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Dual‑branch hybrid network 
for lesion segmentation in gastric 
cancer images
Dongzhi He 1*, Yuanyu Zhang 1, Hui Huang 1, Yuhang Si 1, Zhiqiang Wang 3 & Yunqi Li 2*

The effective segmentation of the lesion region in gastric cancer images can assist physicians in 
diagnosing and reducing the probability of misdiagnosis. The U-Net has been proven to provide 
segmentation results comparable to specialists in medical image segmentation because of its ability 
to extract high-level semantic information. However, it has limitations in obtaining global contextual 
information. On the other hand, the Transformer excels at modeling explicit long-range relations 
but cannot capture low-level detail information. Hence, this paper proposes a Dual-Branch Hybrid 
Network based on the fusion Transformer and U-Net to overcome both limitations. We propose the 
Deep Feature Aggregation Decoder (DFA) by aggregating only the in-depth features to obtain salient 
lesion features for both branches and reduce the complexity of the model. Besides, we design a 
Feature Fusion (FF) module utilizing the multi-modal fusion mechanisms to interact with independent 
features of various modalities and the linear Hadamard product to fuse the feature information 
extracted from both branches. Finally, the Transformer loss, the U-Net loss, and the fused loss are 
compared to the ground truth label for joint training. Experimental results show that our proposed 
method has an IOU of 81.3%, a Dice coefficient of 89.5%, and an Accuracy of 94.0%. These metrics 
demonstrate that our model outperforms the existing models in obtaining high-quality segmentation 
results, which has excellent potential for clinical analysis and diagnosis. The code and implementation 
details are available at Github, https://​github.​com/​ZYY01/​DBH-​Net/.

Gastric cancer is one of the common malignant tumors, with more than 1 million new patients yearly1. The 
incidence of gastric cancer ranks among the top three cancers in China, with a mortality rate of 12.4%2. In terms 
of morbidity and mortality, gastric cancer is considered to be a severe and lethal malignancy3. Gastroscopy is 
the most common method of detecting and diagnosing gastric cancer. It highly relies on a great deal of exper-
tise and practical experience by trained doctors. Research showed that the accuracy of manual gastroscopy is 
only 69–79%4. With the deep learning algorithms introduced into medical image segmentation, many studies 
have used Convolutional Neural Networks (CNNs) to segment gastric cancer images. Hirasawa et al.5 achieved 
automatic detection of gastric cancer in endoscopic images using CNNs, but the accuracy is limited due to 
ambiguous lesion features. PAN et al.6 identified early gastric cancer and non-cancerous images by improv-
ing the SSD model. The DSF module was proposed to achieve an effective fusion of features at different levels. 
ZHANG et al.7proposed an enhanced SSD architecture called SSD-GPNet. It takes advantage of the cross-layer 
relationship in the feature pyramid to increase the receptive field of the network and enhance feature extrac-
tion. Although using CNNs achieves a better recognition effect, the result can still not meet the requirements 
of complementary medical diagnosis. This prompted us to seek more targeted network structures to improve 
segmentation performance.

Ronneberger et al.8 proposed the U-Net in 2015, which uses skip connections to make the final restored 
feature map incorporate more low-level feature information and has wide application in medical image seg-
mentation. Many studies have improved the U-Net to gastric cancer lesion segmentation. QIU et al.9 identified 
certain types of lesion sites in gastric cancer using an improved U-Net model based on pyramidal structure. 
ZHANG et al.10 developed a modified U-Net network that enhances the fusion of high-level and low-level 
feature information by designing SERES and DAGC modules to replace the pooling operation. Although the 
improved U-Net method has been proven more effective, its inherent limitations lead to its lack of capability 
in modeling explicit long-range relations. Due to the number of folds in gastric mucosa, the complexity of the 
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gastric environment requires the model to have global information acquisition to distinguish lesion features 
from background noise. Therefore, the accurate and effective capture of global contextual information remains 
a crucial problem to be addressed.

Transformer11 is inherently good at modeling long-range dependencies, which focus on global contextual 
information and achieves better results in computer vision tasks12–15. Therefore, some research has attempted 
to apply the Transformer to image segmentation. Strudel et al.16 proposed a pure Transformer-based encoder-
decoder architecture Segmenter, which captures global contextual information well and achieves excellent results 
in semantic segmentation. On the contrary, applying pure transformer in medical image segmentation leads to 
unsatisfactory training results, mainly due to the limited amount of data making it difficult to extract enough 
detailed information in the lowers layers. Therefore, the study proposed a strategy combining Transformer and 
CNNs in medical segmentation. Zhang et al.17 proposed the TransFuse model by combining Transformers and 
CNNs in a parallel manner to improve the efficiency of global context modeling without losing low-level fea-
tures. CHEN et al.18 proposed the TransUNet model that recovers local spatial information by U-Net and allows 
the Transformer as an encoder for medical image segmentation. However, the model passes the deep features 
extracted by convolution into the Transformer, which makes the global information obtained by the Transformer 
fragmentary, and the advantage of the Transformer is fractional. Therefore, we propose to pass the original 
images into the Transformer and CNNs separately to capture the dominant features extracted by both fully, but 
this will undoubtedly lead to high model complexity. Low-level features contribute less to the performance of 
target segmentation in salient regions and increase computational complexity than deep-level features19. Hence, 
we need to design a decoder structure to replace the original one, eliminating the impact of low-level features 
on computational complexity. In addition, Transformer is based on global computational self-attention, which 
leads to computationally expensive. Liu et al.20 proposed Windows Multi-Head Self-Attention (W-MSA) in the 
Swin-Transformer to improve its self-attention calculation, significantly reducing the computational complexity.

