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Ensemble‑based multi‑tissue 
classification approach of colorectal 
cancer histology images using 
a novel hybrid deep learning 
framework
Masoud Khazaee Fadafen 1 & Khosro Rezaee  2*

Colorectal cancer (CRC) is the second leading cause of cancer death in the world, so digital pathology 
is essential for assessing prognosis. Due to the increasing resolution and quantity of whole slide 
images (WSIs), as well as the lack of annotated information, previous methodologies cannot be 
generalized as effective decision-making systems. Since deep learning (DL) methods can handle 
large-scale applications, they can provide a viable alternative to histopathology image (HI) analysis. 
DL architectures, however, may not be sufficient to classify CRC tissues based on anatomical 
histopathology data. A dilated ResNet (dResNet) structure and attention module are used to generate 
deep feature maps in order to classify multiple tissues in HIs. In addition, neighborhood component 
analysis (NCA) overcomes the constraint of computational complexity. Data is fed into a deep support 
vector machine (SVM) based on an ensemble learning algorithm called DeepSVM after the features 
have been selected. CRC-5000 and NCT-CRC-HE-100 K datasets were analyzed to validate and test 
the hybrid procedure. We demonstrate that the hybrid model achieves 98.75% and 99.76% accuracy 
on CRC datasets. The results showed that only pathologists’ labels could successfully classify unseen 
WSIs. Furthermore, the hybrid deep learning method outperforms state-of-the-art approaches in 
terms of computational efficiency and time. Using the proposed mechanism for tissue analysis, it will 
be possible to correctly predict CRC based on accurate pathology image classification.

Globally, colorectal cancer (CRC) accounts for around 10% of all cancer deaths1. This disease caused approxi-
mately 1.09 million new cases and 551,000 deaths in 2018. In 2030, the World Health Organization estimates 
that 75 million people will suffer from CRC, 17 million will die, and 27 million new cases will be diagnosed2. 
The clinical outcomes of patients with resectable cancer can vary widely, however. In addition, there is evidence 
that survival is associated with tumor symptoms, such as smoking, diabetes, obesity, nutritional deficiencies, 
and diabetes mellitus3. 60–80% of CRC recurrences occur within the first 2 years after resection, and 95% within 
the first 4 years4. Fine-needle aspiration (FNA) or needle biopsy (NB) are the most commonly used methods for 
detecting colon tumors5,6. Through a microscope, samples of cells or tissues are viewed on unique glass slides. 
As a result, histopathology images (HI) are well-established and reliable for determining CRC. HI analysis is 
useful for the clinical assessment of CRC​7,8. To accurately analyze and treat CRC, it is necessary to describe tumor 
regions, assess aggressiveness, and classify carcinoma prototypes from full slide images9. CRC is diagnosed by 
examining tissue samples under a microscope, staging and grading them with a microscope.

In HI analysis, which can take a considerable amount of time, pathologists’ expertise and talents are crucial. 
The HI analysis process is also associated with damaging variables such as exhaustion and an inability to focus 
on problematic skills. Automated models have been improved to enhance the efficiency and precision of CRC 
diagnosis. Efforts have been made to improve their decision-making outcomes10. Computer-assisted diagnosis 
(CAD) algorithms can be expanded through the development of image processing algorithms and machine 
learning approaches. Additionally, it helps to facilitate decisions and reduces the amount of time spent inter-
preting and evaluating HI. Automatic detection systems make it possible to detect CRC early, which can lead to 
proper treatment. The primary challenge is, however, determining how to extract meaningful features from HI 
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obtained from colon tissue. While hand-crafted feature extraction methods assist in defining tissues’ states, they 
are unreliable in terms of obtaining discriminating feature vectors that aid in classification.

Deep learning (DL) models have recently shown significant improvements in decision-making in CAD sys-
tems and medical applications11,12. DL networks cannot function without large amounts of data, high training 
costs caused by complex data patterns, and the absence of standard hypotheses for selecting an appropriate DL 
structure13,14. DTL is a machine learning approach in which a pattern developed for one task is used as a basis 
for building another15,16. As a starting point for a secondary assignment, DTL techniques use a transfer learning 
architecture17.

Several previous works have employed hand-crafted features to address low classification rates, computational 
complexity, and low-quality HI. A malignant tumor’s texture, morphology, and statistical characteristics are 
described in Ref.18. Accordingly, their methodology relies on feature embedding and unsupervised clustering19. 
Although traditional ML procedures require an expert to extract features, DL structures can be extracted without 
expert knowledge20,21.

CRC cancers have rarely been classified using DTL-based analysis of histopathology images in previous 
publications. CRC research has used DL techniques based on HI analysis, however.

Based on tissue interpretation, automatic CRC detection applications classify HI into benign and malignant 
types. Due to its inherent complexity, HI is a major concern in these systems. Analysis and diagnosis of HI have 
occupied a significant amount of time in the investigation. For the automatic classification of malignant and 
benign tissues, automated computer applications are used as CAD systems.

A pathologist’s biggest challenge is identifying the cancer’s grade. There are several classes of CRC that have 
been considered in quantitative research. Identification of a tissue type aids the treatment process. This challenge 
is plagued by overfitting, which results in a lack of accuracy. Due to the high similarity of textures between the 
images, an automated learning method is required. By using DL strategies, absolute errors can be reduced. For 
CRC classification and automation applications, deep learning requires many images.

An improved DTL model for the classification of CRC is presented in the present work. HI can be classified 
with satisfactory accuracy for a large number of colon tissue classes and a modest number of training images 
using the improved residual neural network (ResNet). The effectiveness of ResNet’s architecture as a model for 
feature extraction has previously been evaluated by comparing it with other similar methods under the same 
conditions. ResNet reduces the number of layers and improves the quality of feature maps compared to prior 
designs such as DenseNet and other CNNs. However, a number of issues and shortcomings have been identified.

