR χ2

6 = 13.06, P = 0.042): SeNPs reduced egg-to-adult survival by 18.1% compared to the 
control (P = 0.021).

Treatment on larvae of C. chinensis. There was no difference among the NP elements and the control in larva-
to-adult survival (LR χ2

6 = 5.53, P = 0.477, Fig. 2a).

Control efficacy on Callosobruchus maculatus. Treatment on eggs of C. maculatus. For eggs treated 
with NPs, there was no significant effect of NP element on hatchability of eggs (LR χ2

6 = 6.21, P = 0.400), larva-
to-adult survival (LR χ2

6 = 9.56, P = 0.144), egg-to-adult survival (LR χ2
6 = 10.56, P = 0.103), or the number of 

emerged adults (LR χ2
6 = 9.15, P = 0.165) (Fig. 1b). However, posthoc tests indicated that  TiO2NPs reduced larva-

to-adult survival and egg-to-adult survival (or the number of emerged adults) by 10.8% and 15.0%, respectively, 
compared to the control (larva-to-adult survival, P = 0.011; egg-to-adult survival, P = 0.034; emerged adults, 
P = 0.021, Fig. 1b).

Treatment on larvae of C. maculatus. There was no difference in larva-to-adult survival among the NP ele-
ments and the control (LR χ2

6 = 2.64, P = 0.852, Fig. 2b), with one outlier in the control group excluded from the 
analysis.

Egg sizes of two Callosobruchus species. Egg mass was different between the two species (F1,90 = 107.7, 
P < 0.001), with C. chinensis eggs being 22.9% smaller (0.0212 ± 0.00044  mm3, mean ± SE, n = 50) than C. macula-
tus eggs (0.0275 ± 0.00037  mm3, n = 45). Parental pair ID had a significant effect (F3,90 = 3.8, P = 0.013).



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8508  | https://doi.org/10.1038/s41598-023-35697-1

www.nature.com/scientificreports/

Discussion
We compared the entomotoxic efficacy of the six types of nanoparticles (NPs) biosynthesized using the fun-
gal extract from F. solani on the immature stages of C. chinensis and C. maculatus. Our results showed that 
susceptibility to biosynthesized NPs varied by species and developmental stage. The eggs of both species were 
more susceptible than the last-instar larvae, which were protected by the seed coat. This suggests that direct 
contact with nanopesticides is crucial for controlling pest populations. When beetle eggs were treated, SeNPs 

Figure 1.  Survival (mean ± SE) of (a) Callosobruchus chinensis and (b) Callosobruchus maculatus when eggs 
were treated with different types of biosynthesized nanoparticles. *P < 0.05, **P < 0.01 compared to the control.

Figure 2.  Larva-to-adult survival (mean ± SE) of (a) Callosobruchus chinensis and (b) Callosobruchus maculatus 
when larvae were treated with different types of biosynthesized nanoparticles. No significant difference 
compared to the control was found in each species.
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and  TiO2NPs reduced egg hatchability in C. chinensis, and larval-to-adult survival in C. maculatus, leading to a 
reduction in the egg-to-adult survival by SeNPs in C. chinensis and by  TiO2NPs in C. maculatus. Since the eggs 
of C. chinensis were 23% smaller than those of C. maculatus (in line  with53), the surface area to volume ratio 
was higher, resulting in greater exposure of C. chinensis eggs to NPs. This could explain the difference in acute 
NP efficacy against eggs between the two species. In contrast, when beans containing beetle larvae were treated 
with NPs, no effect was observed. Since eggs and larvae are similarly more vulnerable than adults when NPs are 
applied  directly52, the apparent resistance of the larvae against the NPs is possibly due to the indirect method of 
application via the seed coat. The biosynthesized NPs, particularly SeNPs and  TiO2NPs, showed the potential 
to control the major stored bean pests when applied to eggs attached to the surface of seed coat but not when 
applied to larvae inhabiting in seeds.

This is one of the early demonstrations of the insecticidal effects of  SeNPs14,26. Se-based organic molecules 
can produce reactive oxygen species (ROS) and trigger apoptosis or autophagy of cancer  cells21. Sodium selenite 
induces dose-dependent mortality and dose-dependent accumulation of selenium in the Malpighian tubules of 
the mealworm beetle Tenebrio molitor but not in the digestive and reproductive  organs54, while SeNPs synthesized 
with plant extracts cause damages on larval cellular components of a mosquito, such as nucleus, lumen, and gut 
epithelial  cells55. However, the mechanism of the effect of SeNPs still remains largely  unexplored56. Similarly, 
 TiO2NPs can generate  ROSs27. The efficacy of  TiO2NPs has been compared to other NPs: the efficacy of  TiO2NPs 
is higher than AgNPs (on Spodoptera litura  larvae57) and ZnONPs (on Sitophilus oryzae  adults58), in support 
of our results, regardless of differences in species tested.  TiO2NPs synthesized with plant extracts increase the 
activity of detoxification enzymes and cause histopathological change in the midgut of S. litura and a  mosquito59.