Motivated by the above research, we propose a Dual-Branch Hybrid Network fusing Swin-Transformer and 
U-Net for gastric cancer image segmentation. We design a decoder structure that aggregates in-depth feature 
information to achieve accurate localization of lesion regions by Swin-Transformer and U-Net. In order to com-
bine the extracted feature by U-Net and Transformer, we investigate an effective feature fusion technique. The 
multi-modal fusion mechanism21 enhances the extraction of correlation information at different scales. Moreover, 
the linear Hadamard product22 enables effective cross-fertilization of features. We calculate the Transformer loss, 
the U-Net loss, and the fused loss with the ground truth label for network training and finally output a high-
quality segmentation result. In general, this work focuses on the following points.

•	 This paper proposes a Dual-Branch Hybrid Network to segment the lesions in gastric cancer images by fusing 
Swin-Transformer and U-Net in a parallel style.

•	 In this paper, we build the Deep Feature Aggregation Decoder (DFA) to replace the original decoders of 
Swin-Transformer and U-Net to reduce the complexity of the model and recover detailed information on 
the lesion regions.

•	 This paper constructs the Feature Fusion (FF) module, which can utilize the multi-modal fusion mechanisms 
to interact independent features of various modalities as well as the linear Hadamard product to fuse the 
features.

•	 We use professional evaluation metrics to assess the model. The experimental results show that the model 
can accurately segment the lesion region of gastric cancer images, and the results are better than the current 
state-of-the-art methods.

The remainder of this paper is organized as follows. Section "Related Works" presents the application of the 
improved U-Net and Transformer structure in medical image segmentation. Section "Method" describes the 
proposed framework in this study, including the Swin-Transformer branch, the U-Net branch, the DFA, FF, and 
Decoder modules, and the loss functions. The experimental results on several datasets are presented in Section 
"Experiments". Finally, we visualize the experimental results and list the conclusions.

Related works
U‑shaped networks.  The semantic structure of medical images is relatively simple, so their high-level 
semantic information and low-level features are essential. The U-Net has achieved a good performance in medi-
cal image segmentation by improving skip connection and providing more detailed information. Many vari-
ants of U-Net have achieved excellent performance. Oktay et al.23 proposed the Attention U-Net model, which 
incorporates integrated attention gates (AGs) to recalibrate the output features of the coding and effectively 
suppresses irrelevant noise to highlight the salient features of hopping connection delivery. Li et al.24 proposed 
an attention-based nested segmentation network, ANU-Net, which performs well on the liver tumor segmenta-
tion dataset LiTS by redesigning dense skip connections. Ni et al.25 proposed the RAUNet to solve the problem 
of specular reflection in cataract segmentation by adding an enhanced attention module to fuse multi-level fea-
tures and capture contextual information effectively. MZ Alom et al.26 proposed the R2U-Net, which combines 
the advantages of U-Net, residual network, and RCNN network, and has better performance in retinal image 
segmentation tasks with the same number of parameters. ZHOU et al.27 proposed a segmentation architecture 
(UNet + +) based on nested dense skip connections, which demonstrates effectiveness on abdominal CT liver 
segmentation datasets and colonic polyp segmentation datasets. The above research confirms that the U-Net has 
become one of the most popular deep learning frameworks in medical image segmentation with good segmenta-
tion performance.
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Transformers applications.  Transformer is widely used in many NLP tasks with good performance. The 
VIT (Vision Transformer) was first proposed by28 for image processing in 2020. It showed results comparable 
to the CNNs at that time but required significantly fewer computational resources to train. From then on, many 
studies have worked on solving medical image segmentation problems by using Transformer. Valanarasu et al.29 
proposed the MedT model to solve the poor performance of Transformer on small medical datasets. It used a 
gated axial-attention model, which extends the existing architectures by introducing an additional control mech-
anism in the self-attention module. Ji et al.30 proposed the Multi-Composite Transformer (MCTrans), which 
integrated rich feature learning and semantic structure mining into a unified framework. Gao et al.31 proposed 
the UTNet, which applied self-attentive modules in the encoder and decoder to capture long-range dependen-
cies with minimal overhead. Zhang et al.32 proposed Multi-Branch Hybrid Transformer Network (MBT-Net) 
based on a body-edge Branch to obtain more details and contextual information. Cao et al.33 proposed Swin-
Unet, a U-shaped encoder-decoder structure based on Swin-Transformer blocks. It developed patch expanding 
layers to achieve up-sampling and feature dimensionality increase without convolution or interpolation opera-
tions. Lin et al.34 proposed DS-TransUNet to improve the problem of ignoring the intrinsic structural features 
at the pixel level during patch segmentation. Proposed TIF module to achieve efficient interaction at multi-scale 
features using MSA mechanism. The above studies confirm that Transformers are widely used in medical image 
segmentation and perform well.

