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Metabolomic and gut microbiome 
profiles across the spectrum 
of community‑based COVID 
and non‑COVID disease
Marc F. Österdahl 1,4*, Ronan Whiston 1,4, Carole H. Sudre 1, Francesco Asnicar 2, 
Nathan J. Cheetham 1, Aitor Blanco Miguez 2, Vicky Bowyer 1, Michela Antonelli 1, 
Olivia Snell 1, Liane dos Santos Canas 1, Christina Hu 3, Jonathan Wolf 3, Cristina Menni 1, 
Michael Malim 1, Deborah Hart 1, Tim Spector 1, Sarah Berry 1, Nicola Segata 2, Katie Doores 1, 
Sebastien Ourselin 1, Emma L. Duncan 1 & Claire J. Steves 1

Whilst most individuals with SARS‑CoV‑2 infection have relatively mild disease, managed in the 
community, it was noted early in the pandemic that individuals with cardiovascular risk factors 
were more likely to experience severe acute disease, requiring hospitalisation. As the pandemic 
has progressed, increasing concern has also developed over long symptom duration in many 
individuals after SARS‑CoV‑2 infection, including among the majority who are managed acutely in 
the community. Risk factors for long symptom duration, including biological variables, are still poorly 
defined. Here, we examine post‑illness metabolomic profiles, using nuclear magnetic resonance 
(Nightingale Health Oyj), and gut‑microbiome profiles, using shotgun metagenomic sequencing 
(Illumina Inc), in 2561 community‑dwelling participants with SARS‑CoV‑2. Illness duration ranged 
from asymptomatic (n = 307) to Post‑COVID Syndrome (n = 180), and included participants with 
prolonged non‑COVID‑19 illnesses (n = 287). We also assess a pre‑established metabolomic biomarker 
score, previously associated with hospitalisation for both acute pneumonia and severe acute COVID‑
19 illness, for its association with illness duration. We found an atherogenic‑dyslipidaemic metabolic 
profile, including biomarkers such as fatty acids and cholesterol, was associated with longer duration 
of illness, both in individuals with and without SARS‑CoV‑2 infection. Greater values of a pre‑existing 
metabolomic biomarker score also associated with longer duration of illness, regardless of SARS‑
CoV‑2 infection. We found no association between illness duration and gut microbiome profiles in 
convalescence. This highlights the potential role of cardiometabolic dysfunction in relation to the 
experience of long duration symptoms after symptoms of acute infection, both COVID‑19 as well as 
other illnesses.

The devastation caused by the COVID-19 pandemic is unprecedented in recent memory, with > 6.3 million deaths 
and 543 million cases worldwide in just over two  years1. SARS-CoV-2 infection can cause a wide spectrum of 
illness, even in individuals who do not require acute hospital management; many individuals are asymptomatic 
(35.1% to 40.5% in meta-analyses2,3) while others report prolonged symptom duration (2.3% to 37.7%4). Collo-
quially known as “Long COVID”, the National Institute for Health and Care Excellence (NICE), defines two cat-
egories: Ongoing Symptomatic COVID (OSC28) for individuals with symptoms lasting 28–83 days (4–12 weeks), 
and Post-COVID syndrome (PCS84), for individuals with symptoms lasting over 84 days (12 weeks). They should 
display “signs and symptoms that have developed during or after an infection consistent with COVID-19 … and 
not explained by an alternative diagnosis”5,6.

The strongest predictors of PCS84 are age (with those aged 35–69 years having highest risk), female sex, and 
greater severity of acute  infection7,8 Whilst vaccination against SARS-CoV-2 reduces the risk and duration of 
 PCS849–11, prolonged post-infection symptomatology remains common. The United Kingdom Office for National 
Statistics report 2 million affected individuals in the United Kingdom by 01 May 2022, and 71% of individuals 
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report that this affects normal daily  activities12. The understanding of the pathophysiology and risk factors for 
these differing phenotypes-from asymptomatic infection to prolonged illness—is still evolving.

Early in the pandemic, it was noted that individuals with cardiovascular disease were at greater risk of severe 
 illness13,14 and ‘Long COVID’15. Metabolomic profiles, particularly lipidomics, can identify risk of cardiovascular 
disease, with known associations of particular profiles with cardiovascular  disease16 and Type 2  diabetes17,18. 
Such pre-pandemic lipidomics profiles have been associated with risk of hospitalisation for both COVID-19, and 
pneumonia caused by other pathogens, enabling the generation of an Infectious Diseases risk score (ID score) 
for hospitalisation due to COVID-1919. Disturbances to the same group of metabolites have also been observed 
in samples from hospitalised individuals when acutely unwell with COVID-1920,21. What is less clear is whether 
such metabolomic profiles are associated with disease duration, and/or Long-COVID, with the published studies 
focusing on specific metabolites in hospitalised  individuals22.

However, most cases of COVID-19 are managed in the community rather than hospital. We aimed to assess 
whether metabolomic profiles differed in community-dwelling individuals with different symptom durations, 
comparing samples from asymptomatic individuals, to those with short duration, OSC28 and PCS84, approxi-
mately 6 months post-infection. This was further extended to include individuals with similar illnesses of pro-
longed duration, testing negative for SARS-COV-2 infection. We examined metabolites individually and assessed 
the previously published ID-score.

Metabolism has been related to the gut microbiome composition, with reports that the gut microbiome may 
separate individuals with PCS84 from healthy  controls23,24. Therefore, we further explored whether stool micro-
biome composition, taken after acute illness and paired with metabolomics, was different between individuals 
with disease of different symptom duration, with and without previous confirmed SARS-CoV-2 infection. Finally, 
we tested whether there was any relationship between metabolomic profiles and gut metagenomic composition.

