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A new method for estimating ore 
grade based on sample length 
weighting
Zhan‑Ning Liu 1, Yang‑Yang Deng 1,2*, Rui Tian 1, Zhan‑Hui Liu 3 & Peng‑Wei Zhang 1

Estimation of ore grade is very important for the value evaluation of ore deposits, and it directly 
affects the development of mineral resources. To improve the accuracy of the inverse distance 
weighting (IDW) method in ore grade estimation and reduce the smoothing effect of the IDW method 
in grade estimation, the weight calculation method involved in the IDW method was improved. The 
length parameter of the ore sample was used to calculate the weight of the IDW method. The length 
of the ore samples was used as a new factor of the weighting calculation. A new method of IDW 
integrated with sample length weighting (IDWW) was proposed. The grade estimation of Li, Al, and 
Fe in porcelain clay ore was used as a case study. A comparative protocol for grade estimation via the 
IDWW method was designed and implemented. The number of samples involved in the estimation, 
sample combination, sample grade distribution, and other factors affecting the grade estimation 
were considered in the experimental scheme. The grade estimation results of the IDWW and the 
IDW methods were used for comparative analysis of grades of the original and combined samples. 
The estimated results of the IDWW method were also compared with those of the IDW method. 
The deviation analysis of the estimated grade mainly included the minimum, maximum, mean, and 
coefficient of variation of the ore grade. The estimation effect of IDWW method was verified. The 
minimum deviations of the estimated grade of Li, Al, and Fe were between 9.129% and 59.554%. 
The maximum deviations were between 4.210 and 22.375%. The mean deviations were between 
− 1.068 and 7.187%. The deviations in the coefficient of variation were between 3.076 and 36.186%. 
The deviations in the maximum, minimum, mean, and coefficients of variation of the IDWW were 
consistent with those of the IDW, demonstrating the accuracy and stability of the IDWW method. 
The more the samples involved in the estimation, the greater the estimation deviations of IDW and 
IDWW methods. The estimated deviations of Li, Al, and Fe were affected by the shape of the grade 
distribution, when the same estimation parameters were used. The grade distribution pattern of the 
samples significantly influenced the grade estimation results. The IDWW method offers significant 
theoretical advantages and addresses the adverse effects of uneven sample lengths on the estimates. 
The IDWW method can effectively reduce the smoothing effect and improves the utilization efficiency 
of the original samples.

The importance of ore body grade estimation methods is evident due to their use as the premise in ore body value 
evaluation, mining design, and mining plan  management1. Inverse Distance Weighting (IDW)  method2,3 has 
been widely  used4,5 as a deterministic estimation  method6,7. At present, the related research directions of IDW 
methods can be divided into four types. First is the simple application of IDW method, which mainly involves 
the direct estimation. In this method, the estimated influencing factor parameters are based on the previous 
research results. The optimization of parameters mainly includes the power (p)  value8,9 in the formula and the 
number of sample points involved in estimation (n value) or the neighborhood range (neighborhood radius) of 
the estimated points. Many studies take the p value of 2 as the typical value for  estimation10–12. In this study, p 
with the value of 2 was used as the grade estimation parameter. In general, when IDW method is applied, it is 
often compared with Kriging method. Several comparison results show that IDW method and Kriging method 
have their own  advantages13,14. However, some studies have shown that the estimation effect of IDW method is 
better than that of Kriging  method15,16. Moreover, it has been found that Kriging method has higher smoothing 
effect than IDW method, and IDW method is superior to Kriging method in estimating smoothness. IDW is 
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superior to Kriging method in minimum and maximum  estimation17. Similarly, some studies have shown that 
Kriging method offers more  advantages18,19. IDW exhibits the characteristics of low computing cost and flex-
ible  application20, and it has more estimation advantages in case of small  samples21. Moreover, IDW method 
has been successfully applied to  filter22, error  correction23, etc. In this study, the simple IDW method was used 
for comparative analysis, and the Kriging method was not used. This is mainly attributed to the fact that there 
are not enough samples for variogram analysis in different directions, thus the application of ordinary Kriging 
method is limited.

Second method involves the research on parameter optimization of IDW  estimation24. The influence of IDW 
parameter selection on estimation is  discussed25,26. These factor parameters mainly include p value and n value 
(or domain radius). Research shows that IDW is very sensitive to weighting power (p value). The greater the 
weighting power, the smaller the effect that samples far from the prediction location have during  estimation27. 
The research shows that when estimating rainfall data by IDW method, the impact radius of the optimal rain-
fall data was found to be in the range of 10–30 km, and the optimal p value varied from 0 to  528,29. Moreover, 
some studies have analyzed the influence of the distribution shape of estimated samples data on the selection 
of estimation  parameters30.

Third, IDW method is used in combination with other methods for estimation or other purposes. For exam-
ple, in order to normalize the effects of terrain and land cover effects, a new method coupling random forest (RF) 
method and IDW was proposed, and named as RF-IDW. It was used in the estimation of temperature and pre-
cipitation over complex  areas31. Furthermore, the Monte Carlo IDW method was proposed to interpolate nitrate 
concentration, and the sensitivity and accuracy of Monte Carlo IDW estimation were  analyzed32. Based on the 
Least Squares Collocation (LSC) method and IDW method, a local gravity field modeling method, namely, IDW-
LSC combining LSC and IDW was proposed to solve the limitations of single IDW modeling method in local 
gravity field  modeling33. IDW method was also coupled with Contrast Radial Intensity (CRI) for image scene 
 monitoring34. Moreover, compressed sensing was combined with IDW for Gauge Measured Rainfall interpola-
tion to achieve better results over those obtained using pure  IDW35. Some researches combined fractal method 
with IDW and proposed fractal IDW (MIDW)  method36. In the MIDW method, weights for moving average 
are assigned based on the local scaling property of data, which is quantified by using a power-law  function37,38.

