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Diverse electrical responses

in a network of fractional-order
conductance-based excitable
Morris-Lecar systems
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Chris G. Antonopoulos3**

The diverse excitabilities of cells often produce various spiking-bursting oscillations that are found in
the neural system. We establish the ability of a fractional-order excitable neuron model with Caputo’s
fractional derivative to analyze the effects of its dynamics on the spike train features observed in

our results. The significance of this generalization relies on a theoretical framework of the model in
which memory and hereditary properties are considered. Employing the fractional exponent, we first
provide information about the variations in electrical activities. We deal with the 2D class 1 and class Il
excitable Morris-Lecar (M-L) neuron models that show the alternation of spiking and bursting features
including MMOs & MMBOs of an uncoupled fractional-order neuron. We then extend the study with
the 3D slow-fast M-L model in the fractional domain. The considered approach establishes a way

to describe various characteristics similarities between fractional-order and classical integer-order
dynamics. Using the stability and bifurcation analysis, we discuss different parameter spaces where
the quiescent state emerges in uncoupled neurons. We show the characteristics consistent with the
analytical results. Next, the Erd6s-Rényi network of desynchronized mixed neurons (oscillatory and
excitable) is constructed that is coupled through membrane voltage. It can generate complex firing
activities where quiescent neurons start to fire. Furthermore, we have shown that increasing coupling
can create cluster synchronization, and eventually it can enable the network to fire in unison. Based
on cluster synchronization, we develop a reduced-order model which can capture the activities of

the entire network. Our results reveal that the effect of fractional-order depends on the synaptic
connectivity and the memory trace of the system. Additionally, the dynamics captures spike frequency
adaptation and spike latency that occur over multiple timescales as the effects of fractional derivative,
which has been observed in neural computation.

Neurons generate their diverse spike responses in different ways to the inputs. This shows important compu-
tational characteristics depending on the stimulus variance. Various electrical responses can be reproduced
mathematically when we model the membrane voltage dynamics using coupled nonlinear ODEs with different
suitable parameters and time scales'~. Some excitable models exhibit spontaneous firing responses with multiple
timescale dynamics, in particular the bursting behavior, consisting of periods of repetitive firing interspersed
by quiescent phases®. The underlying mechanism of information processing depends on the cellular membrane
voltages. However, a detailed description of diverse firing features and its characteristics cannot be revealed
from a single neuron or coupled neurons using mathematical modeling. This shows a fundamental challenge
in dynamical systems as the transition phases across different firing responses or the emergence of scale invari-
ance in membrane voltage is always restricted” due to various parameter regimes in neural computation. Recent
research has been focused on fractional-order dynamics (FOD)*” in computational neurosciences, that can
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generate (depending on fractional order exponents) a wide range of firing phenomena or multiple timescale
dynamics'®2. As such, a deeper understanding has been reached in different areas of biophysical processes'»**%,
showing more realistic dynamical features®-**. Fractional-order derivatives provide a mathematical framework
in which memory dependent properties are considered. Earlier, a geometrical”** interpretation for the fractional-
order derivative was introduced, which suggests that inhomogeneity of the time scale exists in the system. It
may have an impact on the delays of signals or history dependent activities in comparison to the temporal order
dynamics. In the fractional-order domain, the present state of the system is influenced by the previous states.
History dependent spiking features are important, as the neuronal activities develop over time and continuously
integrate the previous information®**. Fractional-order neuronal models have been applied to study different
firing responses'>'#1%3¢37_firing rates and spike frequency adaptation both theoretically and experimentally. For
some fractional-orders less than one, initially, the voltage increases faster, however, it reaches the steady state
condition, i.e., quiescent state after longer time duration. Neurons can show adaptation in the fractional domain
when we scale the input stimulus. The single spikes and various bursting maintain different information. The
adaptation depends on the fractional exponent and the mean firing rates can change and adapt to the variations
in the stimulus. The spike frequency adaptation follows power law dynamics in the fractional-order domain!®'%3,

