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The nematicidal potential of novel 
fungus, Trichoderma asperellum 
FbMi6 against Meloidogyne 
incognita
Ritul Saharan 1, J. A. Patil 1, Saroj Yadav 1*, Anil Kumar 1 & Vinod Goyal 2

One of the most damaging pests in vegetable crops is the root-knot nematode (Meloidogyne 
incognita) worldwide. The continuous use of nematicide is costly and has unintended consequences 
for human and environmental health. To minimize nematicides, eco-friendly integrated nematode 
management is required. Trichoderma, an antagonistic fungus has been explored to control root-knot 
nematode. The fungal bio-control strain FbMi6 was identified as Trichoderma asperellum (accession 
no. MT529846.1). T. asperellum FbMi6 showed substantial nematicidal activity in the laboratory, 
with egg hatch suppression (96.6%) and juvenile mortality (90.3%) of M. incognita. T. asperellum 
FbMi6 was examined under pot and field  conditions (after neem cake enrichment), both alone and 
in combination, and compared with controls. Application of T. asperellum FbMi6 enriched neem cake 
(1-ton ha-1) increased (28.3%) the okra yield and decreased (57.1%) nematode population as compared 
with control. T. asperellum FbMi6 enriched neem cake had higher polyphenol content (resistance 
enhancer) in okra compared with inoculated check.

Okra (Abelmoschus esculentus L.) is a popular vegetable crop produced for its health benefits in tropical and 
subtropical regions around the world. Southern root-knot nematode (Meloidogyne incognita), a phytonema-
tode, is critical biotic stress on okra, producing substantial root damage and affecting the production value and 
quantity1,2. Okra production in India is being endangered by the spread of Meloidogyne spp. in all growing areas3. 
Root-knot nematode caused 19.6% yield losses in all vegetable crops in India3. In India, no nematicides for okra 
are currently suggested4. Although, efforts to develop resistant cultivars are being made, none are currently 
available5. As a result, biological control is suggested as a safer alternative for living biota and its environment6 to 
control the root-knot nematode in vegetables7. Trichoderma, a potential biocontrol agent, has successfully been 
utilized in vegetable crops to control root-knot nematodes8–11. Trichoderma spp. provides different plant health 
benefits, like promotion in plant growth, disease control, stress tolerance and development of resistance in plants. 
Trichoderma asperellum is an emerging and effective biocontrol agent, for its endless effectiveness in managing 
plant parasitic nematodes and disease complexes with other secondary pathogens12–15. Plant parasitic nematodes 
are inhibited by various Trichoderma species used as biocontrol agents8,16–18. Now, many actions of Trichoderma 
are documented as BCA: including competition, antibiosis, resistance, and plant tolerance against biotic and 
abiotic stresses and stimulation of its defenses against pathogens19. Trichoderma spp. has faster reproduction 
than other microorganisms/bioagents and has a strong acclimating capacity in a diversified environment20,21. 
Trichoderma spp. emit elicitors when they interact with plants, which promotes systemic acquired resistance and 
immunity against plant diseases and pests. Plant pathogens are inhibited by primary and secondary metabolites 
generated by Trichoderma spp. Many secondary metabolites generated by Trichoderma spp., such as flavonoids 
and phenols offer resistance to biotic stress22,23. Keeping in view, the present study was conducted on indigenous 
T. asperellum FbMi6 strain performed against M. incognita under in vitro and in vivo conditions in okra.

Results
Morphological and molecular identification of isolate FbMi6.  At 7 days, morphological observa-
tions of FbMi6 revealed that colonies with fluffy mycelial development and a large conidial zone at the colony’s 
periphery, following sporulation, whitish or yellowish growth turned greenish or pale greenish features were 
identified as Trichoderma (Fig. 1). Morphological features of isolate FbMi-6, such as hyphae up to 7.45 µm broad, 
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conidiophore with a maximum length of 3.2 × 197.3 µm, chlamydospores with a diameter of up to 9 × 10.4 µm, 
phialides range in size from 1.7–2.8 × 9.0–16.5 µm and phialospores with a diameter of 2.7–3.2 × 3.4–4.4 µm 
were measured (Fig. 1). Based on morphological and molecular characteristics, isolate FbMi6 was identified as 
T. asperellum. The sequence was submitted to GenBank (NCBI), with accession number MT529846.1. It showed 
100% similarity to T. asperellum as per GenBank data. Also, according to phylogenetic analysis, FbMi6 was 
found most closely related to T. asperellum (Fig. 2).