Fourth method involves the improvement in the IDW method. These improvements mainly focus on the 
calculation of distance weight. The gradient plus-inverse distance squared (GIDS) method was  proposed39. GIDS 
combines multiple linear regression and distance-weighting for weight calculation, which improves its effect 
in the estimation of climatic data. In order to reflect the individual characteristics of the spatial distribution of 
ore body grade and increase the estimation accuracy of IDW method, some studies have modified the weight 
calculation method to reflect the heterogeneity of the estimation  space40. Similarly, in ore grade estimation, 
the Euclidean distance in distance weight is extended to Minkowski distance. In the study, the impact of more 
distance calculation types on ore grade estimation was  analyzed41. The modified IDW estimation method was 
proposed. The proposed method did not require external drifts and exhibited the advantage of performing accu-
rate Particulate Matter estimation through IDW weight  correction42. The Augmented Inverse Distance Weighted 
method introduced the elevation parameter as the distance weight factor, and the elevation parameter became 
a variable for weight calculation, which led to the improvement in the estimation effect of rainfall  data43. The 
Adjusting Inverse Distance (AIDW) method was proposed for use in unstructured mesh finite volume solutions. 
The AIDW method changes this distance to the area of isosceles triangle in the neighborhood of the sample 
point, which can better reflect the neighborhood range of the sample and make the weight calculation more 
 reasonable44. Furthermore, an optimization of the IDW method was proposed, which used a new technique of 
choosing the nearest points during the estimation process (named as the growing radius) in the process of creat-
ing a Digital Terrain Model (DTM) of the seabed based on bathymetric data collected using a Multi Beam Echo 
Sounder (MBES)45. A new parameter (k) was used as Modified Inverse Distance Weight (MIDW) for building 
settlement prediction. The k value was considered according to the shielding relationship between the observa-
tion point and the prediction point, in order to improve the prediction  accuracy46. A modified spatial estimation 
method called Adjusted Inverse Distance Weighted (AIDW) method was used to analyze meteorological data 
around the Islamic University,  Bangladesh47. Notably, the AIDW is similar to MIDW in that the parameter k is 
added to the molecular position of distance weight; however, the value of k depends on the characteristics of the 
data. An active learning algorithm was used to solve regression problems based on inverse-distance weighting 
functions for selecting the feature vectors to  query48. Although the data of these research cases are different, the 
improvement methods mainly involve the adjustment of the calculation method of distance weight, or consider 
the weight calculation of new factors.

In this study, the combination process for ore body samples was simplified, and the original samples were 
directly used to estimate the ore body grades. In order to reduce the sample combination for pretreatment, the 
sample length factor was considered in the weight calculation of IDW method to reduce the smoothing effect 
of the estimated grade caused by sample combination. At the same time, to reduce the influence of the spatial 
inhomogeneity of the sample grade, based on the IDW method, herein it was proposed to add the sample length 
as a grade weight (IDWW) for ore body grade estimation. The IDWW method also aided in optimization of IDW 
by enhancing weight calculation. This study theoretically improves the accuracy of grade estimation, reduces the 
number of grade combination steps, and improves the accuracy and efficiency of estimation.

Study area
In this section, the analysis of the geological conditions of the study area is presented. The occurrence state of 
the ore body is explained. Further, construction of a three-dimensional (3D) model and block model of the clay 
ore body is presented.
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Geological features. The area where the research object is located is a magmatic rock distribution area, and 
only Quaternary (Q) loose layers are mainly distributed in some low-lying areas and valleys in the region. The 
area is mainly composed of residual slope accretion and alluvial–proluvial strata. The main lithology comprises 
brown–yellow, yellow, brown–red, gray–black humus, loamy clay, loamy soil, and gravel-bearing sandy soil.

The exploration line 16–12 in the mining area has exposed a small NE-trending compressive torsional fault 
(F3 fault), which is inclined to the west and has a dip angle of about 75°. Chloritization can be seen in the fault, 
and the 12-line drilling controls the fault breccia with a vertical width of 28 m. The folds in the region are mainly 
part of the complex Guyangzhai anticline. The axis of the complex anticline strikes nearly east–west, and the 
outcrop is about 40 km long. The core was intruded and destroyed by the Ganfang pluton in the Yanshan period.

The magmatic rocks in the study area are widely exposed and have complex lithology. They were medium-acid 
rock in the early stage of magmatic rock genesis and are present as a batholith. The rocks were also acid rock in 
the late stage of the magmatic rock. Alkaline dyke rocks were relatively developed in the later stage of the mag-
matic rock. In the mining area, the following are mainly exposed: the first intrusive granite (γ5

2−2a), the second 
intrusive granite (γ5

2−2b), and the third intrusive granite in the second stage of the early Yanshan period (γ5
2−2c), 

and the first stage intrusive granite (γ5
3−1) and the late Yanshan alkaline dyke (Vπ) in the late Yanshan period.

Ore body characteristics. The No. 1 Ore in the mining area is irregular rock vein-like or elongated rock 
nodule-like, and the general trend is nearly north–south. The surface exposure width of the 16-24 exploration 
line to the east of the F3 fault in the mining area is about 150 m, and the drilling control trend is about 180 m 
long. The exposed width of the 12–0 exploration line west of the F3 fault is about 150 m, and it extends westward 
for 1000 m and thins to a pinch out near the 0 line. The 12th line control tendency is 100 m long. Line 0 controls 
the tendency at length of 30 m.

Three‑dimensional ore body modeling. In this study, the original exploration line profile was used by 
employing the data format and coordinate conversion method; then, the two-dimensional (2D) ore body profile 
was used to establish a 3D solid model of the ore body. The model is shown in Fig. 1.