Method
The overall framework of our proposed end-to-end Dual-Branch Hybrid Network is shown in Fig. 1. The U-Net 
branch extracts spatial information at each scale, and the Swin-Transformer branch captures global contextual 
information. To obtain the feature information of the salient lesion regions extracted from the two branches and 
reduce the complexity of the model, we propose the Deep Feature Aggregation Decoder (DFA) to aggregate the 
deep features to recover the spatial details of the lesion region and output the loss value between segmentation 
result and the ground truth label. In addition, the features extracted from both branches are fed into the Feature 
Fusion (FF) module for processing and passed into the Decoder module via a skip connection. The Decoder 
structure recovers the details of the image and the corresponding spatial dimensions to output the loss value and 
the final segmentation results. In addition, we combine the loss values obtained from the three components by 
weighting them for joint training to maximize the advantages of the two branches.

Swin‑transformer branch.  The design of the Swin-Transformer branch follows the typical encoder-
decoder architecture. In this case, the encoder architecture uses the Swin-Transformer architecture proposed 
in20. The decoder structure uses our proposed DFA module. The overall framework shown in the yellow dashed 
box in Fig. 1. Given an image x ∈ RH×W×3 with a spatial resolution of H ×W and 3 number of channels. For the 
Swin-Transformer branch, the image is split into non-overlapping patches with a patch size of 4 × 4 in the Patch 
Partition module. Then the size of the image changes from [H ,W , 3] to [H/4,W/4, 48] . By linearly transform-

Figure 1.   The overall framework of the proposed model. The structures of the DFA module, FF module and 
Decoder module are given in Figs. 3, 4, and 5, respectively; Lst , Lu, Lff  represent the loss values of the U-Net 
branch, Swin-Transformer branch, and the fusion branch, respectively.



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6377  | https://doi.org/10.1038/s41598-023-33462-y

www.nature.com/scientificreports/

ing the channel dimension of each pixel through the Linear Embedding layer, the number of channels changes 
from 48 to our pre-defined hyper-parameter C , flatten to [H/4×W/4,C] . The transformed patch tokens are 
stacked with Swin-Transformer blocks and Patch Merging Layer to generate the hierarchical representation 
of the features. The Patch Merging layer is responsible for down-sampling and increasing dimension, while 
the Swin-Transformer block is responsible for feature representation learning. A total of 4 stages, setting the 
number of Swin-Transformer blocks in each stage to2,2,2,6. The feature maps obtained by down-sampling at each 
stage are passed into the FF module for the interactive fusion of information. The feature maps of the last three 
stages are passed into the DFA module to output the segmentation results. The final output feature map sizes are 
[H/4,W/4,C] , [H/8,W/4, 2C] , [H/16,W/16, 4C] , [H/32,W/32, 8C].

The Transformer architecture uses the Multi-head Self Attention (MSA) module to compute global self-
attention for feature learning, which results in computationally intensive and high model complexity. The Swin-
Transformer block introduces the idea of local calculation, calculating self-attention in the window region 
without overlap, significantly reducing computational complexity. The general structure is shown in Fig. 2. 
Specifically, the Swin-Transformer block comprises two sets of Layer-Norm (LN) layers, the window-based MSA 
layer, a residual connection, and a 2-layer Multilayer Perceptron (MLP) unit. In this case, the window-based 
W-MSA module calculates the self-attention only for each window’s interior. In contrast, the shifted window-
based module (SW-MSA) is used to solve the problem of window-to-window information transfer. Based on 
such a window partitioning mechanism, the Swin-Transformer block can be formulated in Eqs. (1) to (4).

U‑Net branch.  The encoder of the U-Net branch consists of 5 groups of convolutional units. Each set of con-
volution units uses a max-pooling layer with filter size 2 × 2 to halve the feature map size and two convolutional 
layers with kernel size 3 × 3 and a stride of 1 for feature extraction. After each convolution layer, there are a Batch 
Normalization (BN) layer and correction rectified linear unit (ReLU) activation functions. We input the feature 
maps extracted from the latter four groups of convolutional units into the FF module. The final output feature 
map sizes are [H/4,W/4,C] , [H/8,W/4, 2C] , [H/16,W/16, 4C] , [H/32,W/32, 8C].

The decoder uses our proposed DFA module to replace the original decoder in U-Net. The feature maps 
extracted from the last three convolutions are passed into the DFA module to output the segmentation results. 
The general structure is shown in the blue dotted box in Fig. 1. From experience, we set the value of hyper-
parameter C to 96.