The primary goal of the paper is to provide a brief description in understanding the effects of fractional-
order derivative on the electrical activities of single M-L spiking neurons with class I & class II excitabilities and
the slow-fast M-L neurons"** with its network architecture. One approach to study such firing characteristics
and adaptation is to consider a conductance-based model that explores the intrinsic dynamics underlying the
fractional-order derivatives. Previous works have investigated the various spiking responses depending on vari-
ous parameter regimes, however, FOD can itself explore diverse firing responses'>!¢. The M-L models are taken
into account for their diverse responses ranging from spiking to bursting. We consider different regimes in
the parameter space of the M-L model: tonic spiking and fast spiking. Further, the model is extended to its 3D
counterpart, where the applied current, I is not constant, but rather varies with time. We consider the fractional-
order as the predominant parameter in the system and when it changes slowly, the spike transitions occur and
we observe mixed-mode oscillations (MMOs) and mixed-mode bursting oscillations (MMBOs). It is one of the
most interesting neuronal oscillations that emerge from the electrical activities***!. MMOs are used to describe
the alternating trajectories between small and large amplitude oscillations (SAOs and LAOs)***. These make
the system fascinating and the output provides interesting and potential applications in a dynamical system.
The emergence of MMBOs creates a spike adding mechanism. Earlier, it was observed that the MMOs reviewed
the dynamical and neuronal behavior of locomotion or breathing**°. It was observed in calcium signaling and
electrocardiac systems**”. Krupa et al.*® examined the mechanism of MMOs oscillations in a two-compartmental
model of dopaminergic neurons in the mammalian brain stem. We also investigate the impact of electrical
coupling on a mixed population where the neurons are either quiescent or oscillatory. Here, the neurons are
assumed to be connected through the links of the Erdés-Rényi network. The coupling induces complex firing
activities such as periodic bursting or spike frequency adaptation for all the nodes in the network. Based on the
observed synchronization phenomena, a reduced-order model is developed which can produce the activities
of the entire network.

In our work, we find consistent differences in the characteristics of the neuronal functional behavior using
the fractional exponent. The fractional-order voltage dynamics can significantly change the spiking features of
different single neuron models'?~!>1718367 Realistic features can build the model more sensitive to neuronal
dynamics, particularly in the potential collective behavior of the network, where past dynamical behavior might
influence the present states.

Formulation of the excitable model dynamics and some preliminaries
In this section, we describe the fractional-order excitable conductance-based model and review the existence
of various characteristics observed in cortical areas”. We establish a particular parameter regime that supports
the firing features with the variations of fractional exponent. To generate diverse spikes using fractional-order
dynamics, we study the 2D and 3D M-L models with particular parameters and channel dynamics. Here, we
choose the two models to separate the effects of fractional derivatives on the dynamical behavior of the model.
Morris and Lecar'? proposed a simple mathematical model to describe the oscillations in the barnacle giant
muscle fiber consisting of the membrane voltage equation with instantaneous activation of calcium current and
an additional recovery equation describing slow activation of potassium current. The 2D M-L model is described
in a commensurate fractional-order domain as follows
d“u

Cﬁ = —0.5gca(u — Vo) ((1 + tanh(u — V1))/V2) — vgx (u — Vi) — gr(u — Vi) + 1 = hi(u, v),

dy (1)

i ¢ cosh((u — V3)/2V4)(0.5(1 + tanh((u — V3)/V4)) — v) = hy(u, v).
The biophysically motivated excitable model involves a voltage-gated Ca’* current, delayed rectifier KT current
and a leak current respectively. u measures the membrane voltage dynamics and v is the activation variable of K
ion channels. The parameters gc,, gk and g indicate the maximum conductance functions to Ca®*, K+ and leak
currents respectively. Ve, Vk and V7 are the reversal potentials to different ionic current functions. C measures
the membrane capacitance. ¢ represents the temperature scaling factor for K channel opening. The parameters
V1, Va, V3 and V4 have fixed positive values. I indicates the applied stimulus. We would like to account the effects
of various injected current stimulus on the fractional-order system with the fractional exponent, & (0 < o < 1).
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Slow-fast dynamical phenomenon. First, we assume the neuron is at the onset of firing and it generates

spike generation as the control parameter moves slowly. The slow-fast dynamics can be mathematically modeled
1

as

i) =f(x, 2),
(1) = 8g(x, 2), 2)

where x(t) = f(x, z) (fast spiking) and z(t) = 8g(x, z) (slow modulation). x € R™ represents the fast variables
and z € R" the slow variables with 0 < § << 1 measuring the timescale separation parameter.