Results
Baseline characteristics of cohort. Of 15 564 individuals invited to the CSSB, 5694 (36.6%) consented 
and were enrolled. Of these, 4787/5694 individuals (84.1%) returned samples suitable for metabolomic analysis. 
Participant mean age was 52.5 years (SD 11.8), 78.7% were female, and 94.8% identified as White British, (Table 1 
and Supplementary Table 2). The largest group was those with Acute COVID-19 illness (ACI) (n = 1147), last-
ing 7 days or less, followed by 652 with OSC28, and 307 Asymptomatic participants, our reference group. We 
included 287 who had a non-COVID-19 illness, of which 48/287 had symptoms over 84 days (Non-COVID-19 
illness > 84 days—NC84). 161/287 were confirmed negative for SARS-CoV-2 infection by PCR testing at onset 

Table 1.  Baseline characteristics of each illness category. n: number; sd: standard deviation; IQR: Inter-
quartile range. Participants not confirmed by swab testing at symptom onset were confirmed by antibody 
testing-further details in methods.

Asymptomatic
Acute COVID-19 
(≤ 7 days)

Ongoing 
Symptomatic 
COVID-19 
(28–83 days)

Post COVID-
19 Syndrome 
(≥ 84 days)

Non-COVID-19 
illness (28–83 days)

Non-COVID-19 
illness (≥ 84 days)

n Col % n Col % n Col % n Col % n Col % n Col %

Total 307 1147 652 180 239 48

Age (mean, sd) 58.1 (10.2) 53.2 (12.0) 53.1 (11.2) 53.6 (11.5) 53.7 (11.0) 58.1 (9.2)

Age Groups

 < 30 5 1.6% 41 3.6% 19 2.9% 7 3.9% 5 2.1% 0 0.0%

 30–39 9 2.9% 130 11.3% 65 10.0% 16 8.9% 26 10.9% 1 2.1%

 40–49 47 15.3% 219 19.1% 133 20.4% 36 20.0% 42 17.6% 7 14.6%

 50–59 92 30.0% 401 35.0% 247 37.9% 67 37.2% 88 36.8% 18 37.5%

 60–69 122 39.7% 259 22.6% 151 23.2% 41 22.8% 63 26.4% 17 35.4%

 70 + 32 10.4% 95 8.3% 37 5.7% 13 7.2% 14 5.9% 5 10.4%

Sex

 Male 68 22.1% 251 21.9% 144 22.1% 35 19.4% 39 16.3% 12 25.0%

 Female 238 77.5% 892 77.8% 505 77.5% 141 78.3% 200 83.7% 36 75.0%

Other/PFNTS 1 0.3% 4 0.3% 3 0.5% 4 2.2% 0 0.0% 0 0.0%

BMI (median, IQR) 25.3 (25.6–28.4) 25.2 (22.7–28.6) 25.5 (22.9–29.4) 26.3 (23.4–31.9) 25.7 (22.7–30.3) 26.2 (22.5–29.7)

 < 18.5 1 0.3% 10 0.9% 5 0.8% 5 2.8% 6 2.5% 1 2.1%

 18.5–24.9 141 45.9% 547 47.7% 287 44.0% 59 32.8% 103 43.1% 18 37.5%

 25–29.9 111 36.2% 369 32.2% 210 32.2% 62 34.4% 65 27.2% 18 37.5%

 30.0–34.9 36 11.7% 139 12.1% 95 14.6% 33 18.3% 42 17.6% 7 14.6%

 35 + 13 4.2% 75 6.5% 49 7.5% 21 11.7% 21 8.8% 4 8.3%

Missing 5 1.6% 7 0.6% 6 0.9% 0 0.0% 2 0.8% 0 0.0%

Confirmed by Swab Test at symptom onset 
(n, %) 15 4.9% 567 49.4% 315 48.3% 84 46.7% 163 68.2% 28 58.3%
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of illness, and all had a negative antibody test at enrolment (Table 1). Baseline characteristics of the groups were 
broadly similar to the population from which they were recruited and to each other, although the final asymp-
tomatic group was slightly older than the average for the cohort (mean 58.1 years (SD 10.2) vs. 52.7 (SD 11.7) 
P < 0.001) (Table 1, Supplementary Table 2 + 3). All groups were predominantly female (75–84%, Table 1), with 
a median BMI of 25.2–26.2 kg/m2 (Tables 1, 2).

Metabolomic analysis. In total, 3718/4787 (77.7%) participants had adequate logging and metabolomic 
data, of whom 2561/3178 (80.6%) fell into the pre-specified phenotype groups (see Materials and Methods, 
Table 5).

Our primary analysis, using multinomial regression adjusted for age, sex, and BMI, compared asymptomatic 
participants to groups with longer symptom duration. We showed 90 of 249 (36%) metabolites differed in par-
ticipants with OSC28 (28–83 days of COVID-19 symptoms) compared to Asymptomatic SARS-CoV-2-positive 
individuals (Fig. 1, Supplementary Fig. 1, Supplementary Table 4). 39 of these 90 (43%) also differed in partici-
pants with NC28 (Non-COVID-19 illness 28–83 days) compared to Asymptomatic SARS-CoV-2 infection, with 
the same direction of effect (Fig. 1, Supplementary Fig. 1, Supplementary Table 4).

Amongst the subset of metabolites validated for clinical use (37 of 249 measurements)19, fatty acids differed 
in asymptomatic cases compared to both positive and negative symptomatic individuals. A higher ratio of poly-
unsaturated fatty acids (PUFA) compared to monounsaturated fatty acids (MUFA) was associated with a lower 
odds of prolonged COVID-19 (OR = 0.73, False Discovery Rate adjusted P-value (FDR-P) = 0.01 for OSC28 
vs. asymptomatic), and non-COVID-19 illness (OR = 0.68, FDR-P = 0.01 for NC28 vs. asymptomatic). (Fig. 1 
and Supplementary Table 5). We also noted an association of absolute MUFA levels with increased length of 
illness (OR = 1.28 [FDR-P = 0.04] for OSC28 vs. asymptomatic COVID-19). Similarly, in combination, raised 
triglycerides and VLDL lipids were associated with an increased risk of prolonged illness in both test-positive 
and test-negative individuals, as was the ratio of triglycerides to phosphoglycerides (Supplementary Table 4 + 5). 
In contrast, higher HDL lipoprotein levels and larger HDL particles were associated with Asymptomatic cases. 
Neither amino acids nor glycoprotein acetyls were associated with COVID symptom duration.