Deep feature aggregation decoder DFA.  In order to output the segmentation results of the U-Net and 
the Swin-Transformer, we need to build a decoder structure to recover the image information. As we focus on 
the segmentation results of the Transformer and the U-Net for salient lesion regions, fast and accurate posi-
tioning is our primary objective. Therefore, to accurately locate the gastric cancer lesion region and reduce the 
complexity of the model, we propose the Deep Feature Aggregation Decoder (DFA) to eliminate the influence of 
low-level features on the computational complexity and recover the spatial detail of the lesion region. The struc-
ture of the module is shown in Fig. 3. We aggregate the output features of the last three modules Fi , i = 1, 2, 3 . 
In order to obtain global information on deeper features, we introduced the Receptive Field Block (RFB)35 to 
increase the receptive field. Compared to the conventional RFB module, we add a convolutional layer with a 
dilation rate of 7 and reduce the channel to 48 to decrease the computational loss of extracted features, as shown 
in module RFB48 in Fig. 3. We construct two aggregated feature decoders AggreagtionDecoder1,2 to achieve the 
fusion of feature information at different scales. The structure is shown in Fig. 3. The decoder uses multiplication 
operation and concatenation in the channel dimension to feature interaction, and finally, a convolution layer 
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Figure 2.   The diagram of Swin-Transformer Block.
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with kernel size 3 × 3 and an interpolation layer with a scale_factor of 8 to obtain the final feature mapping. The 
formulation is shown in Eqs. (5) to (8).

where Up2 and Up4 are linear interpolation operations with scale_factor of 2 and 4 respectively. σf  consists of 
two sets of convolutional layers with kernel size 3 × 3, a Batch Normalization layer (BN), and an interpolation 
layer with scale_factor of 8.

Feature fusion module FF.  We propose an FF module to effectively combine the encoded information 
extracted from the Swin-Transformer branch and the U-Net branch, as shown in Fig. 4. The module incor-
porates a multi-modal mechanism and a linear Hadamard product to achieve an interactive fusion of feature 
information. The multi-modal mechanism fuses the features extracted by the U-Net and Transformer branches 
under their respective modalities and feeds the intermediate layer information from each modal output to the 
next layer to emphasize correlation information under different modalities, as shown in the green dashed box in 
Fig. 1. Specifically, we construct four FF modules for fusing feature maps of different sizes. With the exception of 
the first FF module, the remaining three FF modules introduce ff i−1 to achieve feature fusion in different modes. 
The features map extracted from the Swin-Transformer branch sti , i = 2, 3, 4 , the U-Net branch ui , i = 2, 3, 4 and 
the ff i−1, i = 2, 3, 4 obtained from the previous FF are refined using convolution operations to obtain Fsti , Fff i−1

 
and Fui . After that, the features at the same position l  are linearly fused (Hadamard product) to obtain the matrix 
bi . The first FF module incorporates only st1 and u1 . The formulation is shown in Eqs. (9) to (12).
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′
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[
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(
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[
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]
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Figure 3.   The diagram of the Deep Feature Aggregation Decoder DFA.
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where R stands for all real numbers, M,N , P is the number of channels in the feature map, ωi , i = 1, 2, 3, 4 is the 
convolution operation with a convolution kernel of 3 × 3, and φi−1, i = 2, 3, 4 is the max-pooling layer with filter 
size 3 × 3. ⊙ is the linear Hadamard product operation interacting with feature information at a fine granularity. 
Finally, the interaction features bi and attended features sti、ui are concatenated in the channel dimension and 
passed through a residual block to obtain the fused feature representation ff i , i = 1, 2, 3, 4 . The formulation is 
shown in Eq. (13).

The resulting feature ff i effectively captures the global contextual and spatial structure information at the 
current resolution.

Decoder construction.  We pass the multi-scale feature information extracted from the FF module into the 
Decoder via a skip connection, which is structured to recover the details of the image and output the segmen-
tation results. The overall structure is shown in Fig. 5. In order to suppress irrelevant regions and enable more 
fine-grained feature interaction fusion, we use the attention-gated module Att36 to combine the ff i , i = 1, 2, 3 
and the upi , i = 2, 3, 4 recovered by the up-sampling, where up4 is obtained from ff 4 by linear interpolation with 
a scale_factor of 2. In the Att module, we combine the contextual information provided by ff i and the spatially 
detailed information recovered by upi+1 , and map them to the interval {-1,1} by using an activation function to 
obtain the corresponding weights. Then multiply with upi+1 to perform adaptive feature modification to incor-
porate both shallow and deep-level features. The formulation is shown in Eqs. (14) to (15).

