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Socio‑economic status 
and trajectories of a novel 
multidimensional metric of Active 
and Healthy Ageing: the English 
Longitudinal Study of Ageing
Olivia S. Malkowski 1, Ricky Kanabar 2 & Max J. Western 1*

Healthy ageing research largely has a unidimensional focus on physical health, negating the 
importance of psychosocial factors in the maintenance of a good quality‑of‑life. In this cohort study, 
we aimed to identify trajectories of a new multidimensional metric of Active and Healthy Ageing 
(AHA), including their associations with socio‑economic variables. A latent AHA metric was created 
for 14,755 participants across eight waves of data (collected between 2004 and 2019) from the English 
Longitudinal Study of Ageing (ELSA), using Bayesian Multilevel Item Response Theory (MLIRT). Then, 
Growth Mixture Modelling (GMM) was employed to identify sub‑groups of individuals with similar 
trajectories of AHA, and multinomial logistic regression examined associations of these trajectories 
with socio‑economic variables: education, occupational class, and wealth. Three latent classes of AHA 
trajectories were suggested. Participants in higher quintiles of the wealth distribution had decreased 
odds of being in the groups with consistently moderate AHA scores (i.e., ‘moderate‑stable’), or 
the steepest deterioration (i.e., ‘decliners’), compared to the ‘high‑stable’ group. Education and 
occupational class were not consistently associated with AHA trajectories. Our findings reiterate the 
need for more holistic measures of AHA and prevention strategies targeted at limiting socio‑economic 
disparities in older adults’ quality‑of‑life.

By 2050, approximately 1 in 6 people worldwide will be aged 65 years and  above1. Although population ageing 
is commonly defined according to chronological age, there are notable disparities in the health, productivity, 
and characteristics of older people, many of which are only loosely related to an individual’s  age2. The growing 
recognition of such individual heterogeneity within the spheres of academia and clinical practice has stimulated 
the development of more nuanced concepts and measures that are better suited to capturing diversity in ageing 
across socio-economic  contexts1,2.

Despite population ageing representing a hallmark of success in public health, this global phenomenon 
poses political, social, and cultural  challenges3. The prospects that arise from these added years of life are largely 
dependent upon older adults’ retention of their functional and cognitive  capacities4,5. However, older age remains 
the principal risk factor for life-threatening medical conditions including cancer, cardiovascular disease, and 
 neurodegeneration6. Furthermore, older adults are vulnerable to the experience of social detachment, isolation, 
and loneliness, which are associated with significant risks to health and  wellbeing3,7. In addition to these age-
related barriers at a personal level, health and social care systems are facing unprecedented economic and 
financial pressures, due to a rising demand for  services2.

The urgent need to prepare for both the challenges and opportunities of population ageing is evident in 
the proliferation of strategies (e.g., successful ageing, active ageing) developed over recent decades to support 
older adults in maintaining good health and quality-of-life8. Nevertheless, few consistently acknowledged the 
multifactorial nature of ageing until the conception of the term Active and Healthy Ageing (AHA)9. Indeed, the 
core operational definition of AHA distinguished three key domains based on previous  work10: (1) physical and 
cognitive capabilities; (2) psychological and social wellbeing; and (3) the functioning of underlying physiological 
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 systems9. The consideration of co-existing physical, biological, cognitive, psychological, and social items in this 
conceptual framework may encourage a more holistic perspective relative to competing  terms11, which is more 
closely aligned with older adults’ own views of  ageing12.

Of the existing instruments, the World Health Organization Disability Assessment Schedule 2.0 (WHODAS 
2.0) is the most common candidate to assess  AHA11. Although the WHODAS 2.0 contains 36 items addressing 
cognition, mobility, self-care, social interactions, life activities, and  participation13, it fails to capture considerable 
data on psychological wellbeing and physiological function. Despite being strengthened by its ease-of-use, 
excellent psychometric properties, rapid administration, and applicability to populations of varying health status 
and cultures, the WHODAS 2.0 needs to be supported by complementary questionnaires to target all dimensions 
proposed for AHA  assessment11,13. To address these limitations and facilitate comparisons across individuals, the 
development of a single, comprehensive, and conceptually informed measurement tool is  necessary13.

In addition to constituent items, the conceptual framework proposed several factors purported to influence 
AHA: (1) education, learning, working, and caring; (2) healthy lifestyle behaviours (e.g., nutrition, physical 
activity, avoidance of excess alcohol and tobacco); and (3) the social, economic, and physical  environment14. As 
such, it would be remiss to investigate AHA without consideration of socio-economic inequalities, given the risk 
of disadvantages in psychosocial and physical health persisting, or even accumulating, in later  life15–17. Indeed, 
associations between socio-economic status and health occupy the form of a gradient, with more advantaged 
individuals demonstrating better  outcomes18.