Three‑dimensional block model. The block model of the ore body was constructed based on the 3D 
solid model of the ore body. The block model of the ore body can be used to store estimated grade information. 
The size of the block unit is 10 × 10 × 10 m. The block model consists of a total of 12894 units. The block model 
is shown in Fig. 2. In this study, the 3D block model was output as a text file, which is convenient for MATLAB 
calculations.

Research methods
Theoretical analysis. The inverse distance weighting method. The IDW method is an interpolation meth-
od that is widely used for spatial information interpolation. It is also one of the most commonly used methods 
for the grade estimation of ore bodies. Its calculation formula  is49,50 as follows:

In the abovementioned formula: P is the estimated ore grade; n is the number of samples involved in the 
grade estimation; Mi is the i-th grade value of the sample; di is the distance from the i-th sample to the estimated 
block; p is the power of the distance, and is generally a positive integer. The value of this p is chosen as  210–12.

The IDW method takes the inverse of the distance between the sample and the block as the estimation of the 
weight. This weight is used to determine the contribution of the samples to the estimate. The closer the distance, 

(1)P =

n
∑

i=1

Mi

(di)
p

(

1

di

)p

Figure 1.  The 3D solid model of the ore body.
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the greater the impact. In contrast, the farther the distance becomes, the smaller the impact on the estimation 
result.

Drilling equipment is used to extract rock samples from the interior of the earth during ore body exploration. 
Then, the rock samples are tested to analyze the mineral content in the rock. The mineral content determines the 
type of underground space occupied by the ore  body51. However, the original samples obtained during explora-
tion are not completely continuous. Sample analysis is also carried out section by section. As length of each assay 
sample is different, the assay data represent different sample lengths. For the assay data to represent the same 
sample length, the original samples need to be combined before grade estimation. The combined sample assay 
data represent the sample grade information of the same length. Its basic principle is shown in Fig. 3.

Sample combination method. The sample length combination method is shown in Fig. 3. Considering the com-
bined sample length of 2 m as an example, the left side is a point generated at the middle position at a distance 
of 2 m, which is used to describe the combined value of the grade of the sample. On the right are the length and 
grade values of each original sample. The formula for calculating the sample combination is:

In the formula: Gc represents the combined sample grade; Gj represents the j-th sample grade within the 
length of the combined poplar; Lc represents the length of the combined sample; Lj represents the length of the 
j-th sample; m represents the number of samples participating in the combined sample.

(2)Gc =

∑m
j=1

Gj ∗ Lj
∑m

j=1
Lj

Lc ≥

m
∑

j=1

Li > 0.5Lc

Figure 2.  The block model.

Figure 3.  Schematic showing the sample combination.
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The method of sample length weighting based on IDW (IDWW). To reduce the number of sample processing 
steps during grade estimation, in this study, the original sample information was used to directly estimate the 
block grade while considering the influence of the sample length on the grade estimation. To this end, herein, an 
ore body grade estimation method is proposed by adding the sample length factor (IDWW). Formula (3) shows:

In the abovementioned formula: Li is the length of the i-th sample; L represents the total length of n samples; 
The rest of the variables have the same meaning as those in formula (1).

Statistics and combination of samples. The statistics of the sample length of the original samples (see 
Fig. 4) show that the sample lengths of the original samples are mostly concentrated at around 3 m. Therefore, 
the length of the combined sample was determined to be 3 m, and the minimum combined sample length was 
75% of the combined length, that is 2.25 m. The statistics results of the combined sample length are presented in 
Table 1. The maximum length of the combined sample is 3 m and the minimum length is 2.25 m.

Basic statistic operations were performed on the original samples (OS) and the combined samples (CS). For 
convenience, the estimated grade was compared with the sample grade later in the study. Table 1 presents the 
Li, Al, and Fe statistics of the original and combined samples.

In order to analyze the influence of sample distribution on grade estimation, the histograms of the Li, Al, and 
Fe of the OS and the CS were drawn, as shown in Figs. 5, 6, 7. The figures illustrate that the distribution states of 
Li, Al, and Fe are different; the distribution of Al grade is concentrated, and that of the Li and Fe grade deviates 
from the low-grade range. The CS are in the lower grade range compared with the OS. Such a rule can also be 
reflected in the mean grades of the OS and CS presented in Table 1, and the mean grade of CS is lower than that 
of OS. It shows that when using CS for grade estimation, there is a risk of underestimating the ore body grade.

Experimental design. The main objective of the experiment was to verify the estimation accuracy of the 
weighted estimation method of the sample length, and to analyze the influence of sample combination on the 
grade estimation. Data from the 3D ore body modeling, block modeling, and drilling were exported as text files 
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Figure 4.  Statistics of the sample length.

Table 1.  Statistics of the OS and the CS.

Name Li (%) AL (%) Fe (%)

Sample type Original Combined Original Combined Original Combined

Minimum 0.2000 0.2067 8.9300 9.0452 0.2500 0.2500

Maximum 0.9400 0.9400 23.5700 23.5200 2.3000 2.1693

Mean 0.5151 0.5114 15.6412 15.5952 0.8990 0.8903

Variance 0.0148 0.0142 2.2967 1.7564 0.0701 0.0615

Standard deviation 0.1216 0.1194 1.5155 1.3253 0.2647 0.2481

Median 0.5200 0.5244 15.3800 15.3903 0.8500 0.8311

Kurtosis 0.0735 0.0207 1.8824 1.6363 1.6017 1.4490

Skewness 0.4336 0.4713 8.8185 9.6697 4.2676 3.7526

Variation coefficient 0.2360 0.2334 0.0969 0.0850 0.2944 0.2786
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in the pre-data preprocessing stage in this study. The text file mainly included block space position information 
and grade information of the original samples and the combined samples. MATLAB was used as the verification 
analysis tool.

