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Identification of diagnostic 
biomarks and immune cell 
infiltration in ulcerative colitis
Qin Chen  1,4*, Shaosheng Bei 2,4, Zhiyun Zhang 1, Xiaofeng Wang 3 & Yunying Zhu 1

We aimed to explore diagnostic biomarks and immune cell infiltration characteristics in ulcerative 
colitis (UC). We used the dataset GSE38713 as the training set and dataset GSE94648 as the test set. 
A total of 402 differentially expressed genes (DEGs) were obtained from GSE38713. Annotating, 
visualizing, and integrating discovery of these differential genes was performed using Gene Ontology 
(GO), Kyoto Gene and Genome Encyclopedia Pathway (KEGG), and Gene Set Enrichment Analysis 
(GSEA). Protein–protein interaction networks were constructed from the STRING database, and 
protein functional modules were identified using the CytoHubba plugin of Cytoscape. Random forest 
and LASSO regression were used to screen for UC-related diagnostic markers, and ROC curves were 
generated to validate their diagnostic value. The composition of 22 immune cells was analyzed, and 
the immune cell infiltration in UC was analyzed using CIBERSORT. Results: Seven diagnostic markers 
associated with UC were identified: TLCD3A, KLF9, EFNA1, NAAA,WDR4, CKAP4, and CHRNA1. 
Immune cell infiltration assessment revealed that macrophages M1, activated dendritic cells, and 
neutrophil cells infiltrated relatively more compared to normal control samples. Our results suggest a 
new functional feature of UC and suggest potential biomarkers for UC through comprehensive analysis 
of integrated gene expression data.

Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease of the intestine, that is characterized by 
persistent or recurrent abdominal pain, diarrhea, and mucopurulent stools. The incidence and prevalence of UC 
are increasing worldwide1, thus increasing the medical and economic burden on society. Therefore, the explora-
tion of diagnostic biomarkers and therapeutic targets has become a focal issue for improving the prognosis of UC.

The etiology and pathogenesis of UC are still unclear, and current research suggests that it is mainly caused by 
the interaction of genetic susceptibility, epithelial barrier defects, immune system dysfunction, and environmental 
factors2,3. Among all the factors, an impaired immune response plays an important role in the development and 
progression of UC4. Both innate and adaptive immunity have been shown to play important roles in intestinal 
inflammation5. When the tolerance mechanisms of the intestinal barrier fail, local immune cells are stimulated, 
resulting in production of chemokines and subsequent infiltration of immune cells. Thus, the inflammatory 
process is further exacerbated4. Studies have shown that the cytokines interleukin (IL)-13, TNF, IL-23, IL-9, 
and IL-36 promote inflammatory immune cell infiltration and are important in the pathogenesis of UC6. Dif-
ferent types of immune cells, whether in an activated or inactivated state, can modulate the immune response 
by inhibiting, maintaining, or promoting the development of UC7.

With the completion of the Human Genome Project, histological technologies, mainly high-throughput 
microarray analysis and bioinformatics analysis, have provided reliable technical support for studying the patho-
logical mechanisms of complex diseases8. Several relevant studies have used microarray analysis to show the 
involvement of differentially expressed genes (DEGs) in biological functions and pathways contributing to the 
development of UC, as well as potential biomarkers that are immunologically relevant to patients with UC9,10. 
However, the biomarkers that have been identified are still less accurate in the diagnosis and prognosis of UC, 
mainly due to the complexity of UC pathogenesis. Different microarray platforms and small sample sizes may 
have led to inconsistent results in these studies. Further comprehensive analyses are necessary to identify new, 
more reliable diagnostic biomarkers and therapeutic targets to overcome these inconsistencies.
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Therefore, in the current study, we screened DEGs in UG samples using microarray sequencing of UC from 
the Gene Expression Omnibus (GEO) database, which included 30 UC patients and 13 normal controls and 
performed functional enrichment analysis of Gene Ontology (GO), Kyoto Gene and Genome Encyclopedia 
Pathway (KEGG), and Gene Set Enrichment Analysis (GSEA), and constructed a protein–protein interaction 
(PPI) network to explore important protein action modules, while random forest and LASSO regression were 
used to screen for the diagnostic markers of UC. We also used another dataset for ROC validation, and used 
CIBERSORT11 to calculate its immune cell composition and analyze its correlation with UC. We assessed the 
immune cell infiltration in UC, which provides new ideas for further research on the molecular mechanism 
underlying UC pathogenesis.