A contemporary body of work has focused on socio-economic inequalities in ageing  populations19,20. Notably, 
a systematic review of 26 cross-sectional and 19 longitudinal studies found a clear association between socio-
economic status (as measured by educational level and income/wealth) and multidimensional healthy ageing, 
although evidence regarding occupational position was  inconsistent21. In another study using the English 
Longitudinal Study of Ageing (ELSA), a healthy ageing metric was developed, including items measuring 
functional impairments, limitations in basic Activities of Daily Living (ADLs) and Instrumental ADLs (IADLs), 
cognitive function, and walking  speed19. In a sample of 10,906 participants aged 50+ years, the authors found 
that household wealth and education were positively associated with healthy ageing scores over  time19.

In addition to disparities in healthy ageing and physical capabilities, some research has explored the influence 
of socio-economic status on a broader range of life domains. For instance, a recent study found that lower socio-
economic status was associated with accelerated ageing across measures of physical capability, sensory function, 
physiological function (i.e., C-reactive protein, fibrinogen, and lung function), cognitive performance, emotional 
wellbeing (i.e., enjoyment of life and depressive symptoms), and social functioning (i.e., membership in social 
organisations, number of close friends, volunteering, and cultural engagement) in 5018 ELSA  participants17. 
In particular, there is growing interest in identifying individuals (e.g., people exhibiting variability across AHA 
domains, such as those maintaining good psychosocial wellbeing despite functional decline) and populations 
(i.e., differences between individuals) with discordant ageing profiles, which could broaden our understanding 
of the interrelationships between AHA and socio-economic  factors9,22. However, to our knowledge, no studies 
have sought to investigate associations of socio-economic factors with AHA trajectories.

Therefore, the aim of this study was three-fold: (1) to create a multidimensional metric of AHA using Bayesian 
Multilevel Item Response Theory (MLIRT)23,24; (2) to use Growth Mixture Modelling (GMM), a data-driven 
method, to identify sub-groups of adults exhibiting similar longitudinal AHA  trajectories25; and (3) to explore 
associations between socio-economic variables and resultant trajectories. No hypotheses were made regarding 
the number of latent classes to expect, as this was deemed exploratory.

Methods
Sample and study design. We used data from waves two (2004–2005) to nine (2018–2019) of  ELSA26, a 
biannual, nationally representative longitudinal survey of adults aged 50+ years, living in private households in 
England. The original respondents were recruited from households who participated in the Health Survey for 
England in 1998, 1999, or  200127. The sample has been refreshed periodically (in waves three, four, six, seven, and 
nine). In this study, we focused on core sample members aged 50+ years, to account for the potential influence 
of life exposures in middle-age9,13. Wave two was the designated baseline assessment, as data on several indicator 
variables required to develop the AHA metric were first collected at this timepoint. Further details about the 
cohort profile can be found  elsewhere27. Ethical approval for ELSA was obtained via the London Multicentre 
Research Ethics Committee and all participants provided informed consent. Procedures were performed in 
accordance with national guidelines and regulations for research activities. The current study was approved by 
the Research Ethics Approval Committee for Health [EP 22 030] at the University of Bath.

Measures. Indicators of AHA. To create a metric of AHA, we considered self-reported items, measured 
tests, and biomarkers that were available in at least two waves, including at  baseline22. 64 items were initially 
selected to represent the three core domains of AHA (see Supplementary Table S1 online). Negatively framed 
items were recoded, such that higher values reflected better health, wellbeing, and physiological function. A list of 
detailed scoring methods and observations treated as missing cases (e.g., outliers) is presented in Supplementary 
Table S2 online.

Physical and cognitive capabilities were represented by 25 self-reported questions and eight items derived 
from measured tests. The self-reported items provided information on limiting long-standing illness, self-rated 
general health, mobility impairments, and difficulties performing ADLs or IADLs. Three measures of physical 
performance (standing balance, five times sit-to-stand, and gait speed over 2.44 m) were assessed using the Short 
Physical Performance Battery and scored according to  recommendations28. Grip strength (kg) was measured 
three times for participants’ dominant and non-dominant hand, with the maximum value across all available 
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attempts retained for  analyses29. Cognitive function was assessed via a time orientation test (i.e., reporting the 
correct day of week, day of month, month, and year), instant and delayed recall of ten common words, and a 
verbal fluency task requiring participants to name as many animals as possible in 60  s24,30. Orientation in time was 
coded as zero for participants who failed some questions and one if all four questions were answered  correctly24. 
For the remaining measured tests, the sample was divided into three groups: high (> one standard deviation [SD] 
above the mean), moderate (± one SD around the mean) and low (> one SD below the mean)24.