In comparison with the control, T. asperellum FbMi6 significantly reduced hatchability and having maximal 
juvenile mortality. T. asperellum FbMi6 inhibited egg hatching in all concentrations as compared to control. At 
120 h, maximum egg hatching inhibition (96.6%) was observed at 80% concentration of T. asperellum FbMi6 
as compared with control. With increasing exposure period, egg hatching inhibition gradually increased. T. 
asperellum FbMi6 culture filtrates cause egg deformation and hatching suppression starting at 24 h, in all the 
concentrations (Fig. 3).

Similarly, T. asperellum FbMi6 culture filtrate showed antagonistic or nematocidal activity against M. incognita 
juveniles in all the concentrations (Fig. 4). T. asperellum FbMi6 showed maximum root-knot nematode juveniles’ 
mortality in all concentrations at 72 h exposure as compared to control. T. asperellum FbMi6 at 80% concentra-
tion had the highest (90.3%) juvenile mortality compared to control. The mortality of juveniles enhanced as 
exposure time increased (Fig. 4).

Effects of T. asperellum FbMi6 enriched neem cake on M. incognita and vegetative growth 
of okra.  The application of T. asperellum FbMi6 enriched neem cake had substantial (P ≤ 0.05) suppressive 
effects on M. incognita population in terms of J2s 200–1 cc soil, galls and egg masses plant−1, and eggs per egg 
mass, as well as promote the vegetative growth of okra. The gall index and egg masses were significantly reduced 
with T. asperellum FbMi6 enriched neem cake (Table 1). Fewer galls on okra roots were observed with T. asperel-
lum FbMi6 enriched neem cake at 20  g  kg−1 soil. Egg masses and eggs per egg mass were also lower in all 
T. asperellum FbMi6 enriched neem cake treatments compared with control. In comparison to the untreated 
inoculated check, soil nematode population was considerably reduced in all the treatments of T. asperellum 
FbMi6 enriched neem cake. In contrast to the untreated control, T. asperellum FbMi6 enriched neem cake had 
the lowest nematode population at 20 g kg−1 soil application.

Plant biomass (shoot and root weight) differed significantly between T. asperellum FbMi6 enriched neem cake 
and control (untreated). When compared to the untreated inoculated control, all treatments with T. asperellum 
FbMi6 enriched neem cake significantly enhanced plant height (P ≤ 0.05). The results (Table 2) showed that T. 
asperellum FbMi6 enriched neem cake at 20 g kg−1 soil had considerably higher plant height than T. asperellum 

Figure 1.   Microscopic characters of Trichoderma asperellum (a) conidiophore, (b) conidia (c), hyphae, (d) 
fialida, (e) colonial morphology of FbMi-6 on PDA medium.
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FbMi6 enriched neem cake at 15 g kg−1 soil. At increasing doses, T. asperellum FbMi6 enriched neem cake gener-
ated the maximum dry root and shoot weight.

Effect of T. asperellum FbMi6 enriched neem cake on biochemical and physiological param-
eters of okra infested with M. incognita.  According to the results (Table  3), T. asperellum FbMi6 
enriched neem cake at 20 g kg−1 soil had a considerably higher nitrogen balance index than T. asperellum FbMi6 
enriched neem cake at 15 g kg−1 soil, while untreated inoculated check had the lowest nitrogen balance index. 