The following system of ODEs represents the slow-fast 3D M-L model where (1, v) denote the fast subsystem
and w slow variable. The fractional-order modified 3D M-L model*!* is presented as

o

d
CF: = —0.5gca(u — 1)((1 + tanh(u — V1))/V2) — vgx (u — Vi) — gr(u — Vi) + I(w) = fi(u, v, w),

Yy
Z? = ¢ cosh((u — V3)/2V4)(0.5(1 4+ tanh((u — V3)/Vy)) — v) = fa(u, v, w),
d*w
W = I'L(VO + u) =f3(u> Vs W)

€)

The system has the following characteristics. The system variable w is the external injected current which fol-
lows the power law dynamics in the fractional system and characterizes the memory effect of the membrane
potential“>!6. The parameters V;, V,, V3 and Vjare suitably selected for the hyperbolic functions in order to
explain that they can reach their equilibrium points instantaneously. The parameter value  is less than 1 i.e.,
0 < p < 1which measures the ratio of time scale between oscillations and modulation. Lundstrom et al.'’ studied
that pyramidal neurons can act as fractional differentiators of the stimulus amplitude envelope for this type of
input. FOD can generalize the derivative operator such that, to obtain the first order derivative of a function,
differentiate twice taking the fractional-order derivative of order @ = 1/2 and it results in the first derivative®®.
It filters the response with a decaying time constant that depends on a.

The parameter sets for all the simulation results are considered as (for Eq. 1)*** Set I: C = 20, gc, = 4,
gk =8, g1 =2, Vga =120, Vk = —84, V| = —60, V} = —1.2, V3 = 18, V3 = 12, V4 = 174, ¢ = 0.067 (for
class I excitable membrane model) with varying I, Set I: I = 40, Set II: I = 45 and for the class II membrane
model, the parameters are the same described above except Set III: gc, = 4.4, V3 = 2, V4 = 30, ¢ = 0.04, and
I = 100. In order to study the system dynamics, we first analyze the equilibrium states and then bifurcations.
Next, we use the following sets of parameters to deal with system (3) and its modified versions by considering
I(w) = 0.08 — 0.03w using C = 1for the parameter sets I, Il and III respectively.

Set I:  gca=09 gk =29 =05 Ve, =1, Vk = —0.7, V, = —0.5, V| = —0.01, V; = 0.15,
Vi(w) = (0.08 — w), V4 = 0.04, ¢ = 1/3, u = 0.003, Vo = 0.22

Set II: gea=136gk=2g =05 Vez =1, Vk = =07, Vi = —0.5, V| = —0.01, V; = 0.15,
Vi(w) = (0.08 — w), V4 = 0.16, ¢ = 1/3, u = 0.003, Vo = 0.1

Set III: gca=09, gk =2, =05 Vgg =1, Vk =07, Vi = —0.5, V| = —0.01, V; = 0.15,
Vi(w) = (0.08 — w), V4 = 0.05, ¢ = 1/3, u = 0.005, Vo = 0.1

Preliminaries to systems of fractional-order differential equations

To study the fractional-order M-L model, we consider the familiar definition of the fractional derivative i.e.,
the Caputo fractional-order derivative®**. The commensurate fractional-order model with fractional exponent
a € (0,1) can be described as

D*X = f(X), (4)

where either X (t) = (u(t), v(t)) € R? or X(t) = (u(t),v(t), w(®)) € R3, and f = (hy,hy) or f = (fi,fo.f3) for
2D and 3D cases, respectively. The Caputo fractional differential operator is defined as

ex 1 t e v
7_0[)/@—1) (t)dz, (5)
0

DX =Za = ra

where the Gamma function is given by I'(z) = [ s~ !ds. The limits of the integration (i.e., from 0 to #) show
that, in contrast with the classical integer-order derivative, the fractional-order derivative depends on the whole
previous history of the function. Hence, due to the non-locality of the Caputo differential operator, a fractional-
order mathematical model is able to reflect memory properties of the system variables. It is important to note
that for « = 1, the Caputo derivative converges to the first-order integer derivative. An additional advantage of
Caputo-type fractional -order derivative over other types of fractional differential operators is that the derivative
of a constant is zero. It is efficient to integrate all the previous activities of the function weighted by a function
that follows power-law dynamics®!41°.