For psychological and social wellbeing, 25 self-reported items captured depressive symptoms, socio-cultural 
trips or holidays, membership in clubs or organisations, and  loneliness9. Physiological function was assessed 
using six dichotomised biomarkers. The cut-off points for obtaining a value of zero (higher risk) versus one were 
the following: fibrinogen (> 4.0 g/L)31, high-density lipoprotein (< 1.0 mmol/L)32, triglycerides (> 2.0 mmol/L)32, 
low-density lipoprotein (> 4.0 mmol/L)32, C-reactive protein (> 3 mg/L)32, and glycated haemoglobin (≥ 6.5%)30.

Socio‑economic status. Socio-economic status was assessed at baseline or at the first wave of data collection for 
participants recruited as part of a refreshment sample, using three proxy measures: education, occupational class, 
and  wealth33. Education was defined as the highest qualification obtained by participants and recoded into three 
categories (no formal qualifications, secondary or lower, at least some higher education). Occupational class was 
measured according to the three-class National Statistics Socio-Economic Classification, based on participants’ 
current or most recent  occupation33. Finally, wealth was operationalised as total non-pension wealth (quintiles) 
at the benefit unit (i.e., a couple or a single person plus any dependent children they may have)  level18,33.

Other measures. Socio-demographic variables comprised age (a continuous variable, collapsed to 90 for 
participants aged 90+ years), biological sex, and ethnicity (dichotomised as White versus non-White in ELSA 
to avoid disclosure). These variables were assessed at baseline for original respondents and at entry to the ELSA 
study for participants in the refreshment samples. Values were then fed-forward to the follow-up waves and the 
variables treated as time-constant.

Health behaviours, assessed at every measurement point, included smoking (never a smoker, former smoker, 
current smoker) and alcohol consumption in the previous 12 months (did not drink, twice a week or less, more 
than twice a week)24. Physical activity was assessed via respondents’ self-reported frequency (more than once 
a week, once a week, one to three times a month, hardly ever or never) of participation in activities of vigor-
ous, moderate, and mild intensity. Consistent with previous  research34, four categories were created: inactive 
(no physical activity on a weekly basis); only mild physical activity at least once a week; at least moderate (but 
no vigorous) physical activity at least once a week; or vigorous physical activity at least once a week. Finally, 
quality-of-life was assessed using the 19-item Quality of Life Scale (CASP-19)35. A dichotomous variable was 
created with scores below the sample median coded as zero, and those above or equal to the median coded as 
one (good quality-of-life).

Statistical analysis. Developing the AHA metric. The unidimensionality (i.e., the finding that a single 
factor underlies the data) of the self-reported questions, measured tests, and biomarkers selected to represent 
AHA was explored using a two-stage factor analytic approach. The baseline sample consisted of participants 
with a maximum of 25% missing values across  items24. Thereafter, the dataset was divided into developmental 
(70% of the sample) and validation (30% of the sample) sub-samples. An Exploratory Factor Analysis (EFA) 
was conducted on the developmental sample to detect the latent structure of the initial pool of items. The EFA 
was performed with the Geomin oblique rotation for correlated factors, using a pairwise present approach for 
missing  data22. A scree-plot and fit indices were employed to determine the appropriate number of factors to 
extract.

Subsequently, evidence was sought for a global AHA score, by performing a second-order Confirmatory 
Factor Analysis (CFA) over the validation sample. Items with loadings ≥ 0.25 on a single factor in the EFA were 
retained in the CFA. The sub-factors identified in the EFA were treated as first-order factors, nested under a 
second-order structure. The EFA and second-order CFA implemented the mean- and variance-adjusted weighted 
least squares  estimator22,36.

Goodness-of-fit indices were evaluated according to  recommendations37. Comparative Fit Index (CFI) and 
Tucker-Lewis Index (TLI) values > 0.90, and a Root Mean Square Error of Approximation (RMSEA) < 0.08 repre-
sented an adequate fit. CFI and TLI values > 0.95, and a RMSEA < 0.06 suggested a good model fit. The likelihood 
ratio test was also reported; however, since the chi-square test statistic is sensitive to sample-size, statistically 
significant values (obtained when the sample-size is large) may erroneously indicate a poor  fit37. Once evidence 
of unidimensionality was achieved, the AHA metric was created including items common to the eight waves 
(i.e., anchor items) and items that varied across waves (i.e., assessed at baseline but not all follow-up waves).