The main steps of the experiment are as follows:

(1) Preprocessing of the experimental data: The OS data were extracted and the OS were combined. Data of 
the 3D block models, OS, and CS were converted to text format files. Non-essential information in the 
abovementioned text files was removed.

(2) Determination of the type of ore body grade to be verified: The Li, Al, and Fe grades of the clay ore were 
used as the valuation verification grades.

(3) Block grade estimation: Considering the Li, Al, and Fe grade information of the OS and the CS as the data 
source, the IDW method was used to estimate the grade of the block, and the grade estimation results were 
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Figure 5.  Distribution of Li in the original and combined samples.
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recorded as Result 1 and Result 2, respectively. Similarly, the grade information of Li, Al, and Fe was used 
as the data source, and the IDWW method was used to estimate the grade of the block, which was recorded 
as Result 3.

(4) Calculation and statistics of the deviations: Result 1 and Result 3 were compared with the OS, and Result 2 
was compared with the OS and the CS at the same time. The deviation of the minimum, maximum, mean, 
and coefficient of variation of the grade was calculated.

(5) Analysis of results: The estimated effect of the IDWW method was analyzed. The effect of sample type on 
the estimated results was analyzed. The detailed process is presented in Fig. 8.

Statistics and analysis of the estimation results
Statistics of the estimation results. Statistics of the Li, Al, and Fe grade estimation results were stud-
ied. The statistic information includes the minimum, maximum, mean, variance, standard deviation, median, 
kurtosis, skewness, and coefficient of variation. The detailed results are presented in Tables 2, 3 and 4. OS repre-
sents the original samples and CS stands for combined samples. IDW stands for the inverse distance weighting 
method. IDWW stands for the inverse distance method that is based on sample length weighting. OS-IDW 
represents the result estimated by the IDW method with OS. CS-IDW represents the result estimated by the 
IDW method with CS. OS-IDWW represents the result estimated by the IDWW method with OS. The number 
of samples indicates the number of sample points for grade estimation. In this study, 3–7 samples were used to 
estimate the grade.

Figure 8.  Study flow chart.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6208  | https://doi.org/10.1038/s41598-023-33509-0

www.nature.com/scientificreports/

Analysis of the estimated results. In this study, the estimated grades of Li, Al, and Fe in the magnetite 
ore body were compared with the grades of the samples, and the deviation between the estimated grades and 
the minimum, maximum, mean, and variation coefficients of the grades of the OS and CS was calculated. The 
evaluation effect was analyzed by using grade estimation deviation. Furthermore, the estimation characteristics 
of the IDWW method were analyzed and the influence of sample type and grade distribution characteristics on 
the estimation results was investigated by exploring the laws related to the IDW and IDW grade estimation. The 
deviation is calculated as: deviation = (estimation grade − sample grade)/sample grade × 100%. The first part of 
the estimation in the CS-IDW-OS represents the sample type, the second part represents the estimation method, 
and the third part refers to which sample type the deviation is from. The other representations are similar to this.

Li grade deviation analysis. Figures 9, 10, 11 and 12 show the estimated deviation of the minimum, maximum, 
mean, and variation coefficient of the Li estimated grade, respectively. The horizontal axis represents the number 
of samples involved in the estimation and the vertical axis represents the deviation.

Figure 9 shows that the deviations of the estimated minimum grade are between 9.13% and 26.14%. The 
deviation of CS-IDW-CS is the smallest when there are three samples, and the deviation of OS-IDW-OS is the 
largest when there are seven samples. The deviations of the minimum of the Li estimated grade increase with the 
increase in the number of samples involved in the estimation, indicating that the more the number of samples 
involved in the estimation of the grade, the stronger the smoothness of the estimation result. The deviations of 
the Li estimated grade minima for CS-IDW-OS and CS-IDW-CS are in strong agreement, as shown by the two 
dashed lines in Fig. 9. The deviations of CS-IDW-OS are greater than those of CS-IDW-CS. The deviation of the 
Li estimated grade minimum of OS-IDW-OS is slightly larger than that of the other minima. An increase in the 
deviation of the estimated grade minimum indicates that the estimated minimum grade is closer to the mean 
grade. The OS-IDWW is more scientific in theory compared with OS-IDW. Moreover, the deviation of the Li 
estimated minimum grade with IDWW is relatively small.

The deviations of the Li estimated grade maximum range from − 4.6% to − 17.24%. Among them, the 
OS-IDWW-OS with three samples, participates in the estimation to achieve the smallest deviation of the maxi-
mum grade of − 4.21%, and the maximum deviation with the largest grade is 17.24% when seven samples 
participate in the estimation. The maximum deviations increase with the increase in the number of samples 
involved in the estimation. This is attributed to the fact that the larger the number of samples, the smoother the 

Table 2.  Statistics of the Li grade estimation results.