Wf  and Wup are linear transformations of ff i and upi+1 using a convolution with kernel size 1 × 1, and then 
activated by the ReLU function to obtain the fused feature Ti . σ is a normalisation function, consisting of a con-
volution with kernel size 1 × 1 and a Batch Normalization (BN) layer. After the combination of the Att module, 
the feature map up1 restores its original resolution by a convolution operation and a linear interpolation operation 
to output the final segmentation map mask . The whole formulation is shown in Eqs. (16) to (17).

where conv consists of 3 groups of convolution units, each consisting of a convolution with kernel size 3 × 3, a 
Batch Normalization (BN) layer, and the ReLU activation function. Up is linear interpolation with a scale_factor 
of 4.
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Figure 4.   The diagram of the feature fusion module, FF.
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Loss function.  The whole network is trained end-to-end, and the loss value between the segmentation result 
and the ground truth label is calculated using a cross-entropy loss function. Our labels are divided into two 
categories, lesion region and background. A pixel-by-pixel comparison of the prediction vector with the ground 
truth such that P(Y = 1) = p, P(Y = 0) = 1− p . where Y = 1, 0  denotes the positive and negative of the label, 
respectively, and the ground truth is known, i.e., p = 0, 1 . The probability prediction of the model is calculated 
by the Softmax function ,  as follows:

where x is the output of the model and Ŷ = 1, 0  denotes positive and negative respectively. The losses of the 
model consist of three parts, the loss Lff  obtained via the decoder, the loss Lst , Lu output by the Swin-transformer 
and the U-Net via the DFA respectively. The segmentation results obtained through network training are Mff  , 
Mst and Mu . The ground truth labels are G , all in the range {0,1}. The loss function is shown in Eq. (18).

The final loss value is obtained by multiplying the three-part loss by the corresponding weights and adding 
them together. The formula for calculating the total loss is shown in Eq. (19).

α,β and γ are the corresponding weights, which are adjustable hyper-parameters, the specific values set by the 
experimental results.

Experiments
Dataset and evaluation metrics.  The gastric cancer images dataset used in this work was from the diges-
tive endoscopy center of General Hospital of the People’s Liberation Army. The study was conducted according 
to the principles of the Declaration of Helsinki and in accordance with current scientific guidelines. Approval 
was given by the Ethics Committee of the Chinese People’s Liberation Army General Hospital, and written 
informed consent was obtained from all subjects and their families.

The acquired gastric cancer images were manually labeled using Labelme software according to the lesion 
region marked by the expert. Some of the poor-quality images were removed to ensure the experiment’s effec-
tiveness, and 630 pairs of original gastric cancer images and corresponding lesion labeled images were finally 
selected, as shown in Fig. 6. The images in this dataset were selected from various angles and brightness and 
at different distances. From 630 pairs of gastric cancer images, 100 pairs of images were randomly selected for 

(18)P
(

Ŷ = 1
)

= 1
1+ex = p̂, P

(

Ŷ = 0
)

= 1− 1
1+ex = 1− p̂

(19)
Li(G, x) = −G log
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1
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)

+ (1− G) log
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)
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Figure 5.   The diagram of the Decoder module.
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testing, and the remaining 530 pairs were used for network training. We resize the images to 224 × 224 to make 
the dataset images of the same size and meet the network training needs. We augment the training set by flip-
ping the images horizontally and vertically, rotating them at any angle, randomizing hue, saturation, brightness 
transformations, panning, and zooming to prevent overfitting due to the small amount of data. The final train-
ing data were selected as 9360 images. From the enhanced training dataset, 5% (468 images) of the images were 
randomly selected to form the validation dataset.

In addition, we conducted experiments on the Kvasir-SEG37 and CVC-ClinicDB38 datasets to evaluate the 
effectiveness and generalization performance of the proposed method in this paper. The Kvasir-SEG dataset is 
the first for gastrointestinal disease identification and contains 1000 images of polyp lesions and their corre-
sponding masks. The CVC-ClinicDB dataset includes 612 high-resolution images from 31 colonoscopies. The 
original images were in "tif " format, which we converted to "png" format. We cropped the images uniformly to 
224 × 224 large to fit the network training requirements and divided the training set, validation set, and test set 
according to the ratio of 8:1:1.

We used the Python and the PyTorch framework to build the experimental environment, and the 
GTX3080GPU device to complete the network training. The experiment set the epoch size to 300, the batchsize to 
16, and the Adam optimizer to update the network weights, setting the Learningrate to 1e−3 and the weightdecay 
to 1e−4 . We used a pre-trained on Image − 1K mode swin_tiny_patchh4_window7_224 to speed up the network 
training. We evaluate the segmentation performance of the proposed method, namely IOU, Dice, Accuracy 
(ACC), Recall (RE), Precision (PR), Specificity (SP) and F1-Score. Evaluation metrics are defined as Eqs. (21) to 
(27). Where TP, TN, FP, and FN show the true positive, true negative, false positive, and false negative samples, 
respectively.

Ablation experiments results.  We use ablation experiments to investigate the effectiveness of the DFA 
module and the fusion Transformer and U-Net approaches. Experiments “U-Net” and “ST” used the origi-
nal U-Net and Swin-Transformer to segment the gastric cancer lesion region. Experiments “U-Net + DFA” and 
“ST + DFA” replaced the decoder part of the U-Net and Swin-Transformer with the DFA module proposed in 
this study to evaluate its effectiveness. Experiment “Fusion + FF” uses the original U-Net and Swin-Transformer 
structures and fuses the feature information output from both using the FF module to verify the effectiveness of 
the fusion approach. Experiment “Ours” is an experiment on the model proposed in this paper. Table 1 shows 
the average and standard deviation of the evaluation metrics for the 100 test images, and Table 2 utilizes the 
“Params” to characterize the number of parameters for each model.