In both the clinically validated variables, and the entire metabolomics dataset, only 7/249 (2.8%) variables 
were significantly different in Long COVID (OSC28 or PCS84 combined) compared to Non-COVID illness 
(NC28 and NC84 combined) as the reference group (Supplementary Table 6). Of note, HDL-Cholesterol was 
also raised in Acute COVID-19 Illness (OR 1.24 [FDR P-value 0.005] for ACI vs Non-COVID illness) and fur-
ther raised in Asymptomatic illness (OR 1.44 [FDR P-value 0.007] for Asymptomatic vs. Non-COVID illness).

The Infectious diseases score. The multi-biomarker infectious diseases score (ID Score) was calculated, 
whereby higher values were previously associated with hospitalization for COVID-1919. In our cohort, higher 
values of the ID Score were generally associated with longer duration of symptoms of all illnesses, but notably 
not Post-COVID Syndrome (Table 2).

Sensitivity analyses adjusting for additional variables. The direction of effect and significance of 
results were unchanged for most sensitivity analyses, including adjustment for baseline cardiovascular disease 
and diabetes; however, the effect of the ID Score was marginally stronger after adjusting for Healthy Plant-based 
diet index (OR = 1.61 with hPDI, OR = 1.53 without hPDI: for OSC28 compared to asymptomatic COVID-19) 
(Supplementary Fig. 2).

Microbiome demographics. A subset (n = 301) of the metabolomic cohort had corresponding micro-
biome data (Table  3). The median time between symptom onset and microbiome assessment was 223 (IQR 
50 days), with the minimum time between symptom onset and microbiome assessment of 33 days (implications 
considered further in Discussion).

Quality control of gut microbiome sequence data for these 301 individuals revealed good breadth of cover-
age of MetaPhlAn markers. In addition, depth of coverage of MetaPhlAn markers was high for most abundant 
species (~ 3X), with large areas of < 0.5X coverage (Supplementary Fig. 3).

For this subset analysis, individuals were grouped into categories as follows: (1) Asymptomatic: n = 35; (2) 
ACI: n = 109; (3a) OSC28 n = 52; (3b) Post COVID-19 syndrome (≥ 84 days): n = 20; (4) Negative symptomatic 
(≥ 28 days, including ≥ 84 days): n = 85 .

Alpha‑ diversity analysis. Microbial richness did not differ between groups (Wilcoxon signed-rank test 
P-value > 0.25 for all comparisons, Supplementary Fig. 4). There were no differences in Alpha-diversity (Simp-
son or Shannon) between groups, whether they were test positive or negative, symptomatic or asymptomatic, or 
with long or short symptom duration (Supplementary Fig. 4).

Beta‑diversity analysis. Similarly, beta-diversity analysis showed no large-scale shifts in microbial pro-
files between groups (Supplementary Fig. 4).Ongoing symptomatic COVID-19 and Post COVID-19 syndrome 
groups were amalgamated and beta-diversity analysis repeated; there remained no significant difference (data 
not shown).

Microbial differential abundance analysis. A Generalised Linear Model controlled for confounding 
factors, including age, sex, and BMI identified three species with differences between groups—specifically, Fir-
micutes bacterium CAG 94, Ruminococcus callidus and Streptococcus vestibularis. Firmicutes bacterium CAG 
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94 differed between Asymptomatic SARS-CoV-2 infection (ref) and Acute COVID-19 (FDR P-value = 0.03), 
OSC28 (FDR P-value = 0.01) and PCS84 (FDR P-value = 0.04). Ruminococcus callidus, also a Firmicute, differed 
between Asymptomatic and Non-COVID-19 illness (≥ 28 days) (FDR P-value = 0.01) (Table 4). Streptococcus 
vestibularis differed only when comparing OSC28 and non-COVID-19 participants (FDR P-value 0.073).

Correlation between metabolomic and microbiome analysis. Correlations between the metabo-
lites and microbial taxa were assessed using Spearman’s rank coefficient. We found no evidence that microbiome 
taxa were associated with differences in those metabolites associated with symptom duration in this dataset 
(Fig. 2). Negatively correlated metabolites and microbial species clustered in the top right-hand corner, with 
mild positively correlated associations throughout the remainder of the heatmap. A distinctive pattern was una-
ble to be elucidated. The primary species driving the negative correlation were Alistipes finegoldii, an anaerobic, 
mesophilic, rod-shaped bacterium and Bacteroides cellulosilyticus, a cellulolytic bacterium.

Discussion
Summary of results + results in context. We observed a metabolic profile, particularly in lipid compo-
nents, that differentiated individuals with longer symptom duration compared with individuals with asympto-
matic infection. This profile was evident for individuals with long symptom duration regardless of SARS-CoV-2 
test status, compared with asymptomatic infected individuals.

The specific differences identified in association with long-duration illness were small in magnitude and 
related to atherogenic dyslipidaemia (Fig. 3); in particular, blood fatty acid concentrations, including higher 
absolute and relative concentrations of MUFA, lower relative concentrations of PUFA, and a lower PUFA/MUFA 
ratios. In humans, circulating PUFA is derived from dietary sources, and blood levels correlate both to dietary 
intake and to levels in adipose tissue stores. MUFA, on the other hand, is synthesised in significant quantities 
in vivo and circulating concentrations (but not dietary intakes) are associated with increased risk of cardiometa-
bolic  disease25. Elevated serum MUFA and low serum PUFA have been identified in many studies as associated 
with ill health, including cardiovascular  risk26, metabolic  syndrome27, and mortality from  infections28. Although 
our study assayed blood levels up to 9 months after initial COVID illness, these measures, particularly MUFA, 
are relatively stable over  time19,29 and may reflect long-term blood concentrations. Moreover, our results concord 
with previous work in the UK Biobank, using the same platform, which demonstrated a similar direction of 
association with the same metabolites with increased risk of acute severe COVID-19 and with pneumonia, using 
blood samples collected many years  beforehand19. Recent studies have reminded clinicians of the increased risk 

Table 3.  Baseline Characteristics for subset used for microbiome analysis, per COVID group.