(1)	 Conventional image processing makes it difficult to identify and interpret HI and distinguish features of 
specific diseases.

(2)	 Different disease stages require systematic assessment of the attributes of disease patterns using various 
images.

(3)	 Handcrafted features determine the effectiveness of machine learning approaches. For this reason, feature 
extraction must be automated in order to select and learn the most appropriate set of features.

(4)	 There are deep learning models that use well-known architectures, such as transfer learning. Since it can 
classify millions of images, such models can be implemented quickly, provided there is a trade-off between 
computational load and accuracy.

(5)	 The deep learning network should be trained on a large number of images to ensure that the features are 
more generalized.

A major obstacle to HI is the lack of labeled images as well as the variability of images due to staining. HI is 
more about textures than well-defined objects, making obtaining a histopathological image challenging. This 
work used a modified deep model and ensemble learning technique using SVMs with RBF kernels. The study 
aimed to fill research gaps in CRC classification in HI. Among the study’s notable contributions are:

•	 The research presented in this area presents a distinctive and innovative DL architecture. The first objec-
tive is to improve feature classification using hue, saturation, and value (HSV) color space. When images of 
histopathological lesions are converted from RGB to HSV color space, colors appear more accurate. Their 
light intensity is also more homogeneous and balanced. The second stage uses TL to acquire and enhance 
performance through the acquisition of different feature maps.

•	 To our knowledge, this is the first time that a hybrid structure based on a modified deep TL network and 
ensemble learning has been used to detect CRC in a large number of HIs.

•	 Eight classes of CRC are examined through HI analysis. Moreover, the proposed method can significantly 
reduce obstacles such as uncertainty and generalizability. It is expected that this method will be robust to 
different conditions, such as inhomogeneity or the absence of high-quality HI.

•	 A variety of methodologies were used to train and compare the algorithm. Through hold-out cross-validation, 
100,000 images from two HI datasets were used to train and validate the architecture.

The structure of our research is as follows. Section “Related work” discusses related research. The introduced 
feature extraction approach based on the modified DTL structure, feature selection, and ensemble learning is 
described in “The proposed approach”. The experimental outcomes obtained with the suggested method for 
HI analysis are explained in “Experimental results”. The study concludes with a summary of the major themes 
discussed in “Conclusion”.
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Related work
Medical image processing is only one example of how ML’s related algorithms and approaches have become more 
ubiquitous due to their efficacy. Moreover, a variety of methods are available in ML to reduce the dimensions of 
features, including feature selection, feature projection, and feature reduction22. The implementation of DL to 
diagnose colon cancer has received more attention in most previous histopathological imaging studies because 
the disease has a high mortality rate23–27.

Contrary to conventional strategies, which extract general shapes or textures from HI, DL-based methods 
learn a discriminative description directly from input HI. By using CNN structures and active contour segmen-
tation, Haj-Hassan et al.28 have developed a method for classifying CRC tissues from multi-spectral HI. They 
predicted three tissues types associated with CRC grades, including benign hyperplasia (BH), intraepithelial 
neoplasia (IN), and carcinoma (Ca), and reached an accuracy of 99.17% for segmented HI regions.

Study Iizuka et al.29 applied trained recurrent neural networks (RNNs) and CNN structures to whole-slide 
images (WSIs) to diagnose stomach and colon cancers. Based on three types of tissues: adenoma, adenocarci-
noma, and non-neoplastic, they classified WSI images with 96–99% accuracy.

Masud et al.30 introduced a classification system for discriminating between five types of lung and colon 
tissues, including two benign and three malignant, according to how their HI is interpreted. Based on their 
research, the developed framework has a maximum accuracy of 96.33% for recognizing cancerous tissues in HI.

Using HI analysis and features interpretation for lymph node metastasis (LNM) in CRC, Kwak et al.31 pre-
sented an accurate CAD system. To identify CRC tissue using multiple data, the researchers developed a DL 
model based on CNN structure.

Rezaei et al.32 introduced a scheme based on the LinkNet structure for gland segmentation, and they exam-
ined the impact of applying different loss functions. The Warwick-Qu dataset, which comprises two data sets, 
demonstrated that their strategy is comparable to similar approaches.

Sirinukunwattana et al.7 have extended a DL architecture for detecting and classifying nuclei into four types 
(miscellaneous, inflammatory, epithelial, and fibroblastic). Korbar et al.33 have also designed a CAD system to 
help pathologists depict colon polyps.

Xu et al.34 presented an algorithm that reduced heavy feature design by applying CNNs to a deep multi-
channel framework and could meet various needs by changing channels. Comparing their approach to the 
approaches reported in the 2015 MICCAI Gland Segmentation Challenge and to other segmentation methods, 
they evaluated the results according to the same criteria to demonstrate its superiority.

The HI of colon regions was used as a basis for the segmentation of glandular structures by Manivannan 
et al.35. The authors employed a structured learning framework that illustrates the spatial configuration of class 
labels and captures structural information that is often missed by sliding window methods. To learn the support 
vector machine classifier, they obtained samples of label structures through clustering. In the end, they combined 
hand-crafted, multi-scale image features with features estimated by a DL trained to map outcomes to segmenta-
tion projections. The resulting system was tested using the GlaS dataset.

Based on the Faster-RCNN-based convolution neural network structure, Ho et al.36 incorporated a deep 
learning model constructed on spinal segmentation of the ResNet-101 feature that excluded gland segmentation. 
With a sensitivity of 97.4%, the validation group achieved an AUC of 0.917 in recognizing high-risk features of 
malignancy and dysplasia.