Figure 2.   Phylogenetic tree of T. asperellum FbMi6 based on ITS-rDNA gene sequences. In-vitro efficacy of 
bio-agent.
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Figure 3.   Effect of T. asperellum FbMi6 on egg hatching inhibition of M. incognita under in-vitro conditions.
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In comparison to the untreated inoculated control, all treatments of T. asperellum FbMi6 enriched neem cake 
had significantly higher total chlorophyll content. T. asperellum FbMi6 enriched neem cake at 20 g kg−1 soil had 
considerably higher anthocyanin content than the untreated inoculated control and rest of the treatments were 
non-significant. T. asperellum FbMi6 enriched neem cake at 20 g kg−1 soil had the highest polyphenol content, 
followed by T. asperellum FbMi6 enriched neem cake at 15 g kg−1 soil. When compared to the untreated inocu-
lated control, all treatments exhibited considerably higher flavonoid content. The highest flavonoid concentra-
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Figure 4.   Effect of T. asperellum FbMi6 on juveniles (J2) mortality of M. incognita under in-vitro conditions.

Table 1.   Efficacy of T. asperellum FbMi6 enriched neem cake on nematode reproduction parameters of 
M. incognita in okra. Data are mean of five replicates. INP- 2000 J2/kg. Values with the different letter are 
significant according to DMRT (p < 0.05). Data are presented as means ± SD. TNC T. asperellum FbMi6 
enriched neem cake.

Treatment Galls plant−1 Egg masses plant−1 Eggs egg mass−1 J2 200–1 cc soil

TNC at 5 g kg−1 soil 86 ± 1.0f 67 ± 0.8f 291 ± 1.1f 530 ± 4.3f

TNC at 10 g kg−1 soil 79 ± 1.0e 59 ± 1.3e 248 ± 1.3e 379 ± 15.2e

TNC at 15 g kg−1 soil 63 ± 1.6d 47 ± 1.5d 224 ± 2.4d 341 ± 3.9d

TNC at 20 g kg−1 soil 54 ± 1.1c 39 ± 1.3b 189 ± 0.8c 199 ± 6.0c

Carbofuran 3G at 16 mg kg−1 soil 40 ± 0.8b 44 ± 0.8c 184 ± 1.1b 162 ± 1.1b

Untreated inoculated check 163 ± 1.3g 96 ± 0.8g 432 ± 1.3g 982 ± 7.7g

Table 2.   Efficacy of T. asperellum FbMi6 enriched neem cake on plant growth parameters of okra infected 
with M. incognita. Data are mean of five replicates. INP- 2000J2/kg. Values with the different letter are 
significant according to DMRT (p < 0.05). Data are presented as means ± SD. TNC T. asperellum FbMi6 
enriched neem cake.

Treatment Plant height (cm) Fresh root wt. (g) Fresh shoot wt. (g) Dry shoot wt. (g)

TNC at 5 g kg−1 soil 22.80 ± 0.6b 0.55 ± 0.1a 4.86 ± 0.1b 0.90 ± 0.0bc

TNC at 10 g kg−1 soil 24.46  ± 0.6bc 1.88 ± 0.0d 5.32 ± 0.1c 1.04 ± 0.0bd

TNC at 15 g kg−1 soil 27.84  ± 0.6d 1.23 ± 0.1c 8.50 ± 0.3e 1.70 ± 0.0be

TNC at 20 g kg−1 soil 35.30 ± 3.8e 2.57 ± 0.1e 11.86 ± 0.3f 3.48 ± 0.0bg

Carbofuran 3G at 16 mg kg−1 soil 27.60 ± 0.8d 0.64 ± 0.1a 6.92 ± 0.3d 0.80 ± 0.0bb

Untreated uninoculated check 26.36 ± 0.4cd 1.22 ± 0.1c 7.14 ± 0.0d 1.86 ± 0.0f

Untreated inoculated check 19.60 ± 0.7a 0.85 ± 0.0b 3.34 ± 0.1a 0.52 ± 0.1a
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tion was recovered in T. asperellum FbMi6 enriched neem cake at 20 g kg−1 soil, while the lowest was recorded 
in the untreated inoculated control.