Asymptomatic Acute COVID-19 (≤ 7 days)
Ongoing symptomatic 
COVID-19 (28–83 days)

Post COVID-19 Syndrome 
(≥ 84 days)

Non-COVID-19 illness 
(≥ 28 days)

n n n n n

Total 35 109 52 20 85

Age (Median, 
IQR) 57 (4.75) 57 (4.86) 57 (5.67) 53 (3.63) 55 (5.42)

Sex

 Male 5 14% 28 26% 14 27% 8 40% 15 18%

 Female 30 86% 81 74% 38 73% 12 60% 70 82%

BMI (Median, 
IQR) 24.3 (4.75) 24.9 (4.86) 24.5 (5.67) 26.5 (3.63) 24.0 (5.42)

Table 2.  Relative risk-ratios (RRR) for a 1 SD increased in ID Score, for each illness phenotype compared to 
asymptomatic COVID-19. Groups in bold are those for primary analysis.

Group RRR for ID Score P-value 95% CI

Asymptomatic 1.00 (ref) (ref)

Acute COVID-19 Illness (≤ 7 days) 1.37 0.0032 (1.11–1.68)

Acute Non-COVID-19 Illness (≤ 7 days) 1.31 0.0377 (1.02–1.68)

Intermediate COVID (8–27 days) 1.35 0.0143 (1.06–1.72)

Negative Intermediate Illness (8–27 days) 1.48 0.0013 (1.17–1.88)

Ongoing Symptomatic Covid (28–83 days) 1.52 0.0002 (1.22–1.90)

Non-COVID-19 Illness (28–83 days) 1.53 0.0022 (1.16–2.00)

Post COVID-19 Syndrome (≥ 84 days) 1.24 0.1508 (0.92–1.67)

Non-COVID-19 illness (≥ 84 days) 2.12 0.0006 (1.38–3.27)
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of vascular diagnoses after both COVID-19 and similar respiratory  infections30–32 and while the risk reduces 
dramatically after the acute period, there is excess risk which remains many months afterwards. It is possible 
that our findings may reflect un-detected prior cardiovascular risk in symptomatic COVID-19 cases or vascular 
changes as a consequence of disease.

Higher levels of VLDL-particles/lipids and TG-enriched lipoproteins were associated with longer illness 
duration, although again effects were relatively small in absolute terms. Both components have also been asso-
ciated with ill-health in other (pre-pandemic) studies—in particular, cardiovascular disease, diabetes, renal 
disease, obesity and  depression33,34, although studies did not always adjust for  diet35. In our study, adjusting for 
dietary intakes or co-morbidities did not change the findings. We also demonstrate similar findings to previous 
work associating peripheral vascular disease with metabolic profiles representing atherogenic dyslipidaemia 
(Fig. 3)16,36.

We did not find metabolomic profiles specific to Long COVID comparing individuals with long-duration ill-
ness who were positive vs. negative for SARS CoV-2 infection. This would suggest that atherogenic-dyslipidaemic 
metabolic profiles are associated with long symptom duration, regardless of the cause of illness. This is supported 
by a growing body of literature identifying “conventional” risk factors such as high BMI, diabetes and cardiovas-
cular disease, as risk factors for long COVID, as well as  age7,37 all of which are associated with adverse metabolic 
 changes26,34,38. There was no meaningful change in our results with inclusion of self-reported cardiovascular 
disease and diabetes as co-variates (Supplementary Fig. 2).

There were some unexpected negative findings. Others have associated GlycA with increased  mortality39, and 
it is often increased in other conditions such as  diabetes34. It was the biomarker showing the greatest association 
with hospitalisation for COVID-19 using pre-pandemic UK Biobank  samples19. However, we found no associa-
tion of GlycA with illness duration in our community-based sample. GlycA is considered a marker of inflam-
mation, and our participants were sampled many months after the onset of symptoms and SARS-CoV-2, and 
were no longer reporting symptoms. It is possible that prolonged symptoms after COVID-19 may not always be 
related to ongoing inflammation, but previous damage that has not been repaired. There was also no association 
between any of the amino acid metabolites and length of illness (Supplementary Fig. 1), although some amino 
acids have previously been associated with hospitalisation for COVID-1919 and were included in the ID Score.

Looking at the ID score, previously associated with severity of acute COVID-1919, we also demonstrated 
an increased score was associated with increased length of illness. This was replicated for both COVID-19 and 
those reporting ongoing symptoms without COVID-19. This suggests that there are shared associations which 
link severe acute illness and prolonged illness. This tallies with our previous observation that participants with 
a high acute symptom burden early in their illness were at greater risk of Long  COVID7. Others have shown 
perturbations in lipid profiles are also associated with severity of disease, and correlate with changes in immune 
cell populations and function. In particular, depletion of lipids is often associated with moderate and severe acute 
disease, compared to mild disease, and associates with shifts in immune cell profiles, including the balance of 
CD8 and effector T-Cells, and monocyte  subsets40. Particular disturbances in natural killer cell (NK-Cell) func-
tion and phenotype have also been noted to correlate with severity of acute illness. These further correspond to 
changes in TNF and INF-α signatures, and FcRγ  expression41,42. There are suggestions this may relate to differ-
ent metabolic profiles of immune cells, metabolic reprogramming, and hepatic  injury43,44. Further work would 
be needed to see if similar correlations with immune function hold true for illness duration, both during the 
initial phase of the illness, as well as during ongoing, prolonged illness, compared to those who have recovered.

Although 97 metabolites and the ID score were associated with Ongoing Symptomatic COVID-19 illness, 
only 16 of these were still associated with Post-COVID-19 syndrome. The PCS84 group is much smaller, and 
may be heterogeneous. Further work is needed to see whether certain subgroups within PCS84 display similar 
associations to OSC28, whilst other subgroups do not. However, it is of note that those most at risk for PCS84, 

Table 4.  Potential biomarkers most divergent between COVID groups. FDR corrected P-values < 0.1 were 
considered significant. OSC28: Ongoing symptomatic COVID-19; PCS84: Post-COVID-19 syndrome; NC: 
Non-COVID illness ≥ 28 days (including both 28–83 days and ≥ 84 days). Significant values are in [bold].