(21)IOU = TP
TP+FP+FN

(22)Dice = 2TP
2TP+FP+FN

(23)Accuracy = TP+TN
TP+FP+TN+FN

(24)Recall = TP
TP+FN

(25)Precision = TP
TP+FP

(26)Specificity = TN
TN+FP

(27)F1− Score = 2× Precision×Recall
Precision+Recall

Figure 6.   The diagram of the dataset.
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As seen in Table 1, the results are the most unsatisfactory when using only the U-Net or the Swin-Transformer 
for image segmentation, with IOU coefficients reaching only 64.1% and 68.5%. We replaced the decoders in 
U-Net and Swin-Transformer with DFA modules, i.e., “UNet + DFA” and “ST + DFA”, in Table 1. The segmentation 
results showed a significant improvement, with the U-Net IOU coefficient reaching 72.9%, an improvement of 
8.8%, and the Swin-Transformer IOU coefficient reaching 73.9%, an improvement of 5.4%. As seen in Table 2, 
the use of the DFA module effectively reduces the number of parameters and decreases the complexity of the 
model compared to the original decoder. After that, we used the FF module to fuse the two branches, the IOU 
coefficient reached 74.5%, a 6% improvement over the best result of both, proving that fusing two branches using 
the FF module yields better segmentation results. Using the FF module and DFA module, the IOU coefficient 
of the fused network reached 81.3%, an improvement of 6.8% compared to the best results above. The best per-
formance in all other evaluation metrics demonstrates the effectiveness of the method proposed in this paper. It 
is further demonstrated that fusing Swin-Transformer and U-Net can produce better segmentation results. The 
segmentation results obtained for several network models are shown in Figs. 7 and 8.

As can be seen from Figs. 7 and 8, the segmentation result of (f) is closer to the ground truth labels, once 
again proving the effectiveness of our proposed method. (e) shows the segmentation results generated by fusing 
Swin-Transformer and U-Net using the FF module. It can be seen that lesion localization is more accurate than 
using only Swin-Transformer, and it also focuses on global information and gives better results in the presence 
of multiple lesions than using only the U-Net. (c) and (d) are the segmentation results obtained by using the 
DFA. It can be seen that the edges are more evident than in (a) and (b) because the RFB module increases the 
receptive field while effectively suppressing interference information. Besides, (b) and (d) are segmentation 
results generated using Swin-Transformer as the backbone. It can be found that the Swin-Transformer archi-
tecture pays attention to discontinuous lesion regions compared to the generated results obtained from (a) and 
(c) using U-Net as the backbone. The result proves that the Transformer is better focused on extracting global 
contextual information and performs better in modeling explicit long-range relations. The direct comparison 
between the ground truth labels and the segmentation results in Fig. 8 provides a more intuitive indication of 
the quality of the segmentation results. It shows that the segmentation results obtained by our proposed model 
are closer to the actual labels.

Comparative experiments results.  In this paper, we also compare our proposed model with several 
previous image segmentation methods, and the average results are shown in Table 3. For a fair comparison, all 
experiments use the same data pre-processing, pretraining parameters, and evaluation metrics. Compared with 
R2U-Net, AttU-Net, PraNet, and DeepLabV3, our IOU indexes improved by 16.8%, 10.4%, 14%, and 4.1%, and 
the other performance indexes were all optimal values. Compared with TransUNet and TransFuse, which also 
use the combination of CNNs and Transformers, the IOU indexes improved by 6.7% and 6.8%, which proves 
that our proposed method is more effective for gastric cancer lesion segmentation. The histogram in Fig.  9 
provides a more precise visual comparison of the results of our model with those of other leading models. Fig-
ure 10 shows the segmentation results obtained by each model on our dataset. The combination of Figs. 9 and 
10 again demonstrates that our model performs well in lesion segmentation of gastric cancer images, yielding 
high-quality segmentation results with the best segmentation performance.

Validation experiments on public datasets.  In our work, we also conducted experiments on the Kva-
sir-SEG and CVC-ClinicDB datasets to evaluate the generalization performance of the models. All experiments 
use the same experimental environment, data pre-processing methods, and pre-training parameters. We used 
IOU, Dice, ACC, RE, and PR to evaluate the experimental results, and the average results are shown in Table 4.

As can be seen from Table 4, on the Kvasir-SEG dataset, the best performing IOU and Dice coefficients are 
PraNet, but our model differs from it by only 1.2% and 0.04%; the best recall is DeepLabV3, and we differ from 

Table 1.   Comparison of ablation experiment results. *“ST” indicates the Swin-Transformer model, and 
“Fusion” indicates the fusion of two branches, “ DFA ” is the deep feature aggregation decoder, and “FF” is the 
feature fusion module. Bold characters indicate the best performance.