To develop the AHA metric, a Bayesian MLIRT analysis was conducted to account for the multilevel data 
structure, using a Markov Chain Monte Carlo estimation  method22,23,38. MLIRT uses latent scores as depend-
ent variables, which facilitates the analysis of data from incomplete designs such as longitudinal studies with 
inconsistencies in item availability across  waves23. The use of fully Bayesian estimation procedures minimised 
concerns around non-normality38. The different waves were included as random  effects22,24. Participants with 
data on at least half of the AHA items were included in the MLIRT  analysis24. Four Bayesian MLIRT models were 
considered: (a) no intercept variance, no slopes; (b) itemwise intercept variance, no slopes; (c) homogeneous 
intercept variance, no slopes; (d) intercept variance and slope variances (hierarchical item and slope parameters). 
The final model was selected based on the Expected-A-Posteriori (EAP) reliability and Deviance Information 
Criterion (DIC) values, where higher EAP reliability and lower DIC values suggested a better model fit. The latent 
trait score was transformed into a 0–100  scale24,39, with higher scores indicating better AHA.
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Trajectories of AHA. GMM was used to investigate the longitudinal trajectory (across 14 years of follow-up) of 
unobserved latent classes with similar patterns of AHA. Participants were included in the trajectory analyses if 
they had at least one longitudinal AHA  observation40. The mean elapsed time across waves was 2 years (variance 
not available)27. All procedures are recounted in line with the Guidelines for Reporting on Latent Trajectory 
Studies (GRoLTS)  criteria41; a checklist is included in Supplementary Table S3 online.

Following  recommendations25,41,42, we first ran a single-group latent growth curve model to identify the best 
representation of change (linear, quadratic, or latent basis) over time. The best-fitting model was used as a refer-
ence against which unconditional GMMs with two to six latent classes were  compared42. Although Latent Class 
Growth Analysis (LCGA) models were run as preliminary analyses to explore AHA  trajectories43, these were not 
considered as final models due to their inability to reflect the expected individual heterogeneity in AHA. Indeed, 
in LCGA, the variance and covariance estimates for the growth factors are fixed to zero, assuming homogeneity 
amongst the individual growth trajectories within each  class41,43.

To estimate the optimal number of latent classes, models were compared using the Akaike Information Cri-
terion (AIC), Bayesian Information Criterion (BIC), Sample-Size Adjusted BIC (SSABIC), entropy values, the 
Vuong–Lo–Mendell–Rubin Likelihood Ratio Test (VLMR-LRT), and the adjusted Lo–Mendell–Rubin Likelihood 
Ratio Test (LMR-LRT)44. Decreasing AIC, BIC, and SSABIC values suggested a more parsimonious solution. 
Furthermore, the VLMR-LRT and adjusted LMR-LRT were consulted, where statistically significant results 
denoted a better fit for the current model versus a model with one fewer class. Higher model entropy was pre-
ferred, indicating better class  separation22. Nonetheless, this was not a model choice criterion. The sample-size 
of the smallest class and the LCGA results were also  considered22,39,42. Additional criteria included successful 
convergence and checking that the average of the posterior probabilities of class membership was over 0.70 for 
each sub-group39. Due to the risk of bias surfacing from the exploratory nature of GMM, the number of latent 
classes and their corresponding trajectories were scrutinised in relation to their theoretical  sensibility25.

Once the unconditioned model with the best fit was identified, we implemented a manual three-step pro-
cedure to explore the association of the socio-economic measures with each latent  class45,46. In step one of this 
approach, the GMM was estimated without accounting for the predictor variables. The second step involved 
assigning participants to the most likely class using the posterior probabilities obtained during step one. In the 
third step, participants with missing data on any of the covariates were excluded and a new model regressing the 
most likely latent class (with uncertainty rates prefixed at the probabilities obtained in step two) on the time-
invariant predictor variables (i.e., education, occupational class, and wealth, recoded as dummy variables) was 
estimated. The multinomial logistic regression model adjusted for age, biological sex, and ethnicity. The intercept 
and slope growth factors were also regressed onto the covariates. Although we intended to allow the within-
class variances of intercept and slope to be freely estimated, this was dismissed due to model non-identification. 
Quality-of-life in wave nine was entered as a categorical distal outcome of the latent trajectory  classes13,22.

The models were performed using the maximum likelihood estimation with robust standard errors. Data were 
assumed to be missing at random. The interclass variances of the growth factors were held  equal39. Furthermore, 
the residual variances and covariances of the growth factors were constrained to be equal across classes to avoid 
estimation  issues42,43. To prevent the models from converging on local maxima for the Expectation Maximization 
algorithm, 1000 random sets of starting values and 250 final optimisations were used. As an additional follow-up 
check, the unconditional GMM with the final number of classes was re-run using the seed values of the two best 
log-likelihood results to ensure that estimates were  replicated43.

Sensitivity analyses. A Receiver Operating Characteristic (ROC) analysis was performed to explore the 
predictive validity of the AHA metric, clustering at the participant level and adjusting the control distribution for 
biological sex. Associations between baseline AHA scores and quality-of-life at two- (wave three), eight- (wave 
six), and 14-year (wave nine) follow-up were examined, by calculating the Area Under the ROC Curve (AUC).