In the first stage of colorectal histopathology image categorization, Chen et al.37 employed CNNs and multi-
channel attention mechanism models to extract information for classification. They added misclassified images to 
the training set repeatedly in the second stage, improving the model’s performance. They achieved classification 
accuracy of 98.98% on their own dataset and 99.77% on the HE-NCT-CRC-100K dataset, respectively.

Based on the CNN structure, Wang et al.38 suggested a new patch aggregation technique for diagnosing CRC 
clinics by utilizing poorly labeled diseased slide images patches. Their technique was trained and validated on a 
large number of HIs. A kappa of 0.896 was their average. Area under curve (AUC) was much higher than that of 
pathologists (0.988 vs. 0.970) and outperformed other comparable approaches for CRC diagnosis.

Utilizing histopathological pictures in a variety of configurations, Riasatian et al.39 introduced KimiaNet, a 
DenseNet-based network composed of four dense blocks. In the Cancer Genome Atlas (TCGA) library, there are 
7126 full slide images of formalin-fixed paraffin-embedded human pathology samples generated from 240,000 
image patches taken at a magnification of 20. Three public datasets were used to evaluate KimiaNet’s search and 
classification performance: images of colorectal cancer, endometrial cancer, and the TCGA.

To diagnose colon cancer from visual data, Yildirim et al.40 developed a CNN-based, MA ColonNET system. 
In order to categorize these cases, they used the 45-layer model of MA ColonNET. This structure has an accuracy 
rate of 99.75%.

The categorization of CRC was carried out using ML approaches by Alqudah et al.41. They use three distinct 
color spaces to extract features from a 3D Gray Level Co-occurrence Matrix (GLCM). With a testing dataset 
of 1496 images and a training dataset of 3504 images, 3D GLCM matrices of the pictures were produced and 
analyzed. According to their study, the best ML model achieved testing and training scores of 97% when using 
Quadratic Discriminant Analysis (QDA).

Using the CNN architectures InceptionV3, DenseNet201, MobileNetV2, ResNet152, ResNet101, VGG19, and 
VGG16 for classification, Ref.42 presents a method for predicting the CRC. Using a 10,000-image dataset, they 
divided it into 3200 images: 7200 for training, 1800 for validation, and 1000 for testing. VGG19, ResNet152, and 
ResNet101 are the three architectures that successfully classify and identify both types of CRC.

Based on two publicly available datasets, Kumar et al.43 constructed a lightweight, less complicated CNN for 
categorizing multiclass colorectal tissue HIs. HIs are fed to pre-trained models (VGG16, Xception, DenseNet121, 
and InceptionResNetV2) and the proposed method. Training the created network took less time than training 
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other TL methods. The presented network achieved 93.50% accuracy on the colorectal histology dataset and 
96.26% accuracy on the NCT-CRC-HE-100K dataset.

An overview of the literature reviewed can be found in Table 1.
In comparison to prostate and breast and tissue, CNN in colonic histopathology is still in its infancy. With our 

hybrid model with modified DTL structure, we can address such concerns as overfitting, inadequate learning, 
uncertainty, etc. Instead of previous research, which relied solely on established datasets or binary classes (tumor 
or not tumor), we constructed our own segmentation model independent of existing datasets and trained it and 
tested it on a wide array of training data. ML can detect epithelial tumors despite non-neoplastic background 
when applied to colonic biopsy WSI using a highly functioning CNN. In the specialized field of colonic histology, 
this further emphasizes DL’s importance.

The proposed approach
Figure 1 reveals the general structure of the introduced procedure for detecting CRC in HI. Each section of the 
method is described below.

HSV space.  To create homogeneity with natural light, a HSV (Hue, Saturation, and Lightness) display is 
needed for the HI processing step. There is a tendency to use the terms "HSV" and "white light" interchangeably 
since the strongest hue of HSV resembles white light (e.g., a bright white light shining on a red surface). In low 
light, objects that appear redder and brighter in high light appear darker and brighter. To ensure that no light is 
lost during the HI analysis, a single point source must be obtained. A pre-processed RGB image is used to keep 
the brightness constant in the HSV converter. The procedure of converting an RGB image to an HSV image is 
illustrated in Fig. 2.

Feature extraction.  Gradient dissipation or explosion is the first problem with increasing network depth. 
Gradients propagating through a network become unstable as more layers are added, becoming either very 
large or very small. Dissipation is a common occurrence throughout time. We can use ReLU activation, batch 
normalization, and a variety of additional strategies to prevent gradient dissipation. As efforts have been made 
to minimize gradient dissipation, the problem arises when the depth of the network increases. With more lay-
ers in the network, the network may be able to extract more difficult feature patterns, meaning a deeper model 
should provide better results. However, with more layers in the network, the error of classification may become 
greater. Moreover, it is not related to excessive fitting, since the accuracy of the training set is also decreased. 
Fortunately, the residual network in ResNet structures solves the problem, and as a result, the network depth 
increases several times.

Based on 3 × 3 VGG full-layer architecture, ResNet is built. There are two 3 × 3 convolutional layers with 
an equal number of output channels in the residual block. A batch layer, a ReLU, and a normalized convolu-
tional layer were added after each convolutional layer. In addition, we repeat these two convolved computations, 
including the input shortly before the final ReLU activation function. Two convolutional layers are combined 
into a single type of input. This channel count will need to be increased. There is a need to add an additional 
1 × 1 convolutional layer to calibrate the input. The input is added to the output before the non-linear ReLU is 
performed. Only the channels will be altered before the 1 × 1 convolutional layer is introduced. Although the 
ResNet transfer learning structure is very effective at recognizing objects of different sizes, there are still chal-
lenges in recognizing objects of different sizes in images.