Although SeNPs have been synthesized using  fungi26,39,60 and plant  extracts55, their efficacy has not been tested 
on stored product pests before. Our study is the first to demonstrate the entomotoxic efficacy of biosynthesized 
SeNPs and  TiO2NPs on stored product pests, and the first to test the efficacy of Fusarium-synthesized NPs on 
insects. However, the influence of dose dependency remains to be tested (e.g.14,54,59,61,62), as low doses of NPs can 
enhance insect performance (63, Miksanek et al. under review).

Conclusion
Our results suggest that the direct applications of SeNPs and  TiO2NPs to eggs are most effective to control 
the stored bean pests, C. chinensis (18.1% reduction in egg-to-adult survival compared to the control) and C. 
maculatus (15.0% reduction in egg-to-adult survival compared to the control), respectively. Quantitative studies 
regarding impact on optimal dosages for effective control of multiple species of pests with minimum side-effects 
on  crops18,50,64,65, and comparison with their conventional analogues are imperative in the future. Our study 
cautions that the efficacy of nanopesticides in controlling pests depends on the target developmental stages; 
direct application of nanopesticides to the highly vulnerable early immature stages of pests is recommended for 
optimal control.

Materials and methods
Fungal culture. The fungal culture used for synthesizing different NPs in this study was isolated from a soil 
sample collected from the pots used for the experimental studies at the Laboratory of Insect Natural Enemies, 
Faculty of Agriculture, Kyushu University, using the direct plating  method66. The isolated strain was morpho-
logically differentiated using the classification system by Smith and  Onion67. Molecular classification was per-
formed using the method described by Henry et al.68, which is detailed in the following section.

Molecular identification of fungi. The fungal isolate was identified based on the ITS rDNA sequence 
amplified with the primers ITS1 and  ITS468. First, the DNA was extracted by freezing and thawing a small 
sample of the fungal colony dissolved in TE buffer. The PCR was conducted with an annealing temperature at 
53 °C using KOD One (Toyobo, Tokyo, Japan), following the manufacturer’s protocol. The PCR product was 
purified and subjected to Sanger sequencing. The sequence data were searched for matches in the database nr 
using BLASTn (NCBI, MD, USA). The fungal isolate was identified with 100% certainty as Fusarium solani 
(Hypocreales: Nectriaceae) through morphological differentiation and genotypical identification based on the 
ITS sequence.

Biosynthesis of nanoparticles using fungi. To prepare the biomass for biosynthesis of metal and non-
metal NPs, fungal culture was grown aerobically in liquid media consisting of 3.0 g malt extract, 10.0 g glucose, 
2.0 g yeast extract, 5.0 g peptone, 20.0 g agar–agar and 1.0 L distilled water, with pH adjusted to 6.2 as  per69. The 
fungal culture was filtered aseptically and incubated in sterilized deionized water for 72 h under aerobic condi-
tions.

Silver (Ag) NPs were synthesized by adding 500 mg  L−1 of  AgNO3 solution to the cell-free water extract of the 
fungal isolate. The reduction of Ag ions to AgNPs was confirmed by the color transformation of the mixture to 
 brown70 (Supplementary Fig. S1a). Copper oxide (CuO) NPs were synthesized by adding 500 mg  L−1 of CuIISO4 
solution to the cell-free water extract of the fungal isolate. The reduction of Cu ions to CuONPs was confirmed by 
the color transformation of the mixture to blue-green (Fig. S1b). Selenium (Se) NPs were synthesized by adding 
500 mg  L−1 of  Na2SeO3 solution to the cell-free water extract of the fungal isolate. The reduction of Se ions to 
SeNPs was confirmed by the color transformation of the mixture to red (Fig. S1c). Silicon dioxide or silica  (SiO2) 
NPs were synthesized by adding 500 mg  L−1 of  SiO2 solution to the cell-free water extract of the fungal isolate. No 
color transformation of the mixture was observed (Fig. S1d). Titanium dioxide  (TiO2) NPs were synthesized by 
adding 500 mg  L−1 of  TiO2 solution to the cell-free water extract of the fungal isolate. The reduction of Ti ions to 
 TiO2NPs was confirmed by the color transformation of the mixture to a deep white colloidal solution (Fig. S1e). 
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Zinc oxide (ZnO) NPs were synthesized by adding 500 mg  L−1 of  ZnSO4.7H2O solution to the cell-free water 
extract of the fungal isolate. No color transformation of the mixture was observed (Fig. S1f). The characteriza-
tion of the resulting NPs was carried out using transmission electron microscopy (TEM) and energy-dispersive 
X-ray spectroscopy (EDX) as described below.