Materials and methods
Data download and pre‑processing.  UC expression profiles with reliable sample sources were down-
loaded from the GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) database using the GEOquery package12of the R 
software (version 3.6.5, http://r-​proje​ct.​org/). The dataset GSE3871313 and GSE9464814 with samples from Homo 
sapiens and platforms based on GPL570 and GPL19109 [HG-U133_Plus_2] Affymetrix Human Genome U133 
Plus 2.0 Array were used. The GSE38713 dataset included 30 UC patient samples and 13 normal samples and 
GSE94648 dataset included 25 UC patient samples and 22 normal samples, both of which were included in this 
study (Table 1). The raw data of the GSE38713 and GSE94648 datasets were read using the affy package15; RMA 
background correction, and data normalization were performed to obtain the gene expression matrices of the 
two datasets. HUGO Gene Nomenclature Committee (HGNC)16 is responsible for providing a unique, stand-
ardized and widely disseminated symbol for all genes on the human genome including protein-coding genes, 
non-coding RNA genes, methyl genes and other genes; for each human gene, mRNA expression profiles were 
obtained using the HGNC mRNA gene annotation file.

Identification of DEGs.  We used GSE38713 as the training set and GSE94648 as the test set. The GSE38713 
dataset was screened for differentially expressed genes (DEGs) using the limma package17,and the volcano plot 
of DEGs was plotted using the ggplot218 package. Criterion for selection was adj. p value < 0.05, and | log2FC|> 1. 
Around 402 genes were found to be differentially expressed.

PPI Network Analysis and Identification of Key Genes.  The STRING19 database searches were used 
to identify interactions between known proteins and predicted proteins. We used the DEGs obtained from dif-
ferential expression analysis and put them into the STRING database to obtain their protein interaction net-
works, and then put the networks into Cytoscape20 software to identify the genes that interact more strongly with 
other genes and visualize them. Using the MCODE21 plugin to identify its sub-networks and based on the score, 
the three highest-rated sub-networks were obtained, which we believed may serve a specific function.

Functional enrichment analysis.  GO22 is a database established by the Gene Ontology Consortium to 
create a semantic vocabulary standard for qualifying and describing gene and protein functions for a wide range 
of species that can be updated as research progresses. GO annotations are divided into three broad categories: 
molecular function (MF), biological process (BP), and cellular components (CC). KEGG23–25 is a comprehensive 
database that integrates genomic, chemical, and systemic functional information. KEGG database specifically 
stores information about gene pathways in different species. Metascape26 is a web tool that provides a variety 
of functions such as gene enrichment analysis and protein interaction network analysis. The website integrates 
more than 40 gene function annotation databases and provides diverse visualizations. We used Metascape to 
perform GO/KEGG functional enrichment analysis of differentially expressed genes, selecting functions with 
p < 0.01, minimum count of 3, and enrichment factor > 1.5. We also used the R package Pathview27 to visualize 
the more important pathways in KEGG and R package ggplot2 to visualize the more important functions in GO.

GSEA functional enrichment analysis.  GSEA28 is based on the idea of using predefined gene sets (usu-
ally from functional annotations or results of previous experiments) to rank genes according to their differential 
expression in two types of samples, and then testing whether the predefined set of genes is enriched at the top 
or bottom of the ranking table. We used the clusterProfiler package29 to analyze the gene expression profile of 
GSE38713 using the GSEA method, selecting "c2.cp.kegg.v7.4.symbols.gmt" and "c5.go.bp.v7.4.symbols.gmt" as 
the reference gene set30 , and p < 0.05 was considered significantly enriched.