Dilated convolution has gained popularity in recent years due to its ability to enhance the kernel’s recep-
tive field without adding extra parameters. The convolution kernel is what separates dilated convolution from 
standard convolution. In the dilated convolution kernel, only a subset of the locations corresponds to learning 

Table 1.   A summary of the literature review is shown in this table.

Authors Year Method Dataset No. of classes Performance

Sakr et al.23 2022 CNN LC25000 2 Acc: 99.50%

Wilm et al.24 2022 CNN Two HIs 7 Acc: 93.8–95.7%

Moyes et al.25 2023 Multi-channel auto-encoder Synthetic dataset 9 F-score: 0.620738

Gavade et al.26 2023 ResNet-50 Kaggle 2 Acc: 98.9%

Li et al.27 2023 Embedded fusion mutual learning LC25000 2 Acc: 98.96%
AUC: 0.9973

Haj-Hassan et al.28 2017 CNN CHU Nancy Brabois Hospital 3 Acc: 99.17%

Iizuka et al.29 2020 CNN and RNN Hiroshima University Hospital 3 AUC: 0.97–0.99

Masud et al.30 2021 CNN LC25000 5 Acc: 96.33%

Kwak et al.31 2021 CNN Portal GDC 7 –

Chen et al.37 2022 Multi-channel attention HE-NCT-CRC-100K 9 Acc: 99.78%

Yildirim et al.40 2022 CNN Kaggle 2 Acc: 99.75%

Alqudah et al.41 2022 QDA Kaggle 8 Acc: 97.30%

Kumar et al.43 2023 CNN NCT-CRC-HE-100K 9 Acc: 99.21%
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parameters; the remainder are left blank. Figures 3 and 4 show the architecture of a dilated version of convolu-
tion block as well as the display of a dilated convolution (DiConv). The total resolution of the image is less than 
1% occupied by a small object. The coarsest, deepest layer of the ResNet architecture fails horribly at expressing 
the minute properties of tiny objects. Dilated ResNet (dResNet) generates predictions about the target at three 
different scales (Dilation rate = 1, Dilation rate = 2, Dilation rate = 3). The dResNets method requires three anchor 
boxes per grid cell at all resolutions. We use residual blocks carrying high-detail information in HIs in order to 
differentiate objects of different sizes, enhance spatial resolution by using dilated convolution and upsampling, 
and concatenate them together.

ResNet’s well-known shortcoming is addressed by utilizing small items in a multi-layered, high-dimensional 
environment. The sampled layers combine with the previous layers to preserve the architecture’s fine-grained 
characteristics and to detect objects of varying sizes. A dilated convolution formula is shown in Eq. (1):

Dilation rate is specified by r. This shows that the receptive area of DiConv is greater than standard convolu-
tion with the same number of parameters. Additionally, DiConv allows for more efficient aggregation of global 

(1)y(u, v) =

∑

m

∑

n

s(u+ k · r, v + l · r) · h(k, l)

Figure 1.   The steps of the introduced method are illustrated in 2 sections: training and testing.

Figure 2.   Schematic representation of the stages of converting a (a) RGB image to (c) HSV space. The plot (b) 
is rgb coordinates to convert RGB to HSV space.
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data. The parallel paths were convolutionized at 1, 2, and 5 dilated convolutions per second. An attention-based 
method was used to improve feature fusion. In the first step, each parallel dilated convolution feature map is 
pooled globally. By activating all of the linked layers, their weights can be established. In the end, the dilated 
convolution block is considered the output of the weighted fused feature map. The general process is summarized 
as follows:

by dilating the convolution with different dilation rates, we get Di as the feature map. Furthermore, global average 
pooling operation are also known as GlAtPo.

where, layers with dense connections are fully interconnected. The SoftMax function and sigmoid operator and 
the are denoted by σ1 and σ2.

Finally, Output is the final outcome of the DiConv block, where µi is the weight of the feature map Di.

Feature selection.  As a result of deep structure feature extraction, we further select the features with the 
least computational complexity. We can compute the weights of neighborhood features by using distance meas-

(2)Ai = GlAtPo(Di)

(3)ηi = σ1(Dense(Ai))

(4)µi = σ2(Dense(ηi))

(5)Output =

3
∑

i=1

µi .Di

Figure 3.   The structure of dilated convolution block.

Figure 4.   The architecture of attention module.
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ures. Neighborhood component analysis (NCA)44 can be employed to reduce the size of the requisite feature 
vector by combining "non-parametric and supervised" techniques.

This method allows us to decrease the amount of feature vectors obtained from HI. The NCA is able to 
compute feature rank since each feature is assigned a positive weight. The NCA is employed to estimate feature 
weights when applying a desired feature reduction model. The features are divided up into overlapping blocks 
before being reduced. Therefore, we can conclude that k is a collection of smaller vectors.

Ensemble learning.  The ensemble method is used in ML and statistics to improve prediction performance 
over individual learning algorithms45. Ensemble models have two major, interconnected advantages over single 
models: they provide better performance and predictability than individual components. Moreover, in addi-
tion to reducing variance in predictions, an ensemble increases robustness. Contrary to the limitless statistical 
ensembles, ML ensembles contain a finite number of distinct models, but typically allow for a more flexible 
structure among them. In the D-dimensional space, each input in a training dataset is a point, implying that the 
training dataset contains D components. The hyperplane with the largest margin of error is generated after map-
ping the training data onto a higher-dimensional feature space. This outcomes in a nonlinear decision boundary 
in the input space. When determining the separating hyperplane, it is possible to use kernel functions such as 
polynomials, spline, and radial basis functions (RBFs). On the basis of the linearity of the dot product, we can 
construct the decision function as follows:

A high-dimensional feature space can be derived from a non-linear transformation of an input vector set (x1, 
…, xl). Whenever deciding what to do, one must:

Besides, support vectors can make use of kernel RBF as explained in Eq. (8):

A computed RBF kernel in Eq. (8) contains fewer hyper-parameters, more variables, and a simpler mathemati-
cal structure than other kernels. Due to these characteristics, it has been widely accepted. When the classification 
step is performed, we use the multi-SVM with a RBF-based learning pool of the ensemble learning technique. 
Figure 5 illustrates the extended ensemble learning framework. DeepSVM is based on the ensemble structure, 
and it utilizes the conventional multi-SVM structure and RBF kernel from46.