Remark 3.1 1In the investigation of the local stability properties of an equilibrium of a dynamical system, the
classical Hartman-Grobman linearization theorem plays a fundamental role: it states that the local behavior of
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a dynamical system in a neighborhood of a hyperbolic equilibrium is qualitatively equivalent to the behavior
of its linearization near the equilibrium. It is important to remark that a fractional-order counterpart of this
linearization theorem has been obtained in*. If X* is an equilibrium of system system (4), i.e. f(X*) = 0, the
corresponding linearized system at X* is:

DX =Jr(X")X, (6)

where Jf (X*) is the Jacobian matrix of the function f computed at X*. Therefore, the equilibrium X* of the non-

linear system (4) is asymptotically stable if and only if the trivial solution of the linearized system (6) is asymp-

totically stable**->!. Furthermore, based on the well-known Matignon’s theorem*, the linearized fractional-order
o

system (6) is asymptotically stable if and only if| arg(1)| > %, for any eigenvalue 4 of the Jacobian matrix J; (X*).

Definition 3.1 If some eigenvalues of the Jacobian matrix J; (X*) satisfy | arg(4)| > &* and some other eigen-

values satisfy | arg(4)| < %, then the equilibrium X* is a called a saddle point*>*.

Remark 3.2 In a 3D nonlinear fractional-order system, an equilibrium X* is called a saddle of index one if one

of the eigenvalues of the Jacobian matrix Jr(X*) is unstable (i.e.|arg(41)| < %) and other two eigenvalues are

2
stable | arg(/2;3)| > %F. On the other hand, if two eigenvalues associated to the equilibrium X* are unstable,
while only one eigenvalue is stable, the saddle point X* is called saddle of index two>>.
We numerically simulated the model (Egs. 1 and 3) using the L1 scheme®'>'® and approximated the fractional-

order derivative as described in Appendix.

Qualitative analysis and theoretical considerations
Analysis of the 2D system. System (1) is a particular case of the 2D fractional-order conductance-based
excitable model:

{ C-D%u(t) =1—1(uv), )
DY(t) = pl(u)(vVoo(u) — v),

where u and v are the membrane voltage and the gating variable of the neuron, I is an applied current, I(x, v)
represents the ionic current, £(v) is the rate constant for opening ionic channels and v, (v) represents the fraction
of open ionic channels at steady state, respectively.

In particular, we have from model (1):

I(u,v) = gcatoo(w)(u — 1) + gk - v(u — Vi) + gr(u — V), (8)

and

Moo (1) = %(1 + tanh (u;2V1)> , Veo(U) = %(1 + tanh (u ;4V3)>, £(u) = cosh <u2_VZ3>'

The equilibrium points of system (7) are the solutions of the algebraic system:

I=1wv), v=rve(u),
which is equivalent to
I =1 veo() = Ioo(W), v =veo(w).
The function I, (1) satisfies the following basic properties:
o I,eC! (R);
o lim I(u) =—ocand lim I (u) = oc;
u——0o0 u—00
o I has exactly two real roots Umay < Umin-
Denoting by Inax = Ino (Umax) and Imin = Iso (Umin) the maximum and minimum values of I, respectively, the
function I is increasing on the intervals (— 00, Uyax] and [t4min, 00) and decreasing on the interval (tmax, tUmin)-

Hence, depending on the external input I, there are exactly three branches of equilibrium points, denoted by
(ui(1), voo (ui (1)), i € {1, 2,3}, where:

L = Iool(*oo,umux]: uy 1 (=00, Ipax] = (=00, Umax], w1 (l) = Ifl(l)
L= Iool(umax,umi,,)> Uy - Umins Imax) = (Wmaxs Umin)s 2 (I) = IEI(I)
I = Inolupimoo)s 43 © [ominy 00) = [tmin, 00),  3(D) = I; (D)

Consequently, one of the following situations may hold:

o IfI < IpiporifI > Ipay, then system (1) has a unique equilibrium point.
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® If] = Ly orif I = 4y, then system (1) has two equilibrium points.
® IfI € (Inin> Imax)> then system (1) has three equilibrium points.

The Jacobian matrix associated to the system (1) at an arbitrary equilibrium state (u*, v*) = (u*, voo (™)) is:

J = [t vee@)/C = T, voo(u*»/C}
PLr o (") —gtary |

In this case, the necessary and sufficient conditions for the asymptotic stability of an equilibrium point (u*, v*)
reduce to the following inequalities™:

() >0 and t(u") < 24/8(u*)cos <?),

where

2(0) = trace()) = — L0 voo ') — BL)

() = det(]) = & LT, voo () Voo ) - L, v (D] = S (),

We first remark that the second branch of equilibrium points is completely unstable. Indeed, any equilibrium
point (42 (I), Voo (u2(I))) with I € (Lnin, Imax)s satisfies I’ (u2(I)) < 0, and hence, §(uz(I)) < 0. In fact, the nega-
tive sign of the Jacobian’s determinant guarantees that each equilibrium point of the second branch is a saddle
point, no matter what fractional-order « is considered in system (7).