Random Forest identification for signature genes.  For the 402 differentially expressed genes 
obtained, the RandomForest package was used to filter the feature genes. RandomForest31 package in R was used 
to construct a random forest for the 402 differentially expressed genes. The larger the Gini coefficient, the better 
the classification, and the larger the decrease in the Gini value when selecting a certain point, the better the clas-

Table1.   Related information of dataset Platform (Affymetrix Human Genome U133 Plus 2.0 Array).

Dataset Patient Control

GSE38713 30 13

GSE94648 25 22

https://www.ncbi.nlm.nih.gov/geo/
http://r-project.org/
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sification. The parameter MeanDecreaseGini30 is the average decreasing GINI value, the more it decreases, the 
better the classification effect of this node. This node is chosen as the classification node, that is, the node with 
the largest GINI value as the classification node. The first 2/3 nodes with the best classification effect (keeping the 
largest MeanDecreaseGini and removing the first 1/3 nodes with small ones) were selected, and the nodes with 
poor classification effect were removed. Finally, a total of six rounds were screened to obtain 54 feature genes that 
contributed more to the classification.

Identification and validation of diagnostic markers.  LASSO is a shrinkage estimation method that 
allows variable selection by constructing a penalty function that can compress the coefficients of variables and 
make regression coefficients zero. We used the LASSO regression algorithm for feature selection to screen for 
diagnostic markers of UC based on feature genes obtained from random forest. The GSE94648 dataset was used 
as a test set to validate the diagnostic efficacy of the obtained diagnostic markers, and use GEPIA232 to analyze 
the prognosis of the obtained diagnostic markers and UC-related Colorectal Cancer (CRC) in the TCGA data-
base.

Immune cell infiltration analysis.  CIBERSORT11 is based on the principle of linear support vector 
regression to deconvolute the transcriptome expression matrix and to estimate the composition and abundance 
of immune cells in a mixture of cells33. We downloaded the original code and the corresponding immune cell 
files from the CIBERSORT official website and derived the immune cell infiltration matrix in R based on the 
gene expression profile of GSE38713 and the immune cell files. We used the corrplot package34 to plot correla-
tion heat maps and visualize the correlation of the 22 immune cell infiltrates. The ggplot2 package was used to 
plot box line plots for visualizing the differences between the infiltration of 22 immune cells; igraph package35 
was used to plot correlation network plots of immune cell infiltrates for visualizing the interactions of the 22 
immune cell infiltrates, and p < 0.05, |correlation coefficient > 0.4) were used as the criteria for interactions. We 
correlated the obtained diagnostic markers with immune cell infiltrates and then visualized the results using the 
pheatmap36 package.

Results
Data download and pre‑processing.  The data analysis process is illustrated in Fig. 1. First, the gene 
expression matrices from the GEO official website GSE38713 and GSE94648 datasets (Table 1) were normalized 
and processed based on the RMA method using the affy package. The two datasets were found to be more suit-
able for analysis since they had more positive data (Fig. 2). The protein gene annotation files were downloaded 
from HGNC, and 16,930 mRNAs were obtained after matching.

DEG Analysis.  After data preprocessing, we performed differential expression analysis on the GSE38713 
expression matrix using the R package limma, with |logFC| > 1 and adj. p value < 0.05 as the threshold screen-
ing, and a total of 402 DEGs, 242 upregulated genes, and 160 downregulated genes were extracted from the 
gene expression matrix. The distribution of DEGs is shown in the volcano plot (Fig. 3A). We then performed 
a hierarchical clustering analysis of the 402 DEGs in GSE38713 and GSE94648, and found that the majority of 

Figure 1.   Flow chart of data analysis.
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disease samples were clustered into one category and normal samples were clustered into a different category 
(Fig. 3B,C).

PPI Network Analysis and Identification of Key Genes.  We placed the 402 DEGs into the STRING 
database to obtain their PPI networks (Fig. 4A), and the PPI networks were placed into Cytoscape to identify and 
visualize important genes with strong interactions with other genes (Fig. 4B). The MCODE plug-in was used to 
identify the three sub-networks with the highest scores (Fig. 4C–E) (tableS2-Supplement 1).