Name of statistic Method

Number of samples

3 4 5 6 7

Minimum

OS-IDW 0.2233 0.2391 0.2461 0.2523 0.2583

CS-IDW 0.2256 0.2359 0.2344 0.2416 0.2461

OS-IDWW 0.2200 0.2206 0.2313 0.2342 0.2427

Maximum

OS-IDW 0.8729 0.8345 0.8250 0.8056 0.7973

CS-IDW 0.8492 0.8445 0.8162 0.7978 0.7887

OS-IDWW 0.9004 0.8478 0.8279 0.7952 0.7779

Mean

OS-IDW 0.4765 0.4780 0.4781 0.4788 0.4789

CS-IDW 0.4791 0.4835 0.4856 0.4852 0.4864

OS-IDWW 0.4763 0.4777 0.4777 0.4785 0.4784

Variance

OS-IDW 0.0119 0.0115 0.0111 0.0106 0.0101

CS-IDW 0.0112 0.0109 0.0108 0.0105 0.0104

OS-IDWW 0.0119 0.0116 0.0111 0.0105 0.0101

Standard deviation

OS-IDW 0.1090 0.1074 0.1055 0.1029 0.1007

CS-IDW 0.1058 0.1043 0.1037 0.1027 0.1022

OS-IDWW 0.1091 0.1075 0.1055 0.1027 0.1004

Median

OS-IDW 0.4767 0.4800 0.4800 0.4785 0.4786

CS-IDW 0.4833 0.4862 0.4871 0.4894 0.4968

OS-IDWW 0.4767 0.4800 0.4799 0.4786 0.4786

Kurtosis

OS-IDW −0.0789 −0.1253 −0.1442 −0.1935 −0.1657

CS-IDW −0.1592 −0.2667 −0.3058 −0.3102 −0.2813

OS-IDWW −0.0914 −0.1398 −0.1611 −0.2120 −0.1842

Skewness

OS-IDW −0.3482 −0.4370 −0.4404 −0.4666 −0.4945

CS-IDW −0.3162 −0.3034 −0.2225 −0.2860 −0.2148

OS-IDWW −0.3584 −0.4490 −0.4519 −0.4765 −0.5001

Variation coefficient

OS-IDW 0.2287 0.2246 0.2206 0.2150 0.2102

CS-IDW 0.2207 0.2157 0.2135 0.2116 0.2102

OS-IDWW 0.2291 0.2251 0.2208 0.2145 0.2098
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estimation result. Clearly, the deviations of CS-IDW-OS and CS-IDW-CS are highly consistent, and their devia-
tions basically coincide with the maximum deviations of the Li grade. It shows that the maximum values of Li 
grade of the OS and the CS are close. The OS-IDW-OS and OS-IDWW-OS deviations are consistent. They are 
close to the deviations of CS-IDW-OS and CS-IDW-CS. The accuracy and stability of IDWW are demonstrated 
by the estimation results.

The mean deviations of the Li grade are between − 5.1% and − 7.5% (Fig. 11). The mean deviation of CS-
IDW-CS is the smallest at seven samples, at 5.1%. The mean deviation of OS-IDWW-OS at three samples is the 
largest (− 75%). The mean deviations of the Li grades for CS-IDW-CS and CS-IDW-OS are highly consistent. 
The mean deviations of the Li grade decrease with the increase in the number of samples. The mean deviations of 
OS-IDW-OS and OS-IDWW-OS are highly consistent and their deviations decrease slowly with the increase in 
the estimated number of samples. Theoretically, the more the samples involved in the estimation, the smoother 
the estimation result. Smoothing indicates that the estimated interior grade of the ore body tends to be more 
average. Owing to the influence of the spatial morphology of ore bodies and the uneven distribution of samples, 
the same sample can have different effects on the surrounding block units. The distance from the sample to the 
different blocks is not exactly the same. Therefore, it is difficult for the statistical results of the estimated grade 
of the ore body to be exactly the same as the statistical results of the sample grade. The mean deviation of the 
estimated Li grades shown in Fig. 11 can only explain the variation trend between the estimated grades and the 
samples to a certain extent. Alternatively, this study demonstrates the relative accuracy of the estimated grade 
mean and the stability of the IDWW method.

Figure 12 shows that the variation coefficient deviations of the Li estimated grade are between − 2.92% and 
− 11.08%. When there are three samples, OS-IDWW-OS shows the smallest variation coefficient deviation, at 
− 2.92%, and when there are seven samples, the deviation of the variation coefficient is the largest, at 11.08%. The 
deviations of the variation coefficient of the Li grade show a decreasing trend with the increase in the number 
of samples. The variation coefficient reflects the dispersion of the samples to a certain extent. The increase in 
the deviations of the variation coefficient indicates that the difference between the variation coefficient of the 
estimated grade and the variation coefficient of the sample grade is enhanced. The essence of this enhancement 
is the increase in the smoothness of the valuation grade.

Figure 12 shows that CS-IDW-OS and CS-IDW-CS have a high degree of consistency in the deviation of the 
grade variation coefficient. The deviations of the coefficients of variation of OS-IDW-OS and OS-IDWW-OS are 

Table 3.  Statistics of the Al grade estimation results.

Name of statistic Method

Number of samples

3 4 5 6 7

Minimum

OS-IDW 10.881 11.183 11.819 12.012 12.483

CS-IDW 10.999 11.208 11.808 12.019 12.486

OS-IDWW 10.887 11.186 11.751 12.015 12.253

Maximum

OS-IDW 18.513 18.412 18.338 18.296 18.360

CS-IDW 19.020 19.020 19.020 18.674 18.465

OS-IDWW 18.513 18.643 18.549 18.629 18.844

Mean

OS-IDW 15.481 15.474 15.490 15.496 15.492

CS-IDW 15.570 15.575 15.599 15.594 15.619

OS-IDWW 15.489 15.478 15.492 15.499 15.505

Variance

OS-IDW 1.314 1.181 1.097 0.995 0.866

CS-IDW 1.344 1.143 1.062 0.950 0.896

OS-IDWW 1.337 1.194 1.110 0.998 0.919

Standard deviation

OS-IDW 1.146 1.087 1.047 0.998 0.930

CS-IDW 1.159 1.069 1.030 0.975 0.947

OS-IDWW 1.156 1.093 1.054 0.999 0.959

Median

OS-IDW 15.300 15.352 15.336 15.285 15.321

CS-IDW 15.397 15.409 15.426 15.422 15.446

OS-IDWW 15.322 15.349 15.337 15.285 15.321

Kurtosis

OS-IDW 0.0646 0.2384 0.3238 0.6286 0.7290

CS-IDW −0.071 −0.065 0.042 0.302 0.538

OS-IDWW 0.0934 0.2425 0.3394 0.6112 0.8520

Skewness

OS-IDW 3.0789 3.2096 2.6931 2.4589 1.9065

CS-IDW 2.665 3.231 2.885 2.441 1.900

OS-IDWW 3.0280 3.1291 2.6486 2.4479 2.2796

Variation coefficient

OS-IDW 0.0741 0.0702 0.0676 0.0644 0.0601

CS-IDW 0.074 0.069 0.066 0.063 0.061

OS-IDWW 0.0746 0.0706 0.0680 0.0645 0.0618
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highly consistent, and they exhibit the same trend as the deviations of the coefficients of variation of the grades 
of CS-IDW-CS and CS-IDW-OS.