Effect of T. asperellum FbMi6 enriched neem cake on growth and yield of okra infecting 
root‑knot nematode under field conditions.  Colonies of T. asperellum FbMi6 culture was found 
to be 8 × 108 CFU  g−1 after enrichment in neem cake. In a field experiment, soil application of T. asperellum 
FbMi6 enriched neem cake resulted in significantly greater yield and lower nematode population. The carbo-
furan-treated plots had less nematode reproduction than those with T. asperellum FbMi6 enriched neem cake. 
T.asperellum FbMi6 enriched neem cake and carbofuran inhibited root galls as comparison to control. The 
application of T. asperellum FbMi6 enriched neem cake and carbofuran considerably reduced the soil nema-
todes population (second stage juveniles). Nonetheless, results (Table 4) demonstrated that T. asperellum FbMi6 
enriched neem cake at 1-ton ha−1 boosted okra output/yield substantially as compared with control. Okra yield 
in T. asperellum FbMi6 enriched neem cake was higher than the chemical control (carbofuran @ 1.0 kg a.i. ha−1). 
T. asperellum FbMi6 enriched neem cake at 1-ton ha−1 increased 28.3% okra yield above the control.

Discussion
Many countries, including the United States, Australia, India, and China, have recently added to the collection 
of Trichoderma sources. Trichoderma research first concentrated on soil flora and fauna, soil remediation, soil 
biology, pollution, and general mycology. As our understanding of Trichoderma grew, researchers concentrated 
on biocontrol and its applications in plant nematology and mycology. Isolate FbMi6 was identified as T. asperel-
lum based on cultural, morphological, and molecular findings in this study. Trichoderma species has also been 
found in diversified environment and isolated from the upper atmosphere24, wetlands25, and rhizosphere soil26. 
There have been 141 or more Trichoderma species recorded worldwide27–30. T. asperellum FbMi6 showed sub-
stantial antagonistic activity on egg hatching and juvenile mortality of M. incognita in present investigation, 
suggesting a possible nematoxic compounds in it. Many scientists have already been conducted research on 
Trichoderma isolates for nematode inhibition in vitro31–34. Deformation of eggs and juveniles confirmed the 
presence of nematicidal compounds in culture filtrates of Trichoderma. T. asperellum FbMi6 generated nemati-
cidal chemicals that appeared to play a key role in nematode death. Plant parasitic nematode infestations have 
been reduced using Trichoderma species as biocontrol agents35,36. Biocontrol effectiveness of these microbes was 
demonstrated by the antagonism of Trichoderma culture filtrates against M. incognita. Meyer37observed that 253 
fungal isolates (Acremonium sp., Aspergillus sp., Fusarium sp., Paecilomyces sp.) had a nematicidal influence on 
juvenile development and egg hatch suppression.

The exceptional performance of Trichoderma enriched neem cake under pot and field circumstances is a 
glimmer in the nematology picture in the current study. The current findings were consistent with those of 
Affokpon38, who found that T. asperellum suppressed root-knot nematode and increased plant tolerance. Tricho-
derma asperellum biocontrol activity is attributed to the buildup of phytoalexins39. Increased plant growth of okra 
with Trichoderma enriched neem cake treated plants due to the reduction of root-knot nematode population. 

Table 3.   Efficacy of T. asperellum FbMi6 enriched neem cake on biochemical and physiological parameter of 
okra infected with M. incognita. Data are mean of five replicates. Values with the different letter are significant 
according to DMRT (p < 0.05). Data are presented as means ± SD. NBI nitrogen balance index, TNC T. 
asperellum FbMi6 enriched neem cake.