Functional enrichment analysis.  We first performed a functional enrichment analysis of DEGs using 
Metascape to screen for function at p < 0.01, a minimum count of 3, and an enrichment factor > 1. 5. The DEGs 
were mainly associated with extracellular matrix organization, inflammatory response, humoral immune 
response, apical part of cell, external encapsulating structure, carboxylic acid transmembrane transporter activ-
ity, protein digestion and absorption, ECM-receptor interaction, complement and coagulation cascades, and 
PI3K-Akt signaling pathway (Fig. 5) (tableS3-Supplement 2). The detailed enrichment results are shown in Sup-
plement 3.

GSEA functional enrichment analysis.  We first downloaded the gene sets "c2.cp.kegg.v7.4.symbols.
gmt" and "c5.go.bp.v7.4.symbols.gmt." The GSEA function in the clusterProfiler package was used to enrich 
the GSE38713 expression profile with "c2.cp.kegg.v7.4.symbols.gmt" and "c5.go.bp.v7.4.symbols.gmt" as refer-
ence gene sets30 (these two are more commonly used in functional enrichment). We used p value < 0.05 as the 

Figure 2.   Data box plots. (A) GSE38713 uncorrected box plot; (B) GSE38713 corrected box plot; (C) GSE94648 
uncorrected box plot; (D) GSE94648 corrected box plot. Blue represents normal samples, red represents disease 
samples.
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threshold to screen for differential functions. The results of KEGG and GO enrichments are shown in Fig. 6 
(Table 4-Supplement 4) The main enrichments in GO BP were: Divalent inorganic cation homeostasis, regula-
tion of body fluid levels, positive regulation of MAPK cascade. The main enrichments in KEGG were: cytokine 
receptor interaction, focal adhesion, chemokine signaling pathway, among others. The detailed enrichment 
results are shown in Supplement 5.

Random Forest and LASSO Identification for Diagnostic Markers.  A total of 402 DEGs were 
obtained from the gene expression matrix, and these 402 DEGs were used to construct a random forest. The top 
2/3 nodes with the best classification effect were selected (keeping the largest MeanDecreaseGini and removing 
the top 1/3 nodes with small ones), and the poorly classified nodes were removed. We screened a total of six 
rounds and obtained 54 important genes. We then used the LASSO regression algorithm to identify seven diag-
nostic markers associated with UC, namely TLCD3A, KLF9, EFNA1, NAAA,WDR4, CKAP4, and CHRNA1, 
from the important genes obtained (Fig. 7A). The single gene ROC analysis using the expression values of the 
seven diagnostic markers in GSE38713 and GSE94648 revealed that the AUC values of all diagnostic markers 
in GSE38713 were greater than 0.9 (Fig. 7B,C). Good diagnostic values were also demonstrated in GSE94648 
(Fig. 7D,E), with most genes having AUC values above 0.65. We then performed a hierarchical clustering analy-
sis using these seven genes in GSE38713 and GSE94648 (Fig. 7H,I); the samples in both datasets were clustered 
into two categories, with one category clustering most of the normal samples and one category clustering most 

Figure 3.   Volcano and Heat map. (A) Volcano map of GSE38713 DEGs, red represents up-regulated differential 
genes, blue represents down-regulated differential genes, and gray represents no differential genes; (B) heat map 
of GSE38713 clusters; (C) heat map of GSE94648 clusters. Yellow represents the control group; blue represents 
the UC group.
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of the disease samples. We then inserted these seven genes into GEPIA2 and found that NAAA and CHRNA1 
had a significant effect on the survival prognosis of UC-associated CRC (Fig. 7F,G).