On the other hand, along the first and third branches of equilibrium points, it is easy to find that the deter-
minant of Jacobian is positive. Hence, the stability of the equilibrium points particularly depends on the trace 7.
Obviously, if T (u*) < 0, the equilibrium point (u*, v*) is asymptotically stable, irrespective of the fractional-order
o considered in system (7). However, if 7(1*) > 0, an equilibrium point (u*, v*) of the first or the third branch
is asymptotically stable, if and only if

o <o (u) = 2 arccos (Lu*)) 9)
T NLICSYA

We will further assume that Vi < thynax < tmin < 1. We can easily evaluate:

Tu(tt, Voo (1)) = gealmis, () (1 — 1) + Moo ()] + gk - Voo (1) + g1,

and hence, if (u*, v*) = (u*, voo (u*)) is an equilibrium point of the third branch such that u* > 1, it follows that
I,(u*, Voo (u*)) > 0, and hence 7 (u*) < 0.
Furthermore, we can also express

Ty (1, Voo () = I (1) — Vi (W (1, Voo () = T4 (1) — v (1) - g (u — Vi),

and hence, if (u*,v*) is an equilibrium point of the first branch such that u* < Vk, we deduce that
I, (u*, Voo (u*)) > 0, and similarly as above, we get T (1*) < 0.
Based on the above calculation, we also remark that:

T(um) = _l [I(;o(um) - V/oo(um) 'gk(um - VK)] — ¢l(uy) = lVéo(’/lm) 'gk(”m — Vk) — ¢L(um),
C C

for either uy, = Umax OF Um = Umin, and assuming that ¢ is small enough, it can be observed that the inequality
T(u4y) > 0 might hold. Therefore, the function 7 (1) might have two roots #’ € (Vk, tyayx) and u” € (Upmin, 1),
respectively. Based on the numerical data, we can further assume that if they exist, these roots are unique in the
aforementioned intervals.

In conclusion, the stability of equilibrium states may depend on the fractional-order « only in the following
two cases:

e the equilibrium point belongs to the first branch and u* € (', upay);
e the equilibrium point belongs to the third branch and u* € (Ui, u”).

In this case, the critical value a* given by (9) corresponds to a Hopf-type bifurcation (i.e. the Jacobian matrix
o

has a pair of complex conjugate eigenvalues such that | arg(4)| = 7). In other words, the position of the Hopf
bifurcation points in the (I, u)-plane, situated on the first and / or third branches, respectively, depending on
the fractional-order o considered in system (7). Obviously, this will have a direct effect on the type of spiking
and bursting behavior both in the 2D system (7) as well as in the 3D slow-fast system, as it will be unveiled in
the next section.

As an example, first we show the bifurcation scenario of the classical 2D M-L model with Hopf bifurcation
points by considering I as a bifurcation parameter (Fig. 1a). Next, we consider the effect of fractional order on
the dynamics of system (1) and showed that how it stabilizes the system as we decrease the value of « (Fig. 1b).

Then, Fig. 2 presents the phase portraits of the 2D M-L model with the parameters from Set I, for different
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Figure 1. Bifurcation scenarios of the 2D M-L model (1) for set I and set II. (a) I as a bifurcation parameter:
HB (I = 97.65 for @ = 1) and SN (I = 39.96) represent the existence of Hopf bifurcation and saddle-node
bifurcation in the system (1). The solid green lines and dotted blue line indicate the stable and unstable
equilibrium branch of the system respectively. However, the dotted brown line represents the emergence
unstable limit cycle at HB. (b) I and « as bifurcation parameters: green, blue and black curves represent the
dynamics of the system (1) at fractional orders 0.75, 0.85, and 1, respectively.
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Figure 2. Phase portraits (including nullclines) in the (1, v)-plane for the 2D Morris-Lecar model for gc, = 4,
Vea =120,V = —1.2,V, =18,gxk =8,V = =84, g, =2,V) = —60,¢ = 0.067,V3 = 12,V4 = 174,