Treatment NBI Total chlorophyll Anthocyanin Polyphenol Flavonoids

TNC at 5 g kg−1 soil 35.72 ± 0.7b 23.98 ± 0.7a 0.02 ± 0.0a 0.26 ± 0.0d 0.52 ± 0.0b

TNC at 10 g kg−1 soil 37.44 ± 0.5c 32.92 ± 0.6c 0.06 ± 0.0a 0. 25 ± 0.0e 0.75 ± 0.0c

TNC at 15 g kg−1 soil 40.48 ± 0.5d 41.62 ± 0.9d 0.10 ± 0.0ab 0.28 ± 0.0f 0.95 ± 0.0d

TNC at 20 g kg−1 soil 42.06 ± 0.6e 50.60 ± 0.8e 0.25 ± 0.0a 0.50 ± 0.0g 1.04 ± 0.0f

Carbofuran 3G at 16 mg kg−1 soil 30.92 ± 0.5a 30.10 ± 0.7b 0.02 ± 0.3a 0.17 ± 0.0a 1.02 ± 0.0f

Untreated uninoculated check 41.88 ± 0.9e 40.94 ± 0.4d 0.13 ± 0.0ab 0.24 ± 0.0c 0.98 ± 0.0e

Untreated inoculated check 30.60 ± 0.6a 23.76 ± 1.0a 0.02 ± 0.0a 0.19 ± 0.0b 0.34 ± 0.0a

Table 4.   Efficacy of T. asperellum FbMi6 enriched neem cake in okra against M. incognita. Data are mean 
of five replicates. INP- 235 J2/200 cc soil. Values with the different letter are significant according to DMRT 
(p < 0.05). Data are presented as means ± SD. NC neem cake; TNC T. asperellum FbMi6 enriched neem cake.

Treatments Root gall index Soil population (200–1 cc soil) Yield (q/ha)

NC 1-ton ha−1 3.2 ± 0.5c 215± 5.8c 54.4± 5.9a

TNC 1-ton ha−1 2.6 ± 0.9d 184 ± 6.9d 60 ± 4.5d

Carbofuran 1 kg a.i. ha−1 3.8 ± 0.8b 233 ± 7.5b 50 ± 6.0b

Untreated control 4.8 ± 0.4a 429 ± 18.6a 43 ± 3.8c
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In comparison to untreated plants, treated plant roots absorb more nutrients from the soil. Several studies have 
shown that combining biocontrol agents with organic amendments increases plant growth and yield while 
also suppressing nematode populations40–42. However, there is a scarcity of information on the utilization of T. 
asperellum as a biocontrol agent against M. incognita. Present study showed that T. asperellum enriched neem 
cake can be used to control the root-knot nematode in vegetable crops. Nematode populations were found to 
be reduced in Trichoderma enriched neem cake compared to control. Plant parasitic nematodes are consider-
ably reduced by neem and its derivatives43,44. The presence of toxic chemicals such as azadirachtin and nimbin 
(secondary metabolites) present in all regions of neem, which have a protective role against nematode infection 
and inhibited nematode proliferation45.

T. asperellum FbMi6 enriched neem cake improves plant tolerance in nematode-infected plants by boost-
ing biochemical and physiological attributes such as polyphenols, total chlorophyll, nitrogen balance index, 
anthocyanin, and flavonoids as compared to control. The formation of secondary metabolites such as phenolic 
compounds hindered nematode reproduction46. Flavonoid inhibits nematode movement and egg hatching47, and 
plays an important function in plant defense48. Phenolic chemicals are produced in response to nematode stress 
in plants49,50. The amount of phenolic content accumulated in a plant determines its level of stress tolerance51. 
In comparison to the untreated inoculated control, use of bio-agents (Pseudomonas aeruginosa) in combina-
tion with neem cake produces systemic resistance in cotton52. Ammonia and higher the C/N ratio of organic 
inputs showed nematicidal action against plant parasitic nematodes. These substances may also affect root-knot 
nematode egg viability and hatching53,54. Organic additions alter the physiochemical and physical properties of 
the soil, which has a deleterious effect on nematode motility and host finding55. The similar technique may have 
worked against the root-knot nematode in okra. Trichoderma is a well-known, worldwide recognized biocontrol 
agent. Nonetheless, studies on Trichoderma spp. have focused on one or more parameters in a single strain. T. 
asperellum, the identified strain, has a quicker growth rate and a substantial nematocidal effects on M. incognita. 
According to our findings, pot and field studies showed that T. asperellum FbMi6 enriched neem cake consider-
ably reduced the population of M. incognita. The remarkable effectiveness of T. asperellum FbMi6 enriched neem 
cake against root-knot nematode in outdoor circumstances was proved.