Group Comparison Z P-value FDR P-value

Firmicutes bacterium_CAG_94

 Asymptomatic-ACI 2.712 0.006 0.033

 Asymptomatic-OSC28 3.186 0.001 0.014

 Asymptomatic-PCS84 2.498 0.012 0.041

 Asymptomatic-NC 2.058 0.039 0.098

Ruminococcus callidus

 Asymptomatic-ACI 2.557 0.011 0.052

 Asymptomatic-PCS84 1.991 0.046 0.154

 Asymptomatic-NC 3.254 0.001 0.011

Streptococcus vestibularis

 Asymptomatic-PCS84 2.115 0.034 0.114

 OSC28-NC − 2.439 0.014 0.073

 PCS84-NC − 2.549 0.010 0.107
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women in mid-life4,45, are less at risk for some conditions associated with metabolic derangement, such as cardio-
vascular  disease46,47. Our results might suggest that truly persistent symptoms in PCS84 may represent a different 
type of disease to OSC28, NC28 and NC84, with different risk factors, pathophysiology, and may therefore need 
different interventions to prevent or treat.

There was little change in the effect of the ID score on length of illness in our sensitivity analyses including 
pre-morbid cardiovascular disease and diabetes, frailty, lifestyle, IMD, the use of any supplements and the Diet 
Quality Score, suggesting that our metabolite associations with length of illness are independent of their asso-
ciations with these variables. Models controlling for whether individuals took omega-3 supplements showed 
a diminished relationship between ID score and length of illness in non-COVID disease but were unchanged 
in COVID-19 illness. This finding which might suggest that omega-3 supplementation is a marker explaining 
this relationship in non-COVID illness only. The addition of the healthy plant-based diet index to the model 
increased the effect size of the ID score for each length of illness. Further work on hPDI and other correlated 
variables, such as socio-economic status, might help explore this finding.

Figure 2.  Spearman correlation of microbiome profiles and metabolomic profiles. Single microbial taxa 
correlated with clinically validated metabolomic data using Spearman’s rank sum non-parametric test. FDR 
P-values are displayed *P < 0.01. Rows and columns are hierarchically clustered (Euclidean distance). The 
R package ‘corrplot_0.90’ (https:// github. com/ taiyun/ corrp lot) was used to compute the variance and the 
covariance or correlation. The packages ‘pheatmap_1.0.12’ (https:// cran.r- proje ct. org/ web/ packa ges/ pheat map/ 
index. html) and the ‘cor.mtest’ function of ‘corrplot_0.90’ were used to visualise the heatmap and calculate 
associated P values.

https://github.com/taiyun/corrplot
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
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Figure 3.  Atherogenic-dyslipidaemic biomarkers. Relative risk ratio for each illness phenotype, per 1-SD increase in 
biomarker. Adjusted for age, sex and body mass index. 95% Confidence intervals displayed with P-values adjusted using 
Benajmini-Hochberg False Discovery Rate correction. Red indicates FDR corrected P-value ≤ 0.05. ACI: Acute COVID-
19 illness, OSC28: Ongoing symptomatic COVID-19 (28–83 days), PCS84: Post COVID-19 syndrome (≥ 84 days), NC28: 
Non-COVID-19 illness 28–83 days, NC84: Non-COVID-19 illness ≥ 84 days, ApoB_by_ApoA1: Ratio of apolipoprotein 
B to apolipoprotein A1, HDL_C: High density lipoprotein cholesterol, HDL_L: Total Lipids in high density lipoprotein, 
LDL_TG: Triglycerides in low density Lipoprotein, L_HDL_P: Concentration of large high density lipoprotein particles, 
MUFA: Monounsaturated Fatty Acids, PUFA_by_MUFA: Ratio of polyunsaturated fatty acids to monounsaturated fatty acids, 
Remnant_C: Remnant cholesterol (non-HDL, non-LDL -cholesterol), S_HDL_TG: Cholesterol in small HDL, VLDL_C: Very 
low density lipoprotein cholesterol, VLDL_L: Total lipids in VLDL, VLDL_TG: Triglycerides in VLDL, VLDL_size: Average 
diameter for VLDL particles.
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We found no large-scale shift in gut microbiome, assessed up to 9 months post symptom onset, in relation to 
illness duration after SARS CoV-2 infection, and notably, no difference between COVID-19 positive and nega-
tive individuals with long-duration symptoms. Analysis of both taxonomic and functional microbial profiles 
showed increases in relative abundance of some Firmicutes in asymptomatic individuals, for example Firmicutes 
bacterium CAG:94, an uncharacterized taxon requiring further study to determine its functions. This finding 
should be interpreted with caution, and we did not find evidence that it related to metabolite alterations. Here, 
timing of our sampling is highly relevant to the interpretation of our results. Alterations in an individual’s micro-
biome may occur in the context of acute  disease48, whether from infection, dietary changes, medication, usage, 
and/or immune function; however, an individual’s microbiome regresses over  time49 to reflect a stable baseline 
 microbiome50,51. Thus, faecal microbiome samples collected 9 months after the start of illness may represent 
baseline individual microbiome, which, in our study, did not relate to symptom duration. In any case, our findings 
would suggest no long-term alterations in microbial profile in individuals who experienced ‘long COVID’. Our 
results contrast to one small previous study of 106 hospitalised individuals, of whom 76% had ongoing symptoms 
6 months after acute SARS-CoV-2 infection. In this study, altered gut microbiome composition was reported in 
individuals with persistent symptoms in patients with COVID-19 compared to healthy historical pre-pandemic 
 controls52. However, cases were hospitalised for an average of 17 days, received amoxicillin-clavulanic acid 
among other interventions (including Ribavirin, Interferon and Remdesivir), and changes seen could have been 
a consequence these treatments, illness severity and/or altered diet in these individuals. Two other studies noted 
changes in immune-modulating commensal  bacteria53,54 potentially specific to COVID-19, but again in hospital-
ised cohorts, where additional treatments, and illness severity, differ from our community-dwelling participants.