The layers of this structure are each taught using supervised learning. A classifier uses labels to generate 
brand-new training data at every level in the classification process. It has been demonstrated that this approach 
provides effective parameter values for the classification procedure.

Figure 5 shows a multilayer architecture with an input layer, hidden layers, and an output layer. After that, 
n SVMs are employed to translate new features into the next layer. A model’s performance directly depends on 
selecting the appropriate classifier for each layer and quantifying the value of each feature.

Algorithm 1 illustrates an ensemble learning structure based on multi-SVM classifiers. Using SVM, the hidden 
layer’s feature vector is trained before constructing the decision function. Due to the high discriminant nature 
of dResNet’s features, the NCA’s feature selection is constrained, and as a result, the DeepSVM structure is not 

(6)f (x) = sgn





l
�

j=1

yjαj · (x · xj)+ b





(7)f (x) = sgn





l
�

j=1

yjαj·K(x, xj)+ b





(8)K(x, xj) = exp(−
∥

∥x − xj

∥

∥

2
× (c)−1

Figure 5.   An ensemble model based on the pool of SVMs is shown in this figure.
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overburdened with computational complexity. Ensemble-based classification can be implemented in two ways: 
one uses reduced-dimensional feature vectors as training data, while the other uses the final classifier.

Algorithm 1: The structure of ensemble learning

Initialize: Set the RBF kernel parameters 

Input: Training Set consists of selected features (xi) and labels (yi∈ ɣ)

{(x1,y1),…,(xi,yi)} ∈ [ℜN × ɣ]i, ɣ = {1,2,…,8}

1 for i = 1 to K

2 Enter the selected features into the network.

3 Create the new training set through {(x1
k+1,y1),…,( xi 

k+1,yi)} ∈ [ℜN × ɣ]i

4 end for 

5 Achieve the output classifier based on the equation (7). 

Output: f(x)

Experimental results
Dataset.  There is a public dataset available from the University Medical Center Mannheim (Germany)47. 
Digitalized colon cancer tissue slides contain samples of tissue from low- and high-grade primary tumors. The 
Fig. 6 depicts eight different textures found in tumour samples: (1) the epithelium of the cancer (TUMOR), 
(2) the cells of the stroma (STROMA), (3) the tissue of the stroma (COMPLEX), (4) the immune cells, (5) the 

Figure 6.   Single rows containing examples from a single class are used to illustrate sample images from a data 
set. The HIs from left to right are: (1) tumor epithelium, (2) simple stroma, (3) complex stroma, (4) immune 
cells, (5) mucosal remnants, (6) mucosal glands, (7) adipose tissue, and (8) background47.
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mucus and debris (DEBRIS), (6) the glandular mucus (MUCOSA), (7) the adipose tissue (ADIPOSE), and (8) 
the background (BACK). There are 5000 image tiles in the dataset with dimensions of 150 × 150 pixels and 
74 µm × 74 µm. They are 20 times clearer and contain more formalin and other histopathological markers, so 
the pathologist can easily diagnose them. The labels for each image have also been reviewed by the Institute of 
Mannheim University of Medical Sciences in Germany. As well as the train, test, and validation images, Table 2 
shows the details of the first dataset (Kather texture 2016).

Another publicly available CRC dataset, NCT-CRC-HE-100K48, contains 100,000 patch-level images of nine 
separate tissue categories, each with an aspect ratio of 224 × 224 pixels and an average pixel size of 0.5 μm. In 
total, nine distinct tissue types can be analyzed, including the nine different categories of tissue are colorectal 
adenocarcinoma epithelium (TUM), cancer-associated stroma (STR), normal colon mucosa (NORM), smooth 
muscle (MUS), mucus (MUC), lymphocytes (LYM), debris (DEB), background (BACK), and adipose (ADI). In 
addition to the train, test, and validation images, Table 3 shows the details of the second dataset.

Setting.  This algorithm is implemented on a system with a Core i-7 processor and 8 GB of RAM. The version 
of MATLAB used is the 2020b version, which has online plugins and also has the latest updated version of this 
software’s toolbox.

There is no separate electronic graphics processing unit (GPU) hardware board in the system used. By divid-
ing the data in a 60–20–20 ratio, we can create training, testing, and validation sets. As a complement to the 
main program, SPSS was also used. Afterward, the RBF kernel is configured in DeepSVM to achieve the best 
possible results. It employed the learning rate (µ) of 0.002 and a range of epochs between 500 and 2000 in its 
initial model. By utilizing an ensemble learning system that employs parameter adjustment and early stopping 
in order to determine the optimal training iteration size, overfitting can be avoided.

Evaluations.  We compared ResNet family-based learning strategies with dResNet architecture as a first 
step towards identifying possible improvements in the classification of CRCs based on HI. In both datasets, 
dResNet-101 is implemented to ensure that the feature extraction stage performs as efficiently as possible, as 
demonstrated in Tables 4 and 5. According to Table 2, each of the classes (i. e., Tumour epithelium = 1, Stroma 
(simple) = 2, Stroma (complex) = 3, Immune cell conglomerates = 4, Debris and mucus = 5, Glands = 6, Adi-
pose = 7, Background = 8) could be recognized in the first dataset by multi-class categorization. While ResNet 
deep transfer learning algorithms were used for feature extraction, the rest of the algorithm remained largely 
unchanged. As an example, the best selected classifier resulted from ensemble learning, and NCA-based features 
with the same number of features were utilized to achieve fair comparison. As DeepSVM aids the classification 
procedure, ensemble-optimized support vector machines are effective. Similar feature extraction methods are 
also employed by ResNet-164, ResNet-152, and ResNet-101.