Immune Cell Infiltration Analysis and its Correlation with Diagnostic Markers.  The results of 
interactions of 22 immune cells (Fig. 8A) showed that follicular helper T cells had the strongest interactions with 
other immune cells, while resting mast cells, monocytes, macrophages, M0, and T cells had weaker interactions 
with other immune cells. The results of the correlation heat map of 22 immune cells showed (Fig. 8B) that T cells 
CD4 memory resting, dendritic cells activated, neutrophil, M1 macrophages, T cells gamma delta, and mast cells 
resting showed a significant negative correlation with follicular helper T cells, activated mast cell, dendritic cells 
resting; monocytes showed a significant negative correlation with monocytes and showed a significant positive 
correlation with macrophages M0; activated dendritic cells showed a significant positive correlation with mac-
rophages M0, neutrophils, and T cells follicular helper cells, whereas showed a significant negative correlation 
with T cells CD4 memory resting. The box line plot of immune cell infiltration differences (Fig. 8C) showed 
that macrophages M1, activated dendritic cells, and neutrophil cells infiltrated relatively more, while NK cells 
activated cells infiltrated relatively less, compared with normal control samples. The results of the correlation 
analysis (Fig. 8D) showed that immune cells were clustered into two categories: macrophages M2, B cells naïve, 
NK cells resting, T cells regulatory, NK cells activated, T cells CD4 memory resting, eosinophils, T cells CD8, and 
resting mast cells showed a significant positive correlation with CKAP4, TLCD3A, WDR4 and a negative cor-
relation with KLF9, EFNA1, NAA, and CHRNA1, while the rest of the immune cells showed the opposite trend.

Discussion
Ulcerative colitis (UC) is a refractory disease characterized by a long duration, recurrence, and difficulty in 
healing37. The exact pathogenesis of this disease remains unknown. However, understanding the pathology 
of UC and underlying molecular mechanisms is essential for its clinical diagnosis and treatment. The use of 
efficient genome-wide gene expression microarray data and bioinformatics analysis can help us understand 
the molecular mechanisms of disease onset and progression, and is necessary for the identification of potential 
diagnostic biomarkers. To date, relevant reports have been published in terms of immune infiltration. Xiu et al.9 
by raw letter analysis has predicted central genes, namely CDC42, POLR2A, RAC1, PIK3R1, MAPK1, and SRC, 
that have important roles in the pathological differences between children and adults with UC as well as immune 
cells, namely B cells, T cells, monocytes, macrophages, and mast cells, which may be potential biomarkers for 
the diagnosis and treatment of UC. Xue et al.10 showed that DPP10, S100P, AMPD1, and ASS1 may serve as 

Figure 4.   Protein–protein interaction (PPI) network analysis. (A) PPI network obtained from STRING 
database; (B) network analysis and visualization using Network Analyzer in Cytoscape; (C–E) the three highest 
rated word networks identified with the MCODE plugin, which were considered as the three more important 
functional modules.
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diagnostic biomarkers for UC and that differentially infiltrating immune cells may help indicate the progression 
of UC. Zhu et al.38 revealed that immunity and infection are the two most important factors in the pathogenesis 

Figure 5.   Functional enrichment analysis of differentially expressed genes. (A) Network diagram of top 20 GO 
enrichment functions, with cluster IDs to indicate color, each node is an enriched term; (B) network diagram of 
top 20 KEGG enrichment functions, with cluster IDs to indicate color; (C) barplot of GO enrichment functions, 
the length of the function bar is shown by p value; (D) dotplot of top 20 KEGG enrichment results; (E) pathway 
map of Protein digestion and absorption; (F) pathway map of Complement and coagulation cascades.
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of UC; in this study, we used microarray-based bioinformatics analysis to explore the gene expression profile and 
pathogenesis of UC. To avoid a high false positive rate and one-sided results, we selected two gene microarray 
datasets (GSE38713 and GSE94648) for comprehensive analysis. We screened differential genes by performing 
GO, KEGG, GESA, and PPI analysis; used random forest and LASSO regression to screen for diagnostic markers; 
and used CIBERSORT to screen for immune cells associated with UC.