Method IOU Dice ACC​ RE PR SP F1-Score

U-Net 0.641 ± 0.140 0.778 ± 0.097 0.876 ± 0.045 0.762 ± 0.163 0.848 ± 0.209 0.851 ± 0.078 0.803 ± 0.114

ST 0.685 ± 0.117 0.810 ± 0.054 0.893 ± 0.011 0.799 ± 0.136 0.827 ± 0.073 0.931 ± 0.029 0.810 ± 0.042

U-Net + DFA 0.729 ± 0.109 0.841 ± 0.083 0.909 ± 0.031 0.833 ± 0.142 0.854 ± 0.081 0.939 ± 0.053 0.843 ± 0.087

ST + DFA 0.739 ± 0.111 0.847 ± 0.046 0.912 ± 0.012 0.832 ± 0.101 0.866 ± 0.056 0.943 ± 0.023 0.849 ± 0.049

Fusion + FF 0.745 ± 0.083 0.854 ± 0.035 0.916 ± 0.017 0.856 ± 0.071 0.847 ± 0.051 0.936 ± 0.019 0.852 ± 0.028

Ours 0.813 ± 0.075 0.895 ± 0.032 0.940 ± 0.011 0.888 ± 0.066 0.907 ± 0.042 0.962 ± 0.008 0.897 ± 0.022

Table 2.   Comparison of model parametric quantities.

U-Net ST U-Net + DFA ST + DFA Fusion + FF Ours

Params 17.27 M 28 M 12.20 M 21.97 M 57.09 M 53.90 M
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it by only 0.6%, and our proposed model is the optimal performance in terms of ACC and PR indexes. On the 
CVC-ClinicDB dataset, our proposed model achieves IOU and ACC of 85.1% and 98.5%, optimal values; Dice 
of 89.3%, which differs from the best-performing TransUnet by 1.6%; Re and PR differ from the best-performing 
model by 2.9% and 1.3%. The experimental results show that our model performs well on the publicly avail-
able colon polyp dataset, further demonstrating the excellent generalization performance of the model for the 
segmentation of other endoscopic lesion regions. Figure 11 shows the segmentation results obtained for each 
model on the Kvasir-SEG and CVC-ClinicDB datasets that overlap with the ground truth labels. Red represents 
the ground truth label, yellow represents the predicted result, and the intersection of both is green. The results 
show that our proposed model is close to the actual segmentation results and produces high-quality results.

Discussion
The total loss function L = α · Lff + β · Lst + γ ·Lu , and the weights α,β and  γ of its three parts need to be 
determined by the experimental results. α,β and  γ  range between [0, 1], and α + β + γ = 1. In Table 1, we 
have experimentally confirmed that the segmentation results obtained by fusing Swin-transformer and U-Net 
are satisfactory, and that the segmentation results obtained by using only Swin-Transformer are better than 
those obtained by using only U-Net. Therefore, on the initial value setting, we define α = 0.5,β = 0.3, γ = 0.2.

Table 5 shows that α = 0.5,β = 0.2, γ = 0.3 give the best results. It can be found from the experiments that 
increasing the U-Net loss weights gives better results than increasing the Swin-Transformer loss weights, which 
is contrary to our proposed hypothesis. However, Table 1 shows that “U-Net + DFA” is 8.8% better than the U-Net 
segmentation, “ST + DFA” is 5.4% better than the Swin-Transformer segmentation, and “ST + DFA” is only 0.1% 
better than “U-Net + DFA”. The result demonstrates that the DFA module impacts on the segmentation results 
and works more effectively than the U-Net in dealing with the gastric cancer image segmentation problem. 
Therefore, in our experiments, we set α = 0.5,β = 0.2, γ = 0.3.

For a more concrete visualization of the entire area of interest of the model, a heat map was created using 
Grad-CAM visualization. Grad-CAM43 uses the network back propagation gradient to calculate the weights of 
each channel of the feature map to obtain the heat map. Our model focuses on the regions of interest for feature 
layers down_1 to down_4 , which use the FF module for feature fusion during down-sampling, and feature layers 
up_1 to up_3 , which recover resolution during up-sampling. The blue and red colors on Grad-CAM indicate 
lower and higher activation values, respectively. The specific visualization results are shown in Fig. 12. The 
down-sampling process gradually focuses the network from low-level to high-level semantic features and can 
pinpoint the location of the lesion. During up-sampling to recover resolution, the model further incorporates 
low-level semantic features passed through the skip connection to make accurate predictions about the location 

Figure 7.   Segmentation result of gastric cancer images. Image is the original gastric image; Label is the 
ground truth label; (a) to (e) correspond to the lesion segmentation results obtained from the “U-Net”, “ST”, 
“UNet + DFA”, “ST + DFA” and “Fusion + FF” in Table 1, respectively. Where (f) is the segmentation result 
obtained from the model proposed in this paper.
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of the lesion. Using Grad-CAM to visualize the whole process once again proves that our segmentation model 
can produce more accurate segmentation results.