Al grade deviation analysis. Figure 13 shows that the minimum deviation of the estimated Al grade is between 
21.60 and 39.82%. The minimum deviation of CS-IDW-CS is 21.60% at three samples. The minimum deviation 
of OS-IDW-OS is 39.82% at seven samples. The minimum deviations of the Al estimated grade increase with the 
increase in the number of samples, indicating that the more the number of samples, the stronger the smoothness 
of the estimated result. There is a high degree of agreement between the estimated grade minimum deviations 
for the Al estimates across all estimates. The minimum deviations increase with the increase in the number of 
samples, indicating that the minimum grade is close to the average value of the Al grade. The variation of the 
Al grade minimum deviations obtained from the different estimation methods is relatively stable. The variation 

Table 4.  Statistics of the Fe grade estimation results.

Name of statistic Method

Number of samples

3 4 5 6 7

Minimum

OS-IDW 0.318 0.330 0.370 0.379 0.388

CS-IDW 0.2813 0.2977 0.3161 0.3420 0.3511

OS-IDWW 0.325 0.348 0.386 0.392 0.399

Maximum

OS-IDW 1.853 1.800 1.880 1.840 1.793

CS-IDW 1.8548 1.7946 1.8536 1.8336 1.7922

OS-IDWW 1.853 1.800 1.880 1.840 1.793

Mean

OS-IDW 0.918 0.918 0.917 0.919 0.916

CS-IDW 0.9152 0.9151 0.9200 0.9203 0.9221

OS-IDWW 0.917 0.917 0.916 0.918 0.916

Variance

OS-IDW 0.065 0.062 0.060 0.059 0.058

CS-IDW 0.0642 0.0569 0.0566 0.0551 0.0560

OS-IDWW 0.065 0.062 0.060 0.058 0.058

Standard deviation

OS-IDW 0.255 0.250 0.245 0.243 0.240

CS-IDW 0.2534 0.2385 0.2379 0.2347 0.2366

OS-IDWW 0.255 0.248 0.244 0.242 0.241

Median

OS-IDW 0.850 0.855 0.854 0.853 0.850

CS-IDW 0.8444 0.8375 0.8485 0.8446 0.8454

OS-IDWW 0.850 0.851 0.854 0.851 0.847

Kurtosis

OS-IDW 1.0381 0.8793 0.9637 0.8807 0.8886

CS-IDW 1.0896 0.9991 1.0568 0.9912 0.9807

OS-IDWW 1.0377 0.8833 0.9694 0.8887 0.8927

Skewness

OS-IDW 1.0374 0.1720 0.6645 0.2776 0.3602

CS-IDW 1.1918 0.6397 0.9704 0.6401 0.5164

OS-IDWW 1.0304 0.2060 0.7072 0.3092 0.3358

Variation coefficient

OS-IDW 0.2778 0.2719 0.2673 0.2640 0.2618

CS-IDW 0.2768 0.2606 0.2586 0.2551 0.2566

OS-IDWW 0.2779 0.2708 0.2666 0.2634 0.2631
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Figure 9.  Deviation of the Li minimum grade.
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interval of the minimum deviations of the same samples is within 5%. The deviations of the Al estimated grade 
minimum show that IDWW has a similar estimation accuracy and stability compared with other methods.

Figure 14 shows that the maximum deviations of the estimated Al grade are between 19.13 and 22.38%. When 
there are three samples, the maximum deviation of CS-IDW-CS is 19.13%, and when there are seven samples, the 
OS-IDW-OS maximum deviation is 22.38%. Figure 14 illustrates that the maximum deviations of the Al grades 
estimated by CS-IDW-CS and CS-IDW-OS are completely consistent, and the variation trend first stabilizes 
and then increases with the increase in the number of samples. The maximum deviations of the Al grades as 
estimated by OS-IDW-OS do not change significantly. The maximum deviations of the Al grades as estimated 
by OS-IDWW-OS tend to decrease slowly. The estimation results of OS-IDWW-OS are generally consistent with 
the estimation results of the other methods, and IDWW estimation offers both accuracy and stability.

Figure 15 shows that the mean deviations of the Al grade are between 0.154 and − 1.068%. The mean devia-
tion of the Al grade estimated by CS-IDW-CS at seven samples is 0.154%. The mean deviation of the Al grade 
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Figure 10.  Deviation of the Li maximum grade.
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estimated by OS-IDW-OS at four samples is 1.068%. Figure 15 shows that the mean deviation of the Al grade 
estimated by CS-IDW-OS and CS-IDW-CS is highly consistent. Furthermore, the mean deviations of the Al 
grade show a slow decline with the increase in the number of samples. The mean deviations of OS-IDW-OS and 
OS-IDWW-OS are highly consistent, and the deviations show a slow downward trend with the increase in the 
number of samples. The variation trend of the mean deviations of the Al grade shown in Fig. 15 is basically the 
same as that of the mean deviations of the Li grade shown in Fig. 11. However, the mean deviations of the grade 
are quite different, which further shows that the influence of the sample grade distribution on the estimation 
results of IDW and IDWW methods is very significant.