We used the dataset GSE38713 as the training set and GSE94648 as the validation set, and identified 402 
DEGs, 242 upregulated genes and 160 downregulated genes in the dataset GSE38713. PPI network analysis of 
the obtained differential genes yielded three important sub-networks, and we suggest that these three mod-
ules may play a special role in the pathogenesis of UC. The largest of these subnetworks is dominated by the 
chemokine family, including CXCL1, CXCL3, CXCL5, CXCL6, CXCL9, CXCL10, CXCL11, and the chemokine 
receptor CXCR2, a large class of peptides that play a key role in the regulation of inflammation39. Chemokines 
are classified into the four families C, CC, CXC, and CX3C, according to the number and arrangement of their 
N-terminal cysteine residues; the CC subfamily mainly recruits lymphocytes and dendritic cells, and the CXC 
subfamily mainly recruits neutrophils and monocytes. Chemokines can chemotacticize leukocytes to participate 
in immune and inflammatory responses40,41. Blocking chemokines or their receptors significantly reduced intes-
tinal inflammation and mucosal damage in animals with UC, suggesting that chemokines play a key role in the 
pathogenesis of UC42. CXCL1 upregulates and recruits circulating white blood cells, allowing the inflammation 
cycle to continue. Relevant studies have shown that CXCL1 is significantly upregulated in the colon tissues of 
UC patients and rats, and may be a potential biomarker of UC tissue biopsy39,43,44. CXCL9 is a small cytokine 
called MIG, which serves as a chemoattractant for T cells induced by IFN-γ. Serum CXCL9 level is related to UC 
disease activity, and its expression increases in patients with UC and UC mouse models. Thus, it may become a 
marker of patient response to treatment45,46.Animal studies have reported that CXCL10 inhibits the proliferation 
of intestinal epithelial cells and regulates the proliferation of crypt cells during acute colitis in mice, making it a 
new therapeutic target for inflammatory bowel disease47. CXCR2 plays a key role in the pathogenesis of UC by 
regulating the immune response of neutrophils. Blocking CXCR2 can improve DSS-induced intestinal mucosal 
inflammation in mice, and CXCR2 can be used as a new target for UC drug therapy48,49.

The second subnetwork is dominated by the matrix metalloproteinase family, including MMP1, MMP2, 
MMP3, MMP7, MMP10, and MMP9( in the third subnetwork), and its associated matrix metalloprotein inhibi-
tor TIMP1. UC lesions are strongly associated with excessive ECM degradation. Matrix metalloproteinases 
(MMPs) can degrade proteins in the (ECM) and have an important role in ulceration and tissue remodeling50,51. 
Increased levels of MMP1 and MMP2 have been shown to play a major role in degradation of the intestinal 
matrix52. Both protein and mRNA levels of MMP-2 and MMP9 were significantly increased in inflammatory 
bowel disease tissues, with the highest expression levels in severely inflamed tissues53. MMP9 activates myosin 
light chain kinase (MLCK) to impair colonic epithelial permeability and plays an important role in enhanc-
ing the degree of inflammation54. Upregulation of intestinal mucosal MMP9 expression in patients with UC 
correlates with severity, and its increase suggests severe mucosal damage in active UC55. MMP3 is produced 
by mesenchymal cells and immune cells in the lamina propria. Some studies have reported serum MMP3 as a 
potential biomarker for endoscopic and histological activity of UC56.The primary cellular source of MMP7 in 
patients with active UC is most likely leukocytes57. In UC, MMP7 was found to be expressed in epithelial cells at 