Several methods have been used in the field of feature extraction by pre-trained models, but the models based 
on the ResNet structure are not only accurate in creating suitable features, but have shorter processing times due 
to their light structure. Because ResNet creates separable features, Tables 4 and 5 indicate that the structure of 
ResNet is the most appropriate model for creating a satisfactory output. It only takes a few minutes to produce 
meaningful feature maps of a histopathological image using the proposed model and a limited number of rep-
lications. Even though deeper structures may in some cases contribute to better features, some transfer-based 
learning methods have a lot of processing time (especially during training) and may not be suitable for real-time 
or near-real-time applications.

In Figs. 7 and 8, confusion matrices for the first and second HI datasets are shown. To determine the decision-
making procedure and keep time processing in the final experiment, only the minimum of selected features were 

employed. Several experiments have demonstrated that 98.82–99.76% of the CRC can be correctly classified in 
HI. The classification process was performed on two datasets using 50 features based on a specific number of 
iterations and a variety of CRC related issues. Moreover, both forms were assigned appropriate categories based 
on the outcomes of the test.

For the validation data, the average accuracy of 98.80% is shown in the confusion matrix on the left of Fig. 8 
in the first scenario. Based on the second scenario (i.e., confusion matrix on the right side of Fig. 7 based on the 

Table 2.   Data setting for Kather texture 2016 for training, validation, and testing.

Class Image type No. train images No. validation images No. test images

1 TUMOR 375 125 125

2 STROMA 375 125 125

3 COMPLEX 375 125 125

4 MUCOSA 375 125 125

5 DEBRIS 375 125 125

6 MUCOSA 375 125 125

7 ADIPOSE 375 125 125

8 BACK 375 125 125

Total All 3000 1000 1000
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test data), the accuracy is 98.90%. Likewise, Fig. 8 shows the algorithm being implemented on the second HI 
dataset. As well, the method is verified based on the unseen HI categories, which is estimated to be 99.89% and 
99.67%, respectively, for the test and validation data on the right and left side of Fig. 9. The HIs were correctly 
classified in 99.76% of the 9 tissue types. Even though the results are less accurate than the first dataset, the addi-
tion of automatically extracted features and ensemble learning significantly improves classification accuracy. A 
second dataset validation using a large number of HIs is used in part 2 in order to demonstrate the same level of 
confidence in the classification technique. In the first dataset, the proposed strategy is 98.8% accurate while in 
the second dataset, it is 99.77% accurate.

With the method outlined here, one can identify different types of CRC tissues. Moreover, it was able to 
obtain a 99% accuracy rate while dealing with a wide range of tissue classification. In particular, the model was 
99% accurate in several subtypes of classification of CRC. It is possible that the proposed feature extraction and 

Table 3.   Data setting for NCT-CRC-HE-100K for training, validation, and testing.

Class Image type No. train images No. validation images No. test images

1 TUM 8591 2863 2863

2 STR 6268 2089 2089

3 NORM 5258 1753 1753

4 MUS 8122 2707 2707

5 MUC 5338 1779 1752

6 LYM 6935 2311 2311

7 DEB 6908 2302 2302

8 BACK 6340 2113 2113

9 ADI 6245 2081 2081

Total All 60,005 19,998 19,997

Table 4.   In this table, the outcomes of CRC classification utilizing HI for the first dataset with eight classes are 
presented. The bolded values in the table represent the best values with the least level of error.

CRC classes

ResNet-164 ResNet-152 ResNet-110 ResNet-101 ResNet-50 dResNet-101

Min Max Min Max Min Max Min Max Min Max Min Max

Class 1 0.013 0.022 0.016 0.026 0.018 0.031 0.024 0.036 0.034 0.052 0.011 0.017

Class 2 0.013 0.018 0.016 0.024 0.021 0.033 0.026 0.038 0.032 0.058 0.013 0.019

Class 3 0.012 0.019 0.017 0.023 0.022 0.030 0.028 0.036 0.035 0.049 0.008 0.014

Class 4 0.011 0.014 0.013 0.019 0.018 0.029 0.026 0.035 0.035 0.044 0.008 0.014

Class 5 0.014 0.021 0.015 0.023 0.020 0.034 0.028 0.039 0.038 0.056 0.012 0.018

Class 6 0.009 0.018 0.013 0.025 0.022 0.028 0.025 0.038 0.036 0.046 0.010 0.016

Class 7 0.010 0.017 0.011 0.021 0.023 0.029 0.030 0.036 0.041 0.051 0.009 0.014

Class 8 0.011 0.014 0.016 0.019 0.025 0.033 0.024 0.037 0.035 0.054 0.007 0.012

Average 0.011 0.013 0.014 0.022 0.021 0.031 0.026 0.037 0.035 0.051 0.009 0.014

Table 5.   In this table, the outcomes of CRC classification utilizing HI for the second dataset with nine classes 
are presented. The bolded values in the table represent the best values with the least level of error.