To evaluate the criterion-related validity of the metric, we explored associations of time-varying lifestyle 
behaviours (i.e., smoking, alcohol consumption, and physical activity) with AHA scores, adjusting for age (treated 
as time-varying for this analysis and thus re-assessed at every measurement point), biological sex, and ethnicity. 
Linear mixed-effects models were performed on a complete-case sample, defined as participants with full data on 
predictors, covariates, and AHA scores at any given wave. Random intercept (fixed slope) models were compared 
to random intercept and (random) slope models using a likelihood ratio test, as well as AIC and BIC indices.

Data management. Data preparation and general analyses were conducted in Stata/BE Version 17.0 (StataCorp 
LP, College Station, TX). Mplus Version 8.736 was used for factor analyses and GMM, while Bayesian MLIRT 
modelling was performed using the “sirt”  package47 in R 4.1.048, with RStudio 1.4.171749. Statistical significance 
was defined as p ≤ 0.05. The Stata, Mplus, and R syntax to replicate analyses presented in this paper are openly 
available online at https:// github. com/ Olivi aMalk owski/ AHA- metric. git.

Results
Assessment of unidimensionality at baseline. From an initial sample of 8780 participants aged 
50+ years at baseline, 1120 were excluded as they were missing data on more than 25% of the 64 AHA-related 
self-reported questions, measured tests, or biomarkers. 5362 (70% of the baseline sample) participants were 
assigned to the developmental sample where an EFA was conducted to identify first-order factors, whilst the 
remaining 2298 (30% of the baseline sample) were assigned to the validation sample where a second-order CFA 
was performed.

According to a scree-plot (see Supplementary Fig. S1 online) and fit indices, four was an optimal number of 
factors to extract in the EFA. Eight items with loadings higher than 0.32 on more than one factor in the EFA were 

https://github.com/OliviaMalkowski/AHA-metric.git
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 dropped50, as were five items that did not load onto any factor (i.e., all loadings < 0.25). The rotated loadings and 
factor correlations for the preliminary (with the 64 original items) and final (including the 51 retained items) 
EFA are shown in Supplementary Tables S4–S7 online. The goodness-of-fit indices associated with the final four-
factor model were good: CFI = 0.975, TLI = 0.971, RMSEA = 0.026 [90% confidence interval (CI) = 0.025–0.027]. 
The likelihood ratio test was statistically significant [χ2(1077) = 4955.353; p < 0.001]. Nevertheless, with large 
sample-sizes, even a trivial misfit can yield statistical  significance37.

Following this, a second-order CFA was conducted on the validation sample, comprising the four first-order 
factors identified in the EFA under a general factor which loaded on the first-order  factors24. The standardised 
loadings of the second-order factor on the first-order factors (all p < 0.001) are displayed in Fig. 1. Regarding 
the first-order factors, the standardised factor loadings were all positive and statistically significant (p < 0.001). 
The likelihood ratio test associated with the second-order CFA was statistically significant [χ2(1220) = 3492.194; 
p < 0.001]; however, the remainder of the fit indices showed a good model fit (CFI = 0.964, TLI = 0.962, 
RMSEA = 0.028 [90% CI = 0.027–0.030]), providing evidence that a general factor underlies the data.

Development of the AHA metric across waves. A total of 14,755 participants (66,133 observations) 
had data on at least half of the 51 AHA constituent items in one or more waves under investigation. They have 
been included in the Bayesian MLIRT analysis. Of the 51 items identified at baseline, 45 were anchor items, 
whilst the remaining six varied across waves (see Supplementary Table S8 online).

Four Bayesian MLIRT models were proposed (see Supplementary Tables S9–S12 online); the Markov Chain 
Monte Carlo estimation was performed with 5000 iterations and 100 burn-in  iterations24. Model 4 showed 
the highest EAP reliability (EAP = 0.925) and the lowest DIC value (DIC = 1,198,613; Table 1). This model was 
selected to create the latent AHA scores. The intraclass correlation coefficient at the wave level was 0.37 [95% 
CI = 0.21–0.59].

Trajectories of AHA. Among the 14,755 participants with at least one longitudinal AHA score, 58.8% of 
the sample had available data at wave two, 58.3% at wave three, 64.8% at wave four, 59.1% at wave five, 59.5% at 
wave six, 53.4% at wave seven, 47.0% at wave eight, and 47.3% at wave nine. The mean number of observations 
was 4.48 (SD = 2.59).

Figure 1.  Second-order Confirmatory Factor Analysis conducted over the validation sample at baseline 
(n = 2298). F1–F4 first-order factors. ***p < 0.001.

Table 1.  Reliability of the Expected-A-Posteriori estimates and Deviance Information Criterion values 
associated with the four Bayesian MLIRT models (n = 14,755). EAP Expected-A-Posteriori, DIC Deviance 
Information Criterion. Bold denotes the highest EAP reliability and the lowest DIC value.