C = 20,1 = 45 with the fractional-orders (from left to right): (a) & = 1; (b) & = 0.85; (¢c) @ = 0.83; (d) @ = 0.8;
(e) a = 0.78, respectively.

values of the fractional-order «. In this case, there is only one unstable equilibrium point for the system, namely
(u*,v*) = (5.08955,0.311245) (at the intersection of the nullclines), situated on the third branch. The critical
value of the fractional-order corresponding to the Hopf bifurcation at the equilibrium point is «* = 0.787825,
computed by the formula (9). In the integer-order case, « = 1, a large-amplitude limit cycle attractor is present,
corresponding to spiking behavior. As the fractional-order o decreases, the large-amplitude attractive quasi-
periodic limit cycle approaches the unstable equilibrium point and as « approaches the critical value o* for Hopf
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Figure 3. Time series of class I & class II excitable 2D single M-L model (1) for different fractional exponents,
(a-e) @ = 1,0.85, 0.83, 0.80, 0.75 with I = 40; (f-j) « = 1, 0.84, 0.82, 0.80, 0.75 with I = 45 (parameter sets I
and II); and (k-0) o« = 1, 0.86, 0.85, 0.84, 0.81 with I = 100 (parameter set III).

bifurcation, a more complex quasi-periodic orbit emerges, involving smaller-amplitude oscillations around the
equilibrium, as well as large-amplitude spikes. When @ < a*, the equilibrium becomes asymptotically stable.
In Fig. 3, we show corresponding time series to further verify the numerical results, noting that the computed
critical values of the fractional-order are o* = 0.757245 for Set I and o* = 0.834537 for Set III, respectively.

Analysis of the 3D system. In line with the previously presented aspects, the 3D slow-fast fractional-
order model (3) can be written as:

C-D%u(t) =I(w)—1I(u,v),
Dv(t) = ¢l(u, w)(F(u, w) — v), (10)
D¥*w(t) = pu(u+ V),

where I(u,v) is given by (8) and

s = 3 (1t ()Y ) e (25200

We will assume that I(w) and V3 (w) are decreasing functions, and that V, + Vi < 0 (according to the considered
parameter sets). The unique equilibrium point of system (10) is (u*, v*, w*), where u* = — Vg, v* = ¥(u*, w*),
and w* is the unique root of the strictly decreasing function w — I(w) — 1(— Vo, #(—= Vo, w)).

The Jacobian matrix at the equilibrium point (u*, v*, w*) is

~Lw*v)/C —Lw,v)/C Ir'(w9/C
J = | pl*, wH)v,(u, w*)  — dplu*, w*) dlu*, w*)i, (u*, w*)
" 0 0

and its charactersitic equation is:
P +al+bi+c=0,

where
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1- -
a= Elu(u*, Vi) + pL(ut, wh),

b= %Z(u*,w*) [, v*) + L, v (w0, W) — %I’(W*),

c= %f(u*,w*) [fv(u*,v*)flw(u*,w*) — I/(w*)] > 0.
The positivity of the coefficient ¢ follows from

Lw* v = ge(u* — Vi) = —g(Vo + Vi) > 0.

Asc > 0, it follows that the product of the eigenvalues of the Jacobian matrix is negative, and hence, one of the
eigenvalues is a negative real number and the other two eigenvalues are either complex conjugated, or are real
and have the same sign. We will further assume that at least one of the coefficients a or b is negative (based on
the parameter sets under consideration), and hence, it is clear that the Routh-Hurwitz conditions are not satis-
fied for the characteristic polynomial. Hence, denoting by A the discriminant of the characteristic polynomial,
we distinguish two cases:

e if A > 0, the Jacobian matrix ] has one negative and two positive eigenvalues, and consequently, the equilib-
rium point (u*, v*, w*) is a saddle point of index two, for any fractional-order « (e.g. in the case of parameters
from Set I and Set II);

e if A < 0, the Jacobian matrix J has one negative eigenvalue and two complex conjugate eigenvalues with posi-
tive real part (e.g. in the case of parameters from Set IIT). Consequently, there exists a critical value a* of the
fractional-order such that the equilibrium point (u*, v*, w*) is asymptotically stable for « < o* and unstable
foro > o*. Ata = o*, a Hopf-type bifurcation occurs in a neighborhood of the equilibrium point, resulting
in the appearance of persistent oscillations. The critical value o* is found using the method presented in>
(a* = 0.62477 for Set III).