Strengths + Limitations. Our study benefits from large size, with a long duration of prospective symptom 
reporting, and availability of both metabolite and microbiome data on the same community-based participants. 
These platforms are well validated, including for clinical use of the metabolomics data. Our participants also 
reflect the spectrum of COVID cases in the community. As participants were recruited prior to vaccination 
in the wild-type era, this reduces complexity by variance attributable to virus variant, and type and timing of 
 vaccination55. Infection status was reconfirmed at enrolment, ensuring accuracy of classification by gold stand-
ard methodology. During this period, there were also relatively few acute COVID-19 specific treatments avail-
able, and none routinely used in UK community-managed individuals allowing our study to reflect the natural 
history of COVID-19.

We have also been able to conduct sensitivity analyses including variables such as frailty, lifestyle, deprivation, 
and diet, often not extensively accounted for in metabolomics studies, in addition to more traditional medical 
co-morbidities. We also have analysed participants who report ongoing symptoms not attributable to SARS-
CoV-2, and therefore able to test the specificity of our findings.

Limitations include the cross-sectional nature of the metabolites and microbiome assayed up to 9 months 
after illness onset. Time of sampling, for both the metabolomics and microbiome analysis is both a strength 
and a limitation. Post convalescence sampling means that acute perturbations are likely to have resolved, but 
without pre-pandemic sampling we cannot assess whether changes found were consequential or pre-existing. 
Longitudinal data from cohorts sampled before and after pandemic are needed to address this issue. We have 
also considered direct validation of our findings in another cohort, but due to the sui generis method of clas-
sification using the ZCS data, other cohorts’ participants would lack the same data to be classified into directly 
comparable groups.

Conclusion
Metabolic profiles of community cases with asymptomatic COVID-19 were notably different to those with 
longer illnesses, displaying an atherogenic lipoprotein phenotype, and this difference was apparent regardless 
of whether the illness was due to COVID-19 or another acute phenomenon. Those with COVID-19 symptoms 
for ≥ 28 days could not be clearly distinguished from those with non-COVID-19 illnesses of prolonged dura-
tion. A biomarker score previously predictive of severe COVID-19 was overall predictive of prolonged illness, 
although not all individual components were. In contrast, gut microbiome diversity did not differ by length of 
illness, suggesting no significant gut microbiome dysbiosis post COVID-19 infection.

Further research with longitudinal sampling pre- and post-illness is warranted, to determine if the observed 
metabolomic associations with longer illness are pre-existing risk factors, or consequential.

Materials and methods
Cohort description. Study participants were volunteers from the COVID Symptom Study Biobank (CSSB, 
approved by Yorkshire & Humber NHS Research Ethics Committee Ref: 20/YH/0298). Individuals were 
recruited to the CSSB via the ZOE COVID Study (ZCS)56 using a smartphone-based app developed by Zoe Ltd, 
King’s College London, the Massachusetts General Hospital, Lund University, and Uppsala University, launched 
in the UK on 24 March 2020 (approved by the Kings College London Ethics Committee LRS-19/20–18,210). 
Via the app, participants self-report demographic information, symptoms potentially indicative of COVID-19 
disease (both closed/polar questions, and free text), any SARS-CoV-2 testing, and SARS-CoV-2 and influenza 
vaccinations. Participants can be invited via email to participate in other studies, according to eligibility.

In October 2020, prior to UK vaccination roll-out, 15,564 adult participants from the ZCS were invited to join 
the CSSB. Invited participants had: (a) a self-reported SARS-CoV-2 test result: A swab test (in this time period 
RT-PCR) at the start of illness, or a subsequent antibody test, whether positive or negative; and (b) logged at least 
once every 14 days since start of illness, or since the start of logging if asymptomatic.
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Initially, individuals were recruited in four groups based on understanding of Long COVID at that time, and 
prior to definitions being published: (1) Asymptomatic, with confirmed infection; (2) Short illness (≤ 14 days) 
after confirmed infection; (3) Long illness (≥ 28 days)5 after confirmed infection; and (4) Long symptom duration 
(≥ 28 days) but with a negative test for SARS-CoV-2 infection. Invited individuals were matched across these four 
groups by Euclidian distance for age, sex and  BMI9. Participants were invited by email, and consented separately 
into the CSSB. Participants were sent home sampling kits in November 2020 via post, and returned capillary 
blood samples for metabolomic analysis. This also enabled antibody testing using an ELISA  method57 to confirm 
prior infection status of all participants, the current standard for retrospective  ascertainment58. A subgroup also 
consented to send in stool samples for analysis of their gut microbiome.

Study participants were subsequently aligned using symptoms ascertained up to sample collection date, 
and the permissible gap in logging was further tightened to 7 days to increase accuracy of classification. Long-
COVID groups were reshaped to match definitions published in November  20205 (see Table 5) corresponding 
to Ongoing Symptomatic COVID-19 (28–83 days, OSC28) and Post-COVID-19 Syndrome (> 84 days, PCS84). 
The same duration parameters were applied to those reporting symptoms with the same timeframe parameters 
around a negative test for SARS-CoV-2, who were presumed to have a non-COVID-19 illness. This yielded six 
groups for comparison—four SARS-CoV-2 positive groups: Asymptomatic, Acute COVID-19 (≤ 7 days), OSC28, 
PCS84; and two SARS-CoV-2 negative groups: Non-COVID-19 illness 28–83 days (NC28), Non-COVID-19 
illness ≥ 84 days (NC84). 

To check that groupings assigned by the recruitment algorithm were clinically accurate, symptom logging 
maps were scrutinised in a subsample (n = 115) by two researchers (MFÖ, CJS), independently and blind to 
algorithmic phenotype classification, before analysis. Final categories are detailed in Table 5.