Figure 6.   GSEA function enrichment analysis, (A–C) the top 3 GSEA enrich plots of enriched KEGG.D-F. The 
top 3 GSEA enrich plots of enriched GO. (A) KEGG_cytokine cytokine receptor interaction; (B) KEGG_focal 
adhesion; (C) KEGG_ chemokine signaling pathway. (D) GOBP_divalent inorganic cation homeostasis; (E) 
GOBP_regulation of body fluid levels; F. GOBP_ positive regulation of MAPK cascade.
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Figure 7.   Identification, validation and prognostic analysis of diagnostic markers. (A) LASSO logistic 
regression algorithm for screening diagnostic markers; (B–E) ROC curves of diagnostic markers in GSE38713 
and GSE94648; (F,G) GEPIA2 database showing the impact of NAAA and CHRNA1 on survival prognosis 
of UC-associated colorectal cancer; (H,I) Hierarchical clustering of diagnostic markers for GSE38713 and 
GSE94648. Normal samples are in yellow and disease samples are in blue.
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the ulcer margin, developmental abnormalities, and transformed cells, and its expression was correlated with the 
degree of endoscopic inflammation58. Tissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of 
MMPs, which in turn are a group of secreted glycoproteins that are widely found in tissues and body59. TIMP-1 
is one of the four isoforms of TIMPs and mainly inhibits MMP1, MMP3, and MMP9 activities60. MMP-1 mRNA, 
TIMP-1 mRNA, and MMP-1 mRNA/TIMP-1 mRNA ratio in the diseased colonic mucosa of patients with UC 
can be used as biomarkers to determine the severity of the patients’ clinical symptoms61. As shown by GO and 
KEGG analysis of DEGs, in the BP annotation of GO, extracellular matrix organization, inflammatory response, 
humoral immune response; in the CC annotation of GO, extracellular matrix; and in the MF annotation of GO, 
extracellular matrix structural components and CXCR chemokine receptor binding were significantly associated 
with the occurrence and development of UC.

Inflammation is an important pathological response in UC pathogenesis. Pathologically, inflammation occurs 
in the lining of the colon and rectum, and is manifested by infiltration of neutrophils, macrophages, lymphocytes, 
and mast cells. Intestinal inflammation further destroys the mucosa and submucosa, eventually leading to intes-
tinal ulceration62. ECM constitutes the framework structure for cell survival and affects the basic life activities 
of cells, and its components are in dynamic balance; imbalance will cause various pathological changes, such 
as ulcer formation63. Degradation of ECM is involved in the pathological development of UC, and quantitative 
changes in its component composition and structure play an important role in the pathogenesis of inflamma-
tory bowel disease64,65.The pathogenesis of UC is related to immunological abnormalities, and various factors 
involved in the immune system may be directly or indirectly associated with UC66. Generally, immune responses 
are divided into cellular and humoral immune responses according to different effectors67. Chemokine receptors 
are a class of G protein-coupled receptors that play an important role in inflammatory cells of injured or infected 
organs. Chemokine receptor expression is upregulated during the active phase of UC68.In KEGG, among the 
important pathways of enrichment, complement and coagulation cascades, chemokine signaling pathway, IL-17 
signaling pathway, and ECM-receptor interaction were significantly enriched, which is consistent with previous 
studies44,69,70. In our study, the PI3K-Akt signaling pathway was enriched with the highest number of genes. The 
PI3K/AKT signaling pathway is closely related to the regulation of cytokines and plays an important role in the 
process of intestinal inflammation, which can lead to dysregulation of the inflammatory response71. In UC, UC-
associated colon carcinogenesis can be induced by upregulating the PI3K/Akt signaling pathway. When this path-
way is blocked, the activation of nuclear factor kappa B (NF-κB) is inhibited, and cytokine release is reduced72,73.

Figure 8.   Visualization of immune cell infiltration and its correlation analysis with diagnostic markers. (A) 
Interaction plot of 22 immune cell infiltrations; circle size represents the strength of interactions with other 
immune cells, the larger the circle, the stronger the interactions with other immune cells. (B) Correlation heat 
map of 22 immune cell infiltrations; blue indicates positive correlation, red indicates negative correlation, the 
darker the color, the stronger the correlation. (C) Box line plot of 22 immune cell infiltrations, red represents UC 
group, blue represents control group. Box line plot of the proportion of 22 immune cell infiltrates; red represents 
UC group, blue represents Control group. (D) Correlation analysis of 22 immune cell infiltrates and diagnostic 
markers; red represents positive correlation, blue represents negative correlation. *p < 0.05; **p < 0.01.
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To investigate the biological functions of the DEGs associated with UC, GSEA was performed. The top3 
enriched GO-BPs were divalent inorganic cation homeostasis, regulation of body fluid levels and positive regula-
tion of MAPK cascade, respectively. Cytokine cytokine receptor interaction, focal adhesion, and chemokine sign-
aling pathways were the first three significantly enriched KEGG pathways. The enrichment of cytokine-cytokine 
receptor interaction and chemokine signaling pathway were consistent with the results of a previous study44.