Model EAP reliability DIC value

(1) No intercept variance, no slopes 0.892 1,368,772

(2) Itemwise intercept variance, no slopes 0.912 1,323,489

(3) Homogeneous intercept variance, no slopes 0.903 1,323,538

(4) Intercept variance and slope variances (hierarchical item and slope parameters) 0.925 1,198,613
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The single-group growth curve models indicated a latent basis model was the most appropriate representation 
of change (see Supplementary Table S13 online). After considering the LCGA results (see Supplementary 
Table S14 online), unconditional GMM was performed with increasing numbers of classes (Table 2). The lowest 
covariance coverage for each pair of variables was 0.22; hence, the missing values were within acceptable limits 
(considering a minimum threshold for convergence of 0.10)22. The three-class model was selected according to 
the AIC, BIC, and SSABIC indices, as well as the VLMR-LRT and the adjusted LMR-LRT, which all indicated 
superior results versus the two-class model. The estimates were closely replicated when re-running the three-class 
model with the seed values of the two best log-likelihood  values43. Moreover, the average posterior probabilities 
for the three classes were above 0.70, with values of 0.90, 0.96, and 0.85 respectively. The four- to six-class models 
were not chosen due to the small sample-sizes (i.e., less than or around 5% of the total sample) emerging in some 
of the latent  classes40. The estimated mean trajectories for all models are depicted in Supplementary Figs. S2–S14 
online.

Descriptive information. Descriptive statistics summarising the AHA scores by wave, for the final analytical 
sample included in the GMM analyses, are presented in Supplementary Table  S15 online. Figure  2 shows 
the estimated mean trajectories for the latent classes in the final model; to facilitate the interpretation of the 
derived classes, the trajectory of the single-group latent basis model is presented as a reference. Based on the 
growth factors (Table 3 upper section), the first class (triangles) was named the “moderate-stable” group. There 
were 1639 individuals, with an average baseline AHA score of 43.549 (standard error [SE] = 0.546), and little 
change over the follow-up waves. The largest class, named “high-stable” (circles), had 11,697 participants. 
This group was characterised by a high average baseline AHA score (intercept = 84.180, SE = 0.160), which 

Table 2.  Model selection criteria for the Growth Mixture Models (n = 14,755). AIC Akaike Information 
Criterion, BIC Bayesian Information Criterion, SSABIC Sample-Size Adjusted BIC, VLMR‑LRT p Vuong–
Lo–Mendell–Rubin Likelihood Ratio Test p value, Adj. LMR‑LRT adjusted Lo–Mendell–Rubin Likelihood 
Ratio Test p value, GMM Growth Mixture Model. OPTSEED 1 Results with the seed value of the best log-
likelihood (OPTSEED = 407,108). OPTSEED 2 Results with the seed value of the second-best log-likelihood 
(OPTSEED = 318,177).

Unconditional Class AIC BIC SSABIC Entropy VLMR-LRT p Adj. LMR-LRT p Class size

GMM

2 487,668.278 487,835.464 487,765.549 0.911 0.0002 0.0002 2306/12,449

3 484,158.999 484,348.983 484,269.535 0.867 < 0.0001 < 0.0001 1639/11,697/1419

4 482,913.821 483,126.603 483,037.621 0.867 0.0065 0.0075 1323/1400/11,165/867

5 481,474.531 481,710.110 481,611.595 0.845 0.0096 0.0122 569/1290/10,707/1347/842

6 480,671.849 480,930.226 480,822.177 0.819 0.0069 0.0082 1006/363/891/10,477/1226/792

OPTSEED 1 3 484,158.999 484,348.983 484,269.535 0.867 < 0.0001 < 0.0001 1639/11,697/1419

OPTSEED 2 3 484,158.999 484,348.983 484,269.535 0.867 < 0.0001 < 0.0001 11,697/1415/1643

Figure 2.  Estimated mean trajectories of the three-class Growth Mixture Model (n = 14,755). LGCM latent 
growth curve model.
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remained relatively stable across time. The smallest class (squares), named “decliners”, had 1419 participants who 
displayed a high average baseline score of 76.739 (SE = 0.593) and a steep, decreasing trend over the follow-up 
period. The estimated means and observed individual trajectories split out for each latent class are presented in 
Supplementary Figs. S15–S17 online.