Conclusions
In this paper, we proposed a Dual-Branch Hybrid Network that effectively fuses the Swin-Transformer and the 
U-Net for lesion segmentation of gastric cancer images. We built the Deep Feature Aggregation Decoder DFA 
to replace the original decoder structure of the network, effectively reducing the complexity of the model and 
pinpointing the lesion regions. Besides, we used the FF module to fuse the advantageous features extracted by 
the U-Net and Transformer, compensating for the lack of global contextual information obtained by the former 
and the inadequate capture of spatially detailed information in the latter. Our experiments also demonstrated 
that the FF and DFA modules positively affect the segmentation results. We computed a three-part loss to 
iteratively train the network, making the segmentation results closer to the ground truth labels. In addition, the 
region of interest for the entire network model was visualized using Grad-CAM, reflecting side by side that our 

Figure 8.   Comparison of true labels and segmentation results. Red represents the ground truth label, yellow 
represents the predicted result, and the intersection of both is green.

Table 3.   Comparative experimental results with other methods. *Bold characters indicate the best 
performance.

Method IOU Dice ACC​ RE PR SP F1-Score

U-Net8 0.641 ± 0.140 0.778 ± 0.097 0.876 ± 0.045 0.762 ± 0.163 0.848 ± 0.209 0.851 ± 0.078 0.803 ± 0.114

R2U-Net39 0.645 ± 0.185 0.779 ± 0.101 0.881 ± 0.046 0.759 ± 0.189 0.852 ± 0.141 0.883 ± 0.066 0.804 ± 0.109

AttU-Net40 0.709 ± 0.134 0.828 ± 0.071 0.900 ± 0.021 0.832 ± 0.073 0.831 ± 0.123 0.931 ± 0.030 0.831 ± 0.049

PraNet41 0.673 ± 0.171 0.801 ± 0.107 0.852 ± 0.057 0.789 ± 0.176 0.831 ± 0.135 0.853 ± 0.075 0.809 ± 0.108

DeepLabV342 0.772 ± 0.083 0.869 ± 0.035 0.927 ± 0.017 0.870 ± 0.085 0.871 ± 0.051 0.946 ± 0.019 0.870 ± 0.028

TransFuse17 0.746 ± 0.077 0.855 ± 0.033 0.902 ± 0.010 0.871 ± 0.087 0.891 ± 0.070 0.882 ± 0.021 0.880 ± 0.065

TransUnet18 0.745 ± 0.082 0.852 ± 0.031 0.915 ± 0.016 0.849 ± 0.091 0.858 ± 0.056 0.940 ± 0.018 0.852 ± 0.035

Ours 0.813 ± 0.075 0.895 ± 0.032 0.940 ± 0.011 0.888 ± 0.066 0.907 ± 0.042 0.962 ± 0.008 0.897 ± 0.022
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segmentation network is realistic and practical. Performance indicators showed that our model achieves a very 
satisfactory 81.3% IOU, 89.5% Dice, and 94.0% accuracy in the segmentation of the lesion region, achieving 
optimal results in several evaluation metrics and outperforming existing segmentation models. The result of the 
model was closer to the manual segmentation standard for lesions in gastric cancer images. Our experimental 
results show that the IOU can still be further improved. In the image segmentation task, the fuzzy labeling of the 
lesion boundary region with the background region leads to a poor learning ability of the model at the bound-
ary location, which explains the relatively low IOU. In future work, we will improve the IOU by enhancing the 
ability to extract features from boundary regions. Meanwhile, we need to improve generalization performance 
to promote it in other medical segmentation domains.

Figure 9.   Comparison results of evaluation indicators.

Figure 10.   Segmentation results compared with other models.
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Table 4.   Experimental results in comparison with other algorithms. *Bold characters indicate the best 
performance.

Method IOU Dice ACC​ RE PR

Kvasir-SEG

 U-Net 0.749 0.821 0.923 0.817 0.825

 U-Net +  +  0.752 0.825 0.927 0.824 0.831

 DeepLabV3 0.801 0.876 0.956 0.923 0.841

 PraNet 0.835 0.896 0.973 0.915 0.885

 TransFuse 0.784 0.873 0.957 0.898 0.862

 TransUnet 0.796 0.884 0.962 0.905 0.873

 Ours 0.823 0.892 0.975 0.917 0.909

CVC-ClinicDB

 U-Net 0.727 0.825 0.923 0.827 0.831

 U-Net +  +  0.734 0.837 0.935 0.841 0.827

 DeepLabV3 0.748 0.849 0.968 0.879 0.836

 PraNet 0.849 0.899 0.982 0.936 0.896

 TransFuse 0.765 0.852 0.978 0.885 0.843

 TransUnet 0.837 0.909 0.979 0.895 0.874

 Ours 0.851 0.893 0.985 0.907 0.889

Figure 11.   Comparison of the ground truth labels and segmentation results of the colon polyp datasets.
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Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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