CRC classes

ResNet-164 ResNet-152 ResNet-110 ResNet-101 ResNet-50 dResNet-101

Min Max Min Max Min Max Min Max Min Max Min Max

Class 1 0.001 0.004 0.001 0.005 0.001 0.005 0.003 0.008 0.003 0.010 0 0.002

Class 2 0.001 0.005 0.001 0.005 0.002 0.006 0.003 0.009 0.004 0.012 0 0.001

Class 3 0 0.003 0.001 0.004 0.001 0.006 0.003 0.010 0.004 0.012 0.001 0.002

Class 4 0 0.004 0.002 0.005 0.002 0.007 0.005 0.011 0.006 0.013 0.001 0.003

Class 5 0.001 0.004 0.002 0.006 0.003 0.007 0.006 0.011 0.006 0.014 0.001 0.002

Class 6 0.001 0.005 0.002 0.006 0.003 0.007 0.005 0.012 0.007 0.014 0 0.001

Class 7 0.003 0.006 0.003 0.006 0.005 0.008 0.006 0.010 0.007 0.013 0.003 0.004

Class 8 0.003 0.006 0.003 0.007 0.004 0.008 0.008 0.009 0.008 0.013 0.002 0.004

Class 9 0.003 0.006 0.004 0.007 0.004 0.009 0.008 0.012 0.009 0.014 0.002 0.004

Average 0.0014 0.0047 0.002 0.0056 0.0027 0.007 0.0052 0.0102 0.006 0.0127 0.0011 0.0025
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improved learning algorithms will achieve a satisfactory level of certainty and generalization. Hence, the out-
comes demonstrate that the suggested approach is competitive in the detection and classification of colorectal 
cancer.

The accuracy and precision rates of various approaches are commonly degraded when the HI contains com-
plicated segments and tissues (e. g., when the images contain inappropriate color and improper distribution of 
illumination). Meanwhile, the method for analyzing HIs is resilient and dependable, and is therefore an efficient 
and effective method.

Ethical approval.  The use of data is standard and similar to valid research and there is no conflict of interest, 
ethical or legal issues. Data used in this paper is publicly available and derived from a study by Kather and et al.40, 
whose tests have been approved by the Medical Ethics Board (Medical Ethics Board II, University of Mannheim 
Medical Center, University of Heidelberg, Germany; 2015 certification -868R-MA). In regards to their data, it 
is mentioned that the Organizational Ethics Board ignored the need for informed consent in reviewing these 
anonymous examples retrospectively. In addition, all tests were conducted according to approved instructions 
and the Helsinki Declaration.

Discussion
Adopting the proposed approach for detecting and classifying HIs is fundamentally dependent on its ability to 
differentiate tumors and colon tissues appropriately into two or more classes. Consequently, the expert physician 
will be able to make a better diagnosis and, on the other hand, continuous monitoring of people will be possible. 
Listed below are the reasons for employing each method.

Diagnoses depend heavily on past knowledge and are unquestionably essential. Pathologists examine micro-
scopic properties of cells, such as size, shape, texture, colour, and blackness, in order to diagnose diseases. 

Figure 7.   This figure illustrates the confusion matrix resulting from the proposed model’s implementation on 
the first dataset (i.e., with 8 classes) for (a) validation and (b) test.

Figure 8.   This figure shows the confusion matrix resulting from the proposed model’s implementation on 
dataset NTC-CRC-100 (i.e., with 9 classes) for (a) validation and (b) test.
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According to previous research, the HSV colour space, which is denoted by the letters H, S, and V in the HSV 
colour space, can be used to store and transmit colour data without loss. As a result of its spectrum of colours, 
HIs can distinguish between malignant and healthy cells. A different colour would alter the overall tone of the 
histopathology image, so maintaining the current one is crucial. For colour representation, HSV is superior to 
RGB because it accurately depicts how humans see colour. The lack of contrast and inadequate illumination 
sometimes make it difficult to identify HIs. Due to its out-of-range nature and color fidelity, the HSV colour 
model was presented.

With the help of dResNet, we can generate features that are both helpful and computationally efficient. Due to 
ResNet’s architecture, it is possible to rapidly construct a network with several layers while lowering training and 
testing errors. In ResNets, identity mapping is the key to solving the vanishing gradient problem. To counteract 
disappearing gradients, ResNet-101, ResNet-110, and ResNet-164 use residual blocks. In the revised ResNet-101, 
several convolutional layers comprise the remaining bottleneck blocks. Convergence speed and consistency 
of deep learning algorithms vary. Compared with ResNet-101 and ResNet-110, dResNet-101 produced more 
informative features and achieved convergence more rapidly. The recommended CRC classification method 
had to be stable and reliable as the number of HIs classifications increased in order to provide the most accurate 
results. A deep learning model’s accuracy and loss estimates indicate that the first group of HIs examined in the 
early portion of Fig. 9 tend to be the most accurate. The accuracy of classification in the other two sections of 
Fig. 10 is also acceptable when trained on accuracy and loss computations.

Overall, it was found that feature selection did not have a significant impact on classification accuracy. The 
primary reason for this is that dResNet only extracts features that distinguish. Figure 11 shows that the NCA 
technique selected a variety of features, yet high classification accuracy was achieved with a minimal number 
of features.

In addition to being more effective, some of the features can also be more efficient. NCA has been shown to 
be an extremely powerful way of selecting the optimal subset of features, as well as a nonparametric method of 
selecting features to maximize prediction accuracy.

DeepSVM’s classification ability was demonstrated in numerous experiments by Qi et al.46. Based on evalu-
ations of various datasets, they compared the DeepSVM method to similar approaches, such as Multi-layer 
SVM (MLSVM)49, Multi-layer kernel machines (MKMs)50, and SVM with RBF kernel. An experiment was also 
conducted using three unseen collections of histopathology images in order to compare these approaches to the 
proposed method. For comparison, these methods were chosen since they are capable of classification and, on 
the other hand, are highly comparable to DeepSVM. Figure 12 compares the performance of classification using 
a limited set of features for both datasets as unseen histopathology images.