Socio‑economic variables as predictors of class membership. Of the 14,755 respondents included in the trajectory 
analyses, 11,566 had complete data on covariates. The logit coefficients and odds ratios from the multinomial 
logistic regression (step three of the three-step procedure; lowest covariance coverage = 0.21) of the latent classes 
on socio-economic variables, adjusted for age, biological sex, and ethnicity are shown in Table 3 (lower section). 
Participants with school-level qualifications (odds ratio [OR] = 0.743, 95% CI = 0.632–0.873) or at least some 
higher education (OR = 0.631, 95% CI = 0.506–0.788), relative to those with no qualifications, had lower odds 
of being in the moderate-stable class, versus the high-stable class (reference class). Higher wealth (second to 
fifth quintiles versus first quintile) was associated with lower odds of membership in the moderate-stable group, 
versus the high-stable group. Moreover, participants with at least some higher education (versus those with no 
formal qualifications), and in the second to fifth (relative to the first) quintiles of the wealth distribution, had 

Table 3.  Estimates for the three-class Growth Mixture Model of Active and Healthy Ageing (n = 14,755) 
and multinomial logistic regression results (n = 11,566). LGCM single-group latent growth curve model, SE 
standard error, n number of participants, CI confidence intervals. The model was adjusted for age, biological 
sex, and ethnicity. Multinomial logistic regression results are reported as raw regression coefficients and 
exponentiated coefficients/odds ratios. *p ≤ 0.01,  **p < 0.001.

Moderate-stable (n = 1639) High-stable (n = 11,697) Decliners (n = 1419)

LGCM (n = 14,755)Estimate (SE)

Mean intercept 43.549 (0.546) 84.180 (0.160) 76.739 (0.593) 79.404 (0.146)

Mean slope − 3.269 (1.157) − 6.577 (0.258) − 50.017 (1.430) − 10.848 (0.196)

Variance intercept 53.718 (1.824) 219.555 (3.310)

Variance slope 40.840 (4.294) 184.076 (5.630)

Covariance intercept-slope − 2.456 (2.424) − 14.286 (3.475)

Logit coefficients

 Education Reference class

  No qualifications (reference)

  Secondary or lower − 0.297 (0.082)** − 0.150 (0.087)

  Higher education − 0.460 (0.113)** − 0.314 (0.111)*

 Occupational class Reference class

  Routine and manual occupa-
tions (reference)

  Intermediate occupations − 0.132 (0.088) 0.022 (0.090)

  Higher occupations − 0.178 (0.099) − 0.074 (0.100)

 Wealth Reference class

  1st quintile (reference)

  2nd quintile − 0.806 (0.087)** − 0.388 (0.103)**

  3rd quintile − 1.353 (0.096)** − 0.861 (0.110)**

  4th quintile − 1.738 (0.113)** − 0.848 (0.112)**

  5th quintile − 2.500 (0.149)** − 1.240 (0.125)**

Odds ratio (95% CI)

 Education Reference class

  No qualifications (reference)

  Secondary or lower 0.743 (0.632–0.873) 0.861 (0.726–1.020)

  Higher education 0.631 (0.506–0.788) 0.731 (0.588–0.908)

 Occupational class Reference class

  Routine and manual occupa-
tions (reference)

  Intermediate occupations 0.877 (0.737–1.042) 1.022 (0.858–1.218)

  Higher occupations 0.837 (0.689–1.016) 0.929 (0.764–1.130)

 Wealth Reference class

  1st quintile (reference)

  2nd quintile 0.447 (0.377–0.529) 0.678 (0.554–0.830)

  3rd quintile 0.259 (0.214–0.312) 0.423 (0.341–0.525)

  4th quintile 0.176 (0.141–0.219) 0.428 (0.344–0.534)

  5th quintile 0.082 (0.061–0.110) 0.289 (0.226–0.370)
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lower odds of membership in the decliners group, compared with the high-stable group. Occupational class was 
not significantly associated with class membership (all p > 0.05). Table 4 presents descriptive socio-demographic 
statistics for the participant sample, stratified by latent class membership.

Socio‑economic variables as predictors of growth factors. School-level qualifications (Estimate = 1.628, SE = 0.227) 
and higher education (Estimate = 2.444, SE = 0.261), compared with no qualifications, were positively associated 
with baseline AHA scores (all p < 0.001). Participants in intermediate (Estimate = 0.707, SE = 0.225) or higher 
(Estimate = 1.006, SE = 0.230) occupations, versus routine and manual occupations, had higher baseline AHA 
scores (all p < 0.01). Higher wealth (second to fifth quintiles versus first quintile) was associated with higher 
baseline scores (all p < 0.001). None of the socio-economic covariates were associated with the rate of change in 
AHA scores (all p > 0.05).

Latent class trajectories as predictors of quality‑of‑life. The high-stable group showed the greatest probability of 
reporting good quality-of-life in wave nine (Estimate = 0.572, SE = 0.008). The moderate-stable group showed a 
small probability (Estimate = 0.151, SE = 0.024) of good quality-of-life after 14 years of follow-up, whereas the 
decliners group had the lowest probability of 0.097 (SE = 0.022).

Sensitivity analyses. After adjusting for biological sex, the AUC associated with the baseline AHA metric 
for the wave three, six, and nine quality-of-life assessments was 0.73 (95% CI = 0.72–0.74), 0.71 (95% CI = 0.69–
0.72), and 0.67 (95% CI = 0.65–0.69) respectively.