Analysis of diverse oscillatory responses

We start our discussion with the fractional-order class I and class II single M-L neurons and then extend it to the
slow-fast dynamics. We simulated the spikes from the single model, and the membrane voltage dynamics depends
on the voltage-gated conductances. The input stimulus is considered as I. We tuned the fractional-order exponent,
o, with different parameter regimes: tonic spiking and fast spiking zone for class I and class II excitabilities. We
next show the modulations of the electrical activities for a long time scale and the spike frequency adaptive effects.
We considered two different suitable current stimuli, I = 40 and 45 for class I neuron and I = 100 for class II
case. We choose these types of input stimuli as it shows the tonic spiking and fast spiking for the classical-order
dynamics, however, when we change it in the fractional domain, the dynamical model produces variations in
the firing features not explored earlier to the best of our knowledge. The bifurcation analysis is performed and
the numerical results are supported by the stability analysis and there is a good agreement between the analytical
and numerical findings.

First, we consider the class I excitable M-L neuron with parameter sets I and II. The classical-order neuron
shows tonic spiking when stimulated, when the input stimulus current is on (I = 40), the neuron continues to
exhibit a train of spikes, called tonic spiking. Then, as the fractional exponent decreases to & = 0.85, it shows
tonic spiking however, the interspike interval increases, i.e., firing frequency decreases. With further decrease
of @ = 0.83 and 0.80, it generates regular bursting and then regular bursting with low firing frequency. Then, it
goes to quiescent state with a lower fractional exponent o = 0.75, which is in good agreement with analytical
results (see Fig. 3a—e). Next, with parameter set II, the integer order single neuron shows fast spiking while the
input stimulus is on I = 45. With the decrease of & = 0.84, the firings transform into regular bursting, then
with & = 0.82 and 0.80, it produces bursting however, the firing frequency decreases and more burst produces.
Finally, it switches to quiescent state at @ = 0.75 (see Fig. 3f-j).

Class II excitable neurons cannot generate low-frequency spikes. They are either in quiescent states or fire
a train of spikes with larger frequency by a strong input current. The single M-L neuron with parameter set III
shows fast spiking with & = 1 for I = 100. With the decrease of & = 0.86 and 0.85, it generates MMBOs and
MMOs. The firings switch to regular MMOs with further decrease of o = 0.84, however it shows MMOs with
lower firing frequency;, i.e., the inter spike interval increases. Then, it goes to quiescent state « = 0.81, i.e., con-
verges to the fixed point of the system (see Fig. 3k-o0).

Now, we extend our study with the excitable slow-fast single 3D M-L neuron model (3) in the fractional
domain with various parameter regimes that generate different bursting features, i.e., the number of spikes in
each burst varies with diverse small and large amplitudes. With parameter set I, the single M-L model ato = 1
produces bursting with several number of spikes in each burst, however with the decrease of @ = 0.9 and 0.8,
the firing frequency decreases with longer time period, i.e., interspike interval increases between two burst and
the amplitude of each spike decreases in the simultaneous bursting. For this parameter set, the unique fixed
point is a saddle point of index two. It is observed that spike frequency adaptation occurs with the decrease of
fractional-order exponents. Then it generates more spike frequency adaptation with further decrease of « = 0.7
(see Fig. 4a—d). Similarly, with parameter set II, the classical single neuron model shows bursting. With decreasing
o = 0.95and 0.75, it shows various bursting and then spiking behavior is observed with spike frequency adapta-
tion and first spike latency at @ = 0.5 (see Fig. 4e-h). Finally, for set III, the single neuron changes it behavior
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Figure 4. Time series of slow-fast excitable 3D single M-L model (3) for different fractional exponents, (a-d)
a =1,0.9,0.8,0.7; (e-h) « = 1,0.95,0.75, 0.5; and (i-1) @ = 1, 0.98, 0.8, 0.6 (parameter sets I, IT and III).

from bursting to fast spiking while o changes from one to @ = 0.98 and 0.8. It switches to stable steady state with
a = 0.6, i.e,, it converges to the locally asymptotically fixed point of the system (see Fig. 4i-1).