The seven diagnostic markers screened using random forest screen and LASSO regression were TLCD3A, 
KLF9, EFNA1, NAAA, WDR4, CKAP4, and CHRNA1. Among them, only NAAA has a small number of reports 
in the literature on its association with UC. A decreased number of NAAA-positive immune cells detected in 
active UC has been reported74. NAAA-targeted drugs have potential value in the treatment of human inflam-
matory diseases75.

From the analysis of immune cell infiltration assessment and its correlation with diagnostic markers, it is clear 
that among 22 immune cells, follicular helper T cells have the strongest interactions with other immune cells. 
The immune balance between follicular helper T (TFH) cells and follicular regulatory T (TFR) cells is impor-
tant for regulating B-cell responses, and changes in the ratio between the two, shifts the balance from immune 
tolerance to an immune response state, leading to B-cell immune dysregulation and the pathogenesis of UC76. 
It has been shown that increased inducible co-stimulation positive (ICOS) + programmed cell death 1 positive 
(PD-1) + TFH cells are associated with B-cell activation in UC pathogenesis and may act as potential biomarkers 
for UC disease monitoring77. In the differential analysis of immune cell infiltration, macrophages M1 (p < 0.01), 
activated dendritic cells (p < 0.05), and neutrophils (p < 0.01) were highly expressed in UC tissues compared to 
normal tissues. Neutrophils are predominantly present in areas of colonic mucosal injury in patients with UC, 
forming their characteristic crypt abscesses, producing reactive oxygen species and releasing serine proteases, 
matrix metalloproteinases, and myeloperoxidase (MPO)78,79. Macrophages are the main effector cells of the innate 
immune system and play various roles, such as phagocytosis of pathogens, secretion of cytokines and chemokines, 
and antigen presentation. They are divided into M1 macrophages (classically called activated macrophages) and 
M2 macrophages (alternatively called activated macrophages). M1 macrophages are more frequently present 
in the lamina propria of the colonic mucosa of UC and produce large amounts of pro-inflammatory cytokines. 
Their abnormal activation is an important part of UC development80–83. Activated and mature dendritic cells 
may play a role in inducing an immune response that is exacerbated in UC, and their increased function may be 
related to the inflammatory mucosal environment found in patients with UC84.

Our study has certain limitations. First, the sample size was increased to further clarify the diagnostic accu-
racy of the core genes associated with UC. Second, the results of the two microarrays as training and validation 
sets, respectively, may be more one-sided, and external validation is needed to avoid false-positive rates; third, 
further ex vivo experiments are needed to validate the potential mechanisms by which the obtained important 
gene modules act on UC.

Conclusions
In conclusion, the aim of this study was to explore the molecular mechanisms underlying UC pathogenesis 
through bioinformatics analysis. We aimed to identify the relevant biological functions and signaling pathways 
involved in the development of UC. We identified three functional modules that play an important role in the 
development of UC occurrence through PPI network analysis. Seven genes were identified by LASSO regression 
as potential diagnostic markers for UC, and the area under the curve for most genes was greater than 0.65 was 
estimated by ROC curve analysis and further by GEPIA2 analysis. NAAA and CHRNA1 were predicted to also 
serve as prognostic markers for survival in UC-associated CRC. The relationship between immune cell infiltra-
tion and seven diagnostic markers was also analyzed by CIBERSORT, and positive relationships were obtained 
between Macrophages M2, NK cells resting, T cell regulatory and CKAP4, TLCD3A, WDR4. In contrast, these 
immune cells were inversely correlated with KLF9, EFNA1, NAA, and CHRNA1; however, further experiments 
are required to validate the current findings.

Data availability
Our data can be found in the Gene Expression Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/, GSE38713 
and GSE94648) database.
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