Due to changes in logging stringency criteria, some participants also fell into additional, shorter categories 
of illness duration, detailed in Supplementary Table 1. These additional phenotypes have been reported in sup-
plementary data tables, but not included in primary analysis as they were not recruited for this purpose, and 
their classification is less certain.

Metabolomics. Capillary blood samples were obtained between November 2020 and January 2021, when 
participants had recovered. Samples were returned in plasma collection tubes with initial processing of 20µL 
used for serology with the remainder frozen. Samples were processed in March/April 2021 by Nightingale 
Health Oyj (Helsinki, Finland) using high-throughput nuclear magnetic resonance metabolomics, measuring 
249 metabolites including lipids, lipoprotein subclasses with lipid concentrations within fourteen subclasses, 
lipoprotein size, fatty acid composition, and various low-molecular weight metabolites including amino acids, 
ketone bodies and glycolysis  metabolites33. Of these, 37 are certified for clinical diagnostic use and formed the 
focus of our analysis (referred to herein as “Clinically Validated”)59. Quality control was performed and reported 
by Nightingale Health. Due to postal transit time, glucose, lactate, and pyruvate could not be assessed and have 
been excluded from analyses, and creatinine was unavailable. There were no concerns raised with other biomark-
ers. Metabolites measured using this panel have been associated with the risk of hospitalisation for COVID-19 in 
the UK Biobank  previously19, including 25 of the clinically validated biomarkers used in an Infectious Diseases 
risk prediction score (ID Score) derived using Lasso  regression19.

Gut microbiome. Sample collection and faecal sample processing. Two faecal samples per individual were 
collected and returned by post: faecal material from both collection tubes were homogenised in a Stomacher® 
bag, aliquoted out and stored at -80 degrees Celsius. The first 301 samples that would maintain a balance for 
BMI, age, and sex, were selected to undertake a pilot investigation of microbiome differences.

Table 5.  Table describing definitions used to group individuals based on their swab (RT-PCR) or antibody test 
status and duration of symptoms, as logged in ZOE COVID Symptom Study app. Intermediate groups show in 
S Table 1.

Group For swab test For antibody Test-If no appropriate swab available

AsymptomaticCOVID-19
Positive swab with no symptoms around test (14 days 
before to 7 days after inclusive), with logging at least every 
7 days

Positive antibodies with no symptoms before test including 
in “past symptoms”, with logging at least every 7 days

Acute COVID-19 illness (ACI) Positive swab test with swab taken up to 7 days prior, or 
14 days after onset of symptoms

Positive antibody test, with symptomatic symptoms lasting 
7 days or less, starting > 14 days before testing

Ongoing symptomatic COVID-19 (OSC28) Positive swab, around onset of symptoms (as above). Symp-
toms lasting over 28 days up to 84 days

Positive antibody test, with symptoms lasting over 28 up to 
84 days, starting > 14 days before testing

Post COVID-19 syndrome (PCS84) Positive swab test with symptoms lasting ≥ 84 days Positive antibody test, with symptoms lasting ≥ 84 days 
starting > 14 days before testing

Negative Non-COVID-19 illness 28–83 days (NC28)
Negative swab test in first 2 weeks of symptoms, and 
symptoms lasting 28 to 83 days inclusive. No other positive 
test during logging, including a negative antibody test at 
enrolment

Negative antibody test > 14 days after onset of symptoms, 
with symptoms lasting 28 to 83 days inclusive

Negative Non-COVID-19 illness ≥ 84 days (NC84)
Negative swab test in first 2 weeks of symptoms, and 
symptoms lasting ≥ 84-days. No other positive test during 
logging, including a negative antibody test at enrolment

Negative antibody test > 14 days after onset of symptoms, 
with symptoms lasting ≥ 84 days
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DNA extraction and sequencing. Genomic DNA (gDNA) was isolated from 1 g faecal sample, using a modi-
fied protocol of the MagMax Core Nucleic Acid Purification Kit and MagMax Core Mechanical Lysis  Module60. 
Libraries were prepared using the Illumina DNA Prep (Illumina Inc., San Diego, CA, USA) following the manu-
facturer’s protocol. Libraries were sequenced (2 × 150 bp reads) using the S4 flow cell on the Illumina NovaSeq 
6000 system.

Metagenome quality control and pre‑processing. All metagenomes were quality controlled using the pre-pro-
cessing pipeline (available at https:// github. com/ Segat aLab/ prepr ocess ing). Briefly, pre-processing consisted of 
three main steps: (i) read-level quality control, (ii) removal of host sequence contaminants, and (iii) splitting 
and sorting of cleaned reads. Read-level quality control removes low-quality reads (quality score < Q20), frag-
mented short reads (< 75 bp), and reads with ambiguous nucleotides (> 2 Ns), using trim-galore (https:// www. 
bioin forma tics. babra ham. ac. uk/ proje cts/ trim_ galore/). Host sequences contaminant DNA were identified using 
Bowtie  261 with the “–sensitive-local” parameter to remove both the phiX 174 Illumina spike-in and human-
associated reads. Splitting and sorting allowed for creation of standard forward, reverse, and unpaired reads 
output files for each metagenome.

Taxonomic and functional profiling. The metagenomic analysis was performed using the bioBakery 3 suite of 
 tools62. Taxonomic profiling and estimation of species’ relative abundances were performed with MetaPhlAn 3 
(v. 3.0.7 with “–stat_q 0.1” parameter)62,63. MetaPhlAn 3 taxonomic profiles were used to compute three alpha 
diversity measures: (i) the number of species with positive relative abundance in the microbiome (‘Richness’), (ii) 
the Shannon diversity index, independent of richness, which measures how evenly microbes are  distributed64, 
and (iii) the Simpson diversity index, which accounts for the proportion of species in a  sample65. Similarly, 
species-level relative abundances were used to estimate microbiome dissimilarity between participants (beta 
diversity) using the Bray–Curtis dissimilarity metric, which accounts for the shared fraction of the microbiome 
between two individuals and their relative abundance  values66. Functional potential profiling of metagenomes 
was performed with HUMAnN 3 (v. 3.0.0.alpha.3 and UniRef database release 2019_01)62,67 that produced path-
way profiles and gene family abundances. We assessed beta diversity by computing a Principal Coordinates 
Analysis (PCoA)/Metric Multidimensional Scaling (MDS) based on the pairwise Bray–Curtis dissimilarity met-
ric.