Characterization of nanoparticles. The size and shape of the different NPs synthesized using the fun-
gal isolate were determined using TEM (Philips Tecnai-G2 20, Japan). To prepare TEM samples, a drop of 
well-dispersed NP solution was placed onto conventional carbon-coated copper TEM grids (150 μm meshes, 
Plano GmbH, Germany), and the drop was allowed to dry overnight in a desiccator before imaging. Three TEM 
images of each sample were obtained for morphological analysis and particle size using an accelerating voltage 
of 200 kV. To analyze the elemental chemical composition of the NPs, the EDX spectra were examined coupled 
with the TEM (Tecnai-G2 20).

The six types of NPs produced by the F. solani isolate were characterized using TEM and EDX as follows (EDX: 
Supplementary Fig. S2): The spherical AgNPs produced by this fungal extract had a diameter of 15.3 ± 0.2 nm 
(mean ± SE). The spherical CuONPs produced had a diameter of 11.7 ± 0.3 nm and the spherical SeNPs produced 
had a diameter of 20.0 ± 0.1 nm. The size of the amorphous  SiO2NPs produced was 32.9 ± 2.6 × 75.1 ± 8.9 nm. 
Finally, the spherical  TiO2NPs had a diameter of 15.4 ± 0.2 nm and the ZnONPs had a diameter of 8.1 ± 0.5 nm.

Efficacy test on pest bean beetles. To test the efficacy of the above-mentioned fungus-synthesized 
NPs against immature stages, egg (attached to the surface of seeds) and larva (feeding seeds internally) of 
stored product pests, we used two species of stored bean pest beetles: Callosobruchus chinensis (Coleoptera: 
Chrysomelidae: Bruchinae) strain jC, which has been maintained on dried azuki beans [Vigna angularis var. 
angularis (Fabaceae), purchased from Daiwa grain, Obihiro, Japan] under a laboratory condition at 30 °C for 
over 70  years10,71. The other species Callosobruchus maculatus strain tQ has also been maintained on azuki beans 
under the same laboratory condition as C. chinensis for over 30   years72. Each of the biosynthesized NPs was 
directly applied to the seed coat of azuki beans that were either with beetle eggs on the surface or infested by 
beetle larvae. Each treatment was replicated for 9 times, except for the controls for C. chinensis (11 times for egg 
treatment and 10 times for larval treatment) and for the control for C. maculatus (11 times for egg treatment) at 
30 °C, 60% r.h. and 16L:8D.

Direct application of nanoparticles to eggs. Eggs were deposited for 2 h on azuki beans by females that emerged 
within 24 h. Beans with 1–2 eggs were chosen. Seven to eight beans with a total of 10 eggs of 24 h old were intro-
duced to a petri dish (6 cm diameter) and 20 μL (10 μg) of the biosynthesized NP solution or distilled deionized 
water was applied with a micropipette, and the dish was gently agitated to coat the bean and egg surface with the 
NPs. After eight days from application, hatched eggs were counted. Emerged adults were counted after 37 days 
from egg deposition to rear the treated eggs into adults, via larvae and pupae. A total of 650 eggs for C. chinensis 
and 650 eggs for C. maculatus were used for this experiment.

Application of nanoparticles to larvae. Twenty μl (10 μg) of the biosynthesized NP solution or distilled deion-
ized water was applied to seven to eight azuki beans infested by a total of 10 fourth instar larvae (14 days old) 
at a density of 1–2 larvae/bean in a petri dish (6 cm diameter). The dishes were gently agitated. After 23 days of 
rearing the treated larvae into adults under the same environmental conditions (i.e., 37 days from egg deposi-
tion), emerged adults were counted. A total of 640 larvae for C. chinensis and 620 larvae for C. maculatus were 
used for this experiment.

Egg sizes of two Callosobruchus species. To explain the possible efficacy difference on eggs between 
the two species, we estimated the egg mass of the two species based on the length and width of eggs, using the 
equation by Yanagi and  Tuda73. The length and width of hatched eggs laid by each female of two (C. chinensis) or 
three (C. maculatus) pairs on 20 untreated azuki beans in petri dishes (6 cm in diameter) were measured to the 
precision of 0.001 mm with a microscope (H-5500, Keyence, Osaka, Japan).

All methods were carried out in accordance with relevant institutional, national, and international guidelines 
and legislation.

Statistics. We tested the effect of NP element on the life history traits of each species studied: Logistic regres-
sion analyses were performed on the survival of eggs (that is, egg hatchability), larva to adult, and egg to adult 
of each beetle species, with NPs or water as an explanatory variable, followed by posthoc comparisons with the 
control. Egg mass was tested with a general linear model, with NPs or water treatment and parental pair ID 
nested within treatment as explanatory variables, confirming the normality of the residual errors. All statistical 
tests were performed using JMP 14.2.0.

Data availability
The datasets associated with the current study are available from the primary corresponding author (M. Tuda: 
tuda@grt.kyushu-u.ac.jp) upon reasonable request.

Received: 21 March 2023; Accepted: 22 May 2023
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