Figure 16 shows that the variation coefficient deviations of the Al grade are between 12 and 37.6%. Among 
them, when there are three samples, the variation coefficient deviation of the CS-IDW-CS grade is 12.5%. The 
variation coefficient deviation of the OS-IDW-OS grade is 37.6% at seven samples. The variation coefficient 
deviations of the Al grade estimated by IDW and IDWW exhibit a high degree of consistency, and the devia-
tions increase with the increase in the number of samples, as shown in Fig. 16. The increase in the deviations 
of the variation coefficients indicates that the smoothness of the valuation grade increases with the increase 
in the number of samples. The variation coefficient deviations of OS-IDWW-OS exhibit the same trend as the 
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deviations of CS-IDW-CS, CS-IDW-OS, and OS-IDW-OS. Furthermore, the deviations of OS-IDWW-OS are 
close to CS-IDW-OS and OS-IDW-OS, which also verifies the reliability and stability of the IDWW estimation.

Fe grade deviation analysis. Figure  17 shows that the minimum deviations of the Fe estimated grade are 
between 12.533 and 59.554%. The minimum deviation of the Fe grade of CS-IDW-CS is 12.533% at three sam-
ples. The grade minimum deviation of OS-IDWW-OS is 59.554% at seven samples. The minimum deviations of 
the Fe estimated grades increase with the increase in the number of samples. It shows that the more the number 
of samples involved in the estimation, the stronger the smoothness of the estimation result. This is consistent 
with the variation trend of the estimated grade minimum deviations of Li and Al. The minimum deviations 
of the OS-IDWW-OS grade have the same relative change trend as those of OS-IDW-OS, CS-IDW-OS, and 
CS-IDW-CS. The minimum deviations of the Fe grade of OS-IDWW-OS are the largest. However, this cannot 
explain the poor estimation effect of the IDWW method. It is believed that the results are mainly affected by 
the spatial location of the samples and the distribution of the sample grades. The minimum deviations of the Fe 
grade of IDWW are consistent with the minimum deviations of the Fe grade of IDW, which demonstrates the 
feasibility and stability of the IDWW method

Figure 18 shows that the maximum deviations of the Fe estimated grade are between 14.497 and 22.077%. 
Among them, the maximum deviation of the Fe grade of CS-IDW-CS is 14.497% when there are three samples. 
The maximum deviation of the Fe grade of CS-IDW-OS at seven samples is 22.077%. With the increase in the 
number of samples, the maximum deviations of the estimated Fe grade first increase, then decrease, and finally 
increase again. Furthermore, the overall trend is an increasing one. The maximum deviations of the Fe grade 
exhibit a high consistency with the different methods and samples. It also shows that the IDWW estimation is 
accurate and reliable.

Figure 19 shows that the mean deviations of the Fe grade are between 1.808 and 3.568%. Among them, the 
mean deviation of CS-IDW-OS is 1.808% when there are three samples. The grade mean deviation of CS-IDW-
OS is 3.568% at seven samples. The mean deviation of the Fe grade is within a small range. The mean deviations 
of CS-IDW-OS and CS-IDW-CS increase with the increase in the number of samples. The mean deviations of 
OS-IDW-OS and OS-IDWW-OS are highly consistent and they show a slow downward trend with the increase in 
the number of samples. Theoretically, the more the number of samples involved in the estimation, the smoother 
the estimation result. This smoothing indicates that the estimated grade within the ore body tends to be closer 
to the grade mean. The average grades of CS-IDW-OS and CS-IDW-CS show an upward trend that is influenced 
by the combination of samples. The combination of samples changes the spatial distribution of the Fe grades, 
which eventually leads to changes in the mean deviations of the estimated Fe grades. Therefore, it can be inferred 
that the sample grade distribution exhibits a significant impact on the estimation results of the ore body grade. 
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Therefore, it can also be inferred that the spatial distribution of sample grades has a significant impact on the 
estimation results of the ore body grade.

The variation coefficient deviations of the estimated Fe grade are between 0.643 and 13.363%, as shown in 
Fig. 20. The variation coefficient deviation of the estimated grade of the CS-IDW-CS is 0.8% at three samples. 
The variation coefficient deviation of the estimated grade of CS-IDW-OS is 13.5% at six samples. The varia-
tion coefficient deviations of the Fe estimated grade are consistent based on the CS and OS using the IDW and 
IDWW methods, and the deviations increase with the increase in the number of samples, as shown in Fig. 20. 
The estimated Fe grade variation coefficient of IDWW is close to the Fe grade variation coefficient obtained by 
IDW. The variation coefficient deviations of the grade are consistent, which demonstrates the feasibility and 
stability of the IDWW method.

Discussion
The minimum deviations of the estimated grades of Li, Al, and Fe shown in Figs. 9, 13 and 17 indicate that 
the minimum deviations increase with the increase in the number of samples involved in the evaluation. The 
minimum deviations are between 9.129 and 59.554%, and the overall minimum deviations are relatively large. 
The maximum deviations of the grades also increase with the increase in the number of samples involved in 
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evaluating the maximum deviations of the estimated grades of Li, Al, and Fe shown in Figs. 10, 14 and 18. The 
maximum deviations are between 4.210 and 22.375%, and the overall maximum deviations are relatively large. 
These are mainly determined by the distribution of sample grades. The number of samples with smaller or larger 
grades is relatively small. During the grade estimation process, at least three samples were used in the grade 
estimation. Therefore, the estimated minimum grade was expected to be greater than the minimum grade of 
the sample and the estimated maximum grade was expected to be less than the maximum grade of the sample. 
Theoretically, the more the number of samples involved in the estimation, the closer the estimated minimum 
or maximum grade to the mean grade. Furthermore, there are greater deviations of the estimated minimum or 
maximum grade when more samples are involved in the estimation. In the grade estimation stage, the combina-
tion of samples causes the smoothing effect of the grade before the estimation, and the smoothing effect caused 
by IDW makes the estimation effect smoother. The maximum and minimum grade estimation deviations of the 
IDWW are consistent with those of the IDW, demonstrating the accuracy and stability of the IDWW method.