Materials and methods
Isolation and identification of bioagent.  All methods were carried out in accordance with relevant 
guidelines and regulations. Wet soil samples were obtained from various places in Haryana, India. The location 
does not require any special permission. Trichoderma isolates were isolated on potato dextrose agar (PDA) cul-
ture plates with 50 μg mL−1 streptomycin from collected samples using the serial dilution method56 and culture 
was multiplied on potato dextrose broth (PDB) at 25 ± 2 °C in a BOD incubator.

The Trichoderma isolate was identified at the generic level based on morphological parameters such as growth 
pattern and colony colour. Genomic DNA was isolated in pure form from the culture plates. The ITS-rDNA 
partial gene was effectively amplified using primers ITS4 and ITS5. The ABI-BigDye® Terminatorv3.1 Cycle 
Sequencing Kit was used to set up the sequencing PCR. Sequence generated was manually modified for uni-
formity using the ABI 3100 automated DNA sequencers. Further To determine identification, the sequence data 
was aligned with publicly accessible sequences and compared with the GenBank database using BLSATN. The 
sequences were aligned in ClustalX. The partial ITS-rDNA sequence was submitted to GenBank (NCBI) to get 
the accession number. MegaX software was used to construct a phylogenetic tree of related Trichoderma species 
through the maximum likelihood method57. This culture was given the name FbMi6 and sent to the National 
Fungal Culture Collection (NFCCI) in Pune, Maharashtra, India for storage (http://​nfcci.​aripu​ne.​org/).

Maintenance of bio‑agents.  Trichoderma asperellum FbMi6, an isolate from the Department of Nematol-
ogy at Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India was kept and used in 
further research.

Source of seeds.  The seeds of brinjal (Solanum melongena L.) cv. Hisar Shyamal okra (Abelmoschus esculen-
tus) cv. Hisar Unnat were procured from Department of Vegetable Sciences, CCS HAU, Hisar.

Obtaining M. incognita eggs and second‑stage juveniles.  Meloidogyne incognita eggs and J2s were 
collected from a pure population kept on brinjal (Solanum melongena L.) cv. Hisar Shyamal at CCSHAU, Hisar, 
Haryana, India. The eggs were collected from infested brinjal roots using the sodium hypochlorite method58. The 
juveniles were extracted using cobb’s method59 followed by Modified Baermann Funnel Technique (MBFT)60.

In vitro assay.  Culture broth 100 mL was centrifuged for 20 min at 1500  rpm containing 1 × 108 spores 
(CFU mL−1). Cell-free culture filtrates were recovered through 0.45 μm filters (Whatman™). Culture filtrate was 
checked for the presence of any fungal spores using PDA plating procedures. For Egg hatching inhibition assay, 
five surface sterilized egg masses were kept into tissue culture plates with four different concentrations at 20, 
40, 60 and 80% of T. asperellum and distilled water and PDB were kept as control. The hatched juveniles were 
counted under a stereoscopic binocular microscope for alternate day upto 10 days and the percent hatching 
inhibition computed.

Juveniles’ mortality assay was conducted in tissue culture plates with five mL culture filtrates at four different 
concentrations (20, 40, 60 and 80%) with water and PDB as control. Hundred newly hatched J2 were transferred 
in each tissue culture plate well. Death of juveniles was examined at 24 h intervals up to 72 h under a stereo 
zoom binocular microscope (Gippon). The death of juveniles was confirmed after recovering in fresh water. All 
hatching and mortality assay were repeated twice and assay were conducted at room temperature (25 ± 2 °C).

http://nfcci.aripune.org/
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Screen house assay.  One ton of neem cake (organic carbon—10.45%, nitrogen—0.84%, phospho-
rous—0.69%, Potassium—0.59%) was enriched with three liters of T. asperellum FbMi6 aqueous solution. Mixed 
biomass (T. asperellum and neem cake) was kept under shade for 15 days with a moisture content of 25–30% and 
temperature of 25–28 °C for proper enrichment. T. asperellum CFU were measured in neem cake after enrich-
ment using a serial dilution procedure (56). Before sowing, experimental pots were filled with T. asperellum 
FbMi6 enriched neem cake. The experiment was conducted in earthen pots (15 cm diameter) in a screen house 
at CCSHAU Hisar, India (29°10’ N; 75°46’ E).