Contrary to Eed-to-End (e2e) and Softmax structures, this process reduces computing complexity while 
maintaining competent processing speed and accuracy. Another experiment evaluated the performance of the 
suggested approach in terms of feature extraction as well as the final classification while also addressing the issue 

Figure 9.   In the CRC-5000 dataset, dResNet-101 was compared with ResNet-101 and ResNet-110 based on the 
accuracy in (a) and (c) and the loss in (b) and (d) for train and test data, respectively.
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of computational complexity. According to Table 6, several transfer learning algorithms based on extractive fea-
tures have different computational complexity and accuracy. Model engineering (ME) architectures were used 
to estimate the runtimes of numerous transfer learning models.

As well, we examine our method in light of the most recent research on CRC classification based on deep 
learning. Table 7 shows the statistical assessments made in NCT-CRC-HE-100K. Chen et al.37 and Ghosh 
et al.51 developed an approaches that has resulted in better results in recent years. Compared to Chen et al.37, 
our strategy outperforms another based on average accuracy.

According to Chen et al.37, the suggested architecture has an average accuracy of 99.78%, which is 0.02% lower 
than IL-MCAM and 0.06% higher than MCAM. Our method is more generalizable than their models, and the 
computational complexity of the proposed method has been reduced substantially. Additionally, they did not 
mention asymmetrical light distributions and color intensifications caused by staining, as well as the excessive 
tissue complexity of the histopathological image.

As the early diagnosis of colon tumors is crucial, precise and fast classification of HIs is a critical step in cancer 
detection. Accurate classification algorithms must perform effectively in the absence of annotated datasets to 
minimize pathologists’ workload. The hybrid strategy demonstrated in this study was suggested as a generalizable 
procedure for overcoming time and learning constraints, as well as to facilitate the deployment of HI images in 
clinics and for accurate classifications.

Figure 10.   In the NCT-CRC-HE-100K dataset, dResNet-101 was compared with ResNet-101 and ResNet-110 
based on the accuracy in (a) and (c) and the loss in (b) and (d) for train and test data, respectively.

Figure 11.   It is evident from this figure that a variety of features were selected by the NCA, but high 
classification accuracy was still achieved with as few features as possible.
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Conclusion
We introduced a hybrid architecture that incorporates dilated DTL processes and effective learning to classify 
colorectal cancer (CRC) based on histopathological images. The suggested framework uses a dilated ResNet-101 
model that incorporates an attention module for automatic feature generation and learning to analyze colorectal 
cancer histology texture. A NCA-based feature selection procedure was utilized to reduce the computational 
complexity after the features were extracted. The selected feature was then fed to a robust DeepSVM classifier 
to classify colorectal cancer multi-class texture. The suggested method outperforms traditional deep learning 
models in both training and testing. Consequently, the improved model is a reasonable solution for identifying 
and classifying colorectal cancer. In contrast to other similar methods, which cannot be generalized and are 
subject to uncertainty, the proposed method often does not compromise accuracy when complex sections and 
textures are included in HIs. In extensive experiments using Kather_texture_2016 and NCT-CRC-HE-100K 
datasets, the generalizability of the proposed framework is demonstrated. As a comparison, we used many 
unseen collections of histology images in the experiment. In the future, we will combine and permute attention 

Figure 12.   In both datasets, DeepSVM classification was compared to other similar methods for classifying 
three unseen HIs.

Table 6.   The following table compares how accurate the extracted features are and how computationally 
complex they are. Computing times are an average of three training runs using various TL models.

TL network Dataset Accuracy Runtime-training Runtime-test (s) Computational complexity

Inception v4
Kather texture 2016 97.31 20 min, 58 s 0.36

Low
NCT-CRC-HE-100K 98.47 7 h, 16 min, 29 s 0.38

VGG-16
Kather texture 2016 97.93 23 min, 44 s 0.33

Medium
NCT-CRC-HE-100K 98.86 8 h, 09 min, 27 s 0.34

VGG-19
Kather texture 2016 98.08 27 min, 51 s 0.46

High
NCT-CRC-HE-100K 99.17 9 h, 33 min, 12 s 0.43

DenseNet-169
Kather texture 2016 98.48 50 min, 38 s 0.76

High
NCT-CRC-HE-100K 99.57 19 h, 40 min, 30 s 0.72

DenseNet-201
Kather texture 2016 98.54 1 h min, 16 s 1.12

High
NCT-CRC-HE-100K 99.68 22 h, 06 min, 13 s 1.43

ResNet-101
Kather texture 2016 98.30 49 min, 26 s 0.61

Low
NCT-CRC-HE-100K 99.29 18 h, 36 min, 44 s 0.64

ResNet-110
Kather texture 2016 98.43 54 min, 12 s 0.67

Low
NCT-CRC-HE-100K 99.35 20 h, 54 min, 21 s 0.72

ResNet-152
Kather texture 2016 98.64 1 h, 17 min, 28 s 0.75

Medium
NCT-CRC-HE-100K 99.42 23 h, 35 min, 37 s 0.78

ResNet-164
Kather texture 2016 98.73 1 h, 32 min, 20 s 0.83

High
NCT-CRC-HE-100K 99.63 26 h, 03 min, 41 s 0.89

dResNet-101
Kather texture 2016 98.80 1 h, 07 min, 04 s 0.66

Medium
NCT-CRC-HE-100K 99.79 21 h, 23 min, 31 s 0.69
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mechanisms with deep learning models to select the optimal model. Further, we will investigate the effects of 
convolutional layers on classification performance by incorporating attention mechanisms into separate aspects 
of deep learning models.

Data availability
This dataset was taken from University Medical Center Mannheim (Germany)47, accessible from "https://​zenodo.​
org/​record/​53169#.​Y8pHe​XZBzIU", and NCT-CRC-HE-100K48, accessible from "https://​zenodo.​org/​record/​
12144​56#.​Y8pHc​3ZBzIU". Codes are also available from the corresponding authors.
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