Figures 11, 15 and 19 show that the mean deviation of the estimated grade is between − 1.068 and 7.187%. 
The estimated mean grades of Li and Al are greater than the mean sample grades. The estimated mean grade of 
Fe is slightly smaller than the mean grade of the samples. The grade data for Li, Al, and Fe are obtained from the 
same exploration project, and from different assay grades of the same sample. Therefore, the grade distribution 
state of Li, Al, and Fe affects the mean deviation of the estimated grade, which cause the mean deviations of 
the Li, Al, and Fe grades to be different from each other. Moreover, under the same estimation parameters, the 
estimated deviations can only be used to evaluate the estimation accuracy to a certain extent. Furthermore, the 
estimated deviations are also affected by the shape of the grade distribution. The estimated results of IDW and 
IDWW are generally close when the same estimated sample and estimation parameters are used. The feasibility 
and stability of the IDWW method are demonstrated again.

Figures 11, 16 and 20 show that the deviations in the variation coefficient of the estimated grade are between 
3.076 and 36.186%. Among them, the variation coefficient deviations of the estimated Li and Fe grades are 
significantly larger than those of the estimated Fe grades. The grade variation coefficient can reflect the disper-
sion of the grade distribution. The larger the coefficient of variation, the more dispersed the distribution of the 
statistical objects. The variation coefficients of the estimated grades of Li, Al, and Fe are all smaller than those of 
the sample grades. Therefore, the estimated grade distribution is more concentrated than the grade distribution of 
the samples. In other words, the estimated grades are close to the mean grade. It shows that the estimated grades 
assessed by IDW and IDWW methods exhibit a significant smoothing effect. However, the variation coefficient 
deviation of OS-IDWW-OS is generally smaller than that of CS-IDW-OS. This result shows that the IDWW 
method can effectively reduce the smoothing effect caused by sample combination and the estimation process.

Figure 4 exhibits the length distribution of the original samples, revealing that the length of the original sam-
ples is mostly about 3 m. Furthermore, the samples with a sample length of about 3 m account for the majority. 
Therefore, the estimated deviations from IDW and IDWW methods are closer when the estimation is carried 
out by using the data of the original samples, making the accuracy performance of IDWW not particularly sig-
nificant. However, the IDWW method offers significant theoretical advantages because it addresses the adverse 
effects of uneven sample lengths on the estimates. The IDWW method also eliminates the effects of combining 
samples and reduces the smoothing effect caused by the combination of samples. The IDWW method improves 
the utilization efficiency of the original samples (Supplementary Information).

Conclusion
In this study, the IDWW method was proposed, which considered the sampling length of the sample as the weight 
factor of grade estimation that reduced the smoothing effect caused by the sample grade combination process 
and sample combination. The IDWW method theoretically improved the estimation effect of ore grade. Li, Al, 
and Fe grades from porcelain clay were used as an experimental case of ore grade estimation. The reliability and 
accuracy of the IDWW method were verified by comparing the grade estimation results of the IDWW method 
with the IDW method. Moreover, the effects of sample quantity, sample grade combination, and sample grade 
distribution on ore grade estimation were also systematically analyzed. The results of this study are as follows:

(1) The minimum deviations of the estimated grades of Li, Al, and Fe increased with the increase in the number 
of samples involved in evaluation. The minimum deviations were between 9.129 and 59.554%. The maxi-
mum deviations of the grades also increased with the increase in the number of samples. The maximum 
deviations were between 4.210 and 22.375%. The mean deviation of the estimated grade of Li, Al, and Fe 
were between − 1.068% and 7.187%. The deviations in the coefficient of variation of the estimated grade 
of Li, Al, and Fe were between 3.076 and 36.186%. The maximum, minimum, mean, and coefficients of 
variation grade estimation deviations of the IDWW were consistent with those of the IDW method, dem-
onstrating the accuracy and stability of the IDWW method.

(2) The number of samples involved in the estimation exhibited a direct impact on the estimated grade devia-
tions. The more the samples involved in the estimation, the greater the estimation deviations of IDW and 
IDWW methods. The estimated deviations of Li, Al, and Fe were affected by the shape of the grade distri-
bution, when the other estimated parameters remained unchanged. The distribution pattern of the spatial 
grade information of the samples significantly influenced the grade estimation results.

(3) The estimated grades estimated by IDW and IDWW methods exhibited a significant smoothing effect. 
The IDWW method offered significant theoretical advantages because it addressed the adverse effects of 
uneven sample lengths on the estimates. The IDWW method was able to effectively reduce the smoothing 
effect caused by sample combination and the estimation process. Moreover, the IDWW method improved 
the utilization efficiency of the original samples.
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(4) The number of times each ore sample was used for the grade estimation was not exactly the same. There-
fore, the statistical results of the estimated grade and the samples grade were not completely consistent. It 
was speculated that there might be deviations between the sample grades and the estimated grades. These 
deviations were not entirely due to the estimation method. The study also showed that the spatial location 
of sample sampling and the spatial shape of ore body were factors that affected the estimation of ore grade. 
Undeniably, a lot more systematic explorations are further demanded to analyze the impact of the spatial 
location of sample sampling and the spatial shape of ore body on the estimation of ore grade, which will 
be pursued in the future.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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