Network analysis of the fractional-order 2D M-L model

We investigate various dynamics of fractional-order M-L model in a random network architecture, where all the
neurons are connected randomly with each other and with connection probability p. We construct an Erdos-
Rényi network®®> of N = 100 M-L oscillators that is considered with mean node-degree (k) ~ 7 for numerical
simulations. The elaborate discussion of the network architecture is explained in the following subsections.

Dynamics of the network with two subpopulations. To capture different firing activities of the net-
work, first we consider a heterogeneous network of two different subpopulations depending on fractional-order
(o). Further, we consider that the fractional-order M-L neurons are electrically coupled through first state vari-
able (). The dynamics of network is studied using the following mathematical model
d%u; _
Cat =

d%v; __
dr%i

8e
N
Zj:l Cij

—0.5gca(ui — Vo) (1 + tanh(u; — V1))/V2) — vigk (i — Vi) —gL(ui — VL) +1+ >N cij(uj — ui),

¢ cosh((u; — V3)/2V4)(0.5(1 + tanh((u; — V3)/Va)) — vi),

= i=123...,N.

(11)
The electrical coupling of the network is given by g, > 0. The connection matrix of the network is represented
by M = (cj)
order as

Nxn- Further, we divide the population of size N into two subpopulations depending on fractional-

m

m number of nodes have identical fractional-order «, reflecting oscillatory behavior and the remaining n nodes
have fractional-order, B, reflecting excitable behavior. Thus, the total population size N can be expressed as
N = m + n. First, we study the behavior of randomly connected class I excitable M-L neurons with two frac-
tional-order exponents i.e., « = 1 and 8 = 0.75. The total number of nodes in the network is N = 100, and
m = 60 & n = 40i.e., we consider the network of N neurons with 60% oscillatory and 40% excitable neurons. In
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Figure 5. Time series and spatiotemporal dynamics of randomly connected network of class I & class II 2D

M-L neurons (11) two different types of fractional exponents. First panel: (a-d) Set: vy = ... = agp =1
and Be; = ... = Bioo = 0.75 with g, = 0.0001,0.01, 0.08, 1. Third panel: (i-1) Set Il: ¢; = ... = agp = 1 and
Be1 = ... = Bioo = 0.75with g, = 0.0001, 0.05, 0.08, 1. Fifth panel: (q-t) SetIIl: ¢; = ... = agp = 0.86 and
Be1 = ... = Pioo = 0.81 with g, = 0.0001, 0.01, 0.5, 1. Corresponding spatiotemporal patterns are shown in

second, fourth and sixth panels respectively. We have randomly picked two nodes from two sub-populations to
plot the time signals. The time evaluation of one node marked with red line is chosen from the subpopulation

having quiescent states (when g, = 0). The blue signal is chosen from the nodes which was kept at spiking states
in the absence of coupling.

the absence of coupling (g, = 0), each oscillatory neuron in the network shows tonic spiking and the remaining
neurons stay in quiescent state. With small increase in the electrical coupling g, = 0.0001, oscillatory subpopu-
lation still remains in tonic spiking mode and another subpopulation shows quiescent state. The time signals of
two randomly connected nodes from two subpopulations are marked with red and blue lines (see Fig. 5a). The
red signal is randomly chosen from the quiescent nodes and blue signal from the spiking nodes. The spatiotem-
poral plot reveals that the spiking nodes (1-60) are desynchronized to each other (Fig. 5e). The system behavior
changes if we increase the coupling 100 folds (g, = 0.01). Now, the subpopulation which was in quiescent state
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starts to exhibit bursting dynamics. Notably, the time interval of each burst is not periodic. Another subpopula-
tion shows desynchronized irregular tonic spiking (see Fig. 5b, f). It is clear, if the coupling is increased in the
mixed population, the periodic as well as quiescent nature vanishes and irregular bursting or spiking appears
in the network. The entire network shows bursting dynamics with finite number of spikes in each burst with
small increase of g, = 0.08 (see Fig. 5¢, g). Here, two clusters with different amplitudes but the same phases are
generated. Finally, at g, = 1, the coupled network exhibits almost synchronized behavior by changing the firing
activity to tonic spiking (Fig. 5d, h).

Next, we increase the current stimulus I = 45 and the oscillatory subpopulation shows fast spiking and the
other subpopulation remains in quiescent state. At weak coupling (g. = 0.0001), the behavior of both subpopula-
tions do not change. With the increase of coupling g, = 0.05 and 0.08, both the subpopulation