Additional covariates. BMI was derived from self-reported weight and height. Other self-reported information 
(obtained from ZCS app-reported data) included smoking; and co-morbid illness (‘heart disease’, ‘diabetes’ (and 
type of diabetes), ‘lung disease’ (including asthma), hay fever, eczema, ‘kidney disease’ and current cancer (type, 
and cancer treatment). Address data was linked to the UK Index of Multiple Deprivation (IMD), with the IMD 
rank decile used as a categorical variable measuring local area  deprivation68–71. Frailty was assessed using the 
Prisma-7 scale, with a score > 2 indicating  frailty72.

A subset of participants had participated in a dietary assessment during the COVID-19 pandemic, also 
recruited through the ZCS (published  previously73,74). This included detailed information on vitamin supple-
mentation (including omega-3 oils), physical activity, alcohol consumption, dietary habits and a food frequency 
questionnaire. These data were used to derive a diet quality  score73, and a plant-based diet  index73, analysed as 
continuous variables. Both have previously been associated with cardiovascular  disease75, Type 2  Diabetes76, a 
lower risk of COVID-19 illness, and a lower risk of hospitalisation for COVID-19 during the early waves of the 
 pandemic73.

Statistical analysis. The statistical analyses were performed using R software (v. 4.0.5) and Stata (v.17, 
StataCorp). Baseline characteristics were described by frequency and percentages. Descriptive data on those 
invited and those enrolled, are presented in Supplementary Table 2 + 3. Metabolites were all log-transformed and 
standardised (mean 0, standard deviation 1) as per  protocol19. To account for 0 values, prior to log transforma-
tion, a pseudo-count of 1 was added to all values.

Initial analysis examined association between duration of illness and each metabolite individually, using 
multinomial logistic regression (all adjusted for age, sex, and BMI). The Asymptomatic group was used as the 
reference category of the outcome variable. We also performed a secondary analysis, using the non-COVID-19 
participants as a reference category. The primary analysis was then extended, assessing association between length 
of illness and ID score, with asymptomatic as the reference category. The Benjamini–Hochberg False discovery 
rate method was used to correct P-values for multiple  testing77.

To assess potential confounders, we performed eight sensitivity analyses additionally adjusting for: (1) self-
reported co-morbidities (cardiovascular disease and diabetes), (2) Frailty, (3) IMD rank decile, (4) lifestyle 
variables (smoking status, frequency of alcohol consumption, frequency of physical activity), (5) self-reported 
use of any health supplement, (6) self-reported use of Omega-3 containing supplements, (7) Diet quality score, 
and (8) Healthy plant-based diet index (hPDI).

For microbiome analyses, differences between the alpha diversity distributions of the groups were assessed 
using the Wilcoxon rank-sum test within the ‘RClimMAWGEN’ package (P-value ≤ 0.05 considered significant). 
With a sample size of 300 individuals, we have 79% power at 0.05 significance level, assuming a low effect size of 
0.20. PERMANOVA from the ‘adonis2’ function of the ‘vegan’ package, was used to test for differences between 
groups based on the beta diversity computed from the PCoA/MDS of the pairwise Bray–Curtis dissimilarities. 
For the microbial differential abundance analysis, we built a generalized linear model, controlling for confound-
ing factors, including age, sex,and BMI. Only species with minimum 20% prevalence were used in this statistical 
 analysis78. P-values were corrected using the Benjamini–Hochberg  method77.

https://github.com/SegataLab/preprocessing
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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Spearman correlation analyses were conducted to associate microbiome profiles of 301 individuals with their 
metabolome profiles, adjusting for confounding factors (age, sex, BMI). Correlation analyses were conducted 
using R version 3.6.0. The package ‘corrplot_0.90’ was used to compute the variance and the covariance or cor-
relation, ‘pheatmap_1.0.12’ and ‘cor.mtest’ were used to visualise the heatmap, calculate associated P values. 
Hierarchical clustering of both top 39 most abundant microbial species and 39 metabolic profiles was conducted 
using hclust, implementing the Ward.D2 agglomeration method. The package ‘p.adjust’ was used to perform 
Benjamini–Hochberg multiple testing  correction77.

Ethical approval. The ZOE COVID Study by the King’s College London Ethics Committee (Ref: LRS-
19/20-18,210) and licensed under the Human Tissue Authority (reference 12,522). All ZCS participants pro-
vided informed consent for use of their data for COVID-19 research. The COVID Symptom Study Biobank and 
related studies, including this study, were approved by the Yorkshire & Humber NHS Research Ethics Commit-
tee (Ref: 20/YH/0298). CSSB participants were invited to join from the ZCS user base and provided informed 
consent to participate in the additional questionnaire and sample collection studies, and for linkage to app-
collected data. All research and sample processing has been carried out in line with relevant guidelines including 
the Declaration of Helsinki.

 Data availability
Data collected in the ZCS smartphone application are shared with other health researchers through the UK 
National Health Service-funded Health Data Research UK (HDRUK) and Secure Anonymised Information 
Linkage consortium, housed in the UK Secure Research Platform (Swansea, UK). Anonymised data are available 
to be shared with researchers according to their protocols in the public interest (https:// web. www. healt hdata 
gatew ay. org/ datas et/ fddcb 382- 3051- 4394- 8436- b9229 5f142 59). The code is available in: https:// gitlab. com/ KCL- 
BMEIS/ covid- zoe/ vacci nation. Access to data in the CSS Biobank is available to bona fide health researchers on 
application to the CSS Biobank Management Group. Further details are available online at: https:// cssbi obank. 
com/ infor mation- for- resea rchers including application forms and contact information.
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