Treatments as: T. asperellum FbMi6 enriched neem cake (5 g kg−1 soil), T. asperellum FbMi6 enriched neem 
cake (10 g kg−1 soil), T. asperellum FbMi6 enriched neem cake (15 g kg−1 soil), T. asperellum FbMi6 enriched 
neem cake (20 g kg−1 soil), Carbofuran 3G (16 mg kg−1 soil) were applied respectively. Five replications of each 
treatment were used in a completely randomized design (CRD). Okra cv. Hisar unnat seeds were sowed, and one 
plant per pot was maintained after thinning. Freshly hatched 2000 J2s were inoculated in steam sterilized soil at 
sowing time. Hoagland solution was applied to plants61.

Plant height, fresh shoot and root weight, dried shoot and root weight of okra, nematode galls per plant, egg 
masses per plant, eggs per egg mass, second stage juveniles per 200 cc soil were measured at harvesting (45 days 
after sowing). Galls and egg masses were counted with the help of a hand lens and soil was processed by Cobb 
sieving method59.

After drying in a hot air oven, physiological and biochemical characteristics of okra were recorded. Folin–Cio-
calteau assay was used to determine total phenolic content62. Oven dried 0.5 g samples were extracted in 10 ml 
ethanol (80%) and centrifuged at 10,000 rpm for 20 min. The supernatant was collected and evaporated until 
completely dry. Reagent FC (1 N) 100 µl and 20 µl of each extract were placed in test tubes and left for 8 min 
before adding 300 µl of sodium carbonate. For 30 min at 40 °C, the contents were allowed to incubate in the dark. 
At 765 nm, the absorbance was measured. On a dry weight basis, the phenolic content of the sample was reported 
in mg GAE/100 g of sample. Dualex sensor (Dualex® Scientific sensor) was used to calculate total chlorophyll, 
NBI, anthocyanin, and flavonoid.

Evaluation under field trial.  At 15 days before sowing, field research plots (5 × 3 m2) were mixed with T. 
asperellum FbMi6 enriched neem cake (CFU 8 × 108 ml−1). The experiment was carried out on okra (cv. Hisar 
unnat) at the CCS HAU in Hisar, Haryana, India. The initial population 235 J2 200–1 cc soil was assessed.

Neem cake 1 ton ha−1, T. asperellum FbMi 6 enriched neem cake 1 ton ha−1, chemical check (33 kg Furadan 
3G ha−1), and inoculated control were used in a Randomized Block Design (RBD) with five replications. Observa-
tions on root gall index and final nematode population were recorded at 90 days after seeding. Cobb’s methods 
were used to assess the soil population59. Okra yield and root gall index63 were also measured.

Statistical analysis.  SPSS version 10.0 was used to analyze the data statistically. The means were separated 
using DMRT. Differences in treatment means were considered significant at P ≤ 0.05. Values with the different 
letter in a column are significantly different at P ≤ 0.05. SD was calculated from excel spreadsheet Ver. 16.

Ethics approval and consent.  In conducting this study, experiments on live vertebrates and/or higher 
invertebrates were not required any special permission for approval and consent. The variety of okra Hisar Unnat 
was developed by CCSHAU, Hisar therefore, it not required any permission. All images used in the manuscript 
are original.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files). The sequence data obtained in this study are openly available in GenBank of NCBI at https://​
www.​ncbi.​nlm.​nih.​gov/ under the Accession No. MT529837.1.
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