Finally, a sensitivity analysis examined associations between lifestyle behaviours and AHA scores (Table 5). 
A random intercept and (random) slope model showed a better fit than a random intercept (fixed slope) model, 
according to AIC (226,059.1 versus 226,370.7) and BIC (226,175.6 versus 226,478.9) indices, and a likelihood 
ratio test (χ2(1) = 313.62, p < 0.001). After adjusting for age, biological sex, and ethnicity, former (β = − 2.08) and 
current (β = − 4.14) smokers showed significantly lower scores on AHA than people who had never smoked (all 
p < 0.001). Furthermore, respondents who consumed alcohol twice a week or less (β = 2.77), or more than twice a 
week (β = 3.81), had higher AHA scores than adults who did not drink in the previous 12 months (all p < 0.001). 
Participation in mild (β = 5.88), moderate (β = 11.70), and vigorous (β = 13.82) activities was associated with 
higher AHA scores relative to physical inactivity (all p < 0.001).

Discussion
Based on a sample of adults aged 50+ years from ELSA, a multidimensional metric of AHA was generated, 
incorporating 51 items related to physical and cognitive health, psychological and social wellbeing, and 
physiological functioning. In this study, three distinct latent classes of AHA were identified: “moderate-stable”, 
“high-stable”, and “decliners”. The moderate-stable group represented participants starting with moderate scores 

Table 4.  Socio-demographic characteristics of the three trajectory sub-groups identified in the Growth 
Mixture Model (n = 11,566). SD standard deviation, n number of participants. a Age was assessed at baseline for 
original respondents and at the first wave of data collection for the refreshment samples.

Moderate-stable (n = 1296) High-stable (n = 9140) Decliners (n = 1130)

Age, mean (SD)a 69.0 (11.5) 61.6 (9.0) 70.0 (10.3)

Biological sex, n (%)

 Male 492 (38.0) 4433 (48.5) 502 (44.4)

 Female 804 (62.0) 4707 (51.5) 628 (55.6)

Ethnicity, n (%)

 White 1243 (95.9) 8871 (97.1) 1101 (97.4)

 Non-White 53 (4.1) 269 (2.9) 29 (2.6)

Education, n (%)

 No qualifications 798 (61.6) 2688 (29.4) 588 (52.0)

 Secondary or lower 326 (25.2) 3252 (35.6) 326 (28.8)

 Higher education 172 (13.3) 3200 (35.0) 216 (19.1)

Occupational class, n (%)

 Routine and manual occupations 808 (62.3) 3499 (38.3) 573 (50.7)

 Intermediate occupations 253 (19.5) 2178 (23.8) 269 (23.8)

 Higher occupations 235 (18.1) 3463 (37.9) 288 (25.5)

Wealth, n (%)

 1st quintile (lowest) 575 (44.4) 1238 (13.5) 309 (27.3)

 2nd quintile 323 (24.9) 1751 (19.2) 278 (24.6)

 3rd quintile 205 (15.8) 1871 (20.5) 202 (17.9)

 4th quintile 131 (10.1) 1978 (21.6) 200 (17.7)

 5th quintile (highest) 62 (4.8) 2302 (25.2) 141 (12.5)



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6107  | https://doi.org/10.1038/s41598-023-33371-0

www.nature.com/scientificreports/

on the AHA metric, and largely maintaining these levels over time. This class had a small probability of good 
quality-of-life after seven follow-up waves. The high-stable group included individuals who demonstrated high 
AHA scores at baseline and concluded with similarly high scores after 14 years of follow-up. This group also had 
the highest probability of reporting good quality-of-life at the final wave of data collection. Finally, the decliners 
group consisted of people who started with a high level of AHA at baseline but exhibited the steepest decline 
over time and the smallest probability of good quality-of-life in the final wave. Of the socio-economic variables 
(i.e., education, occupational class, and wealth), only wealth was consistently associated with decreased odds of 
membership in the moderate-stable or decliners groups, in comparison to the high-stable class.

To our knowledge, this is the first study to explore trajectories in AHA, as defined by the conceptual 
 framework9. As such, a consensus regarding the number of latent classes to expect is lacking. However, the find-
ings are consistent with existing research on healthy ageing. For instance, data from the Mexican Health and 
Aging Study (n = 14,143, follow-up = 14 years) suggested four trajectories (decliners, low-stable, moderate-stable, 
and high-stable) of functional status among individuals aged 50+  years22. Similarly, three distinct trajectories 
of healthy ageing scores (high-stable, low-stable, and fast decline) were identified in a harmonised dataset of 
eight cohorts (n = 130,521, 10-year follow-up) in Australia, the United States of America, Mexico, Japan, South 
Korea, and  Europe42. While these studies were conducted in a range of middle- and high-income countries, the 
observed variation in trajectories is consistent with the present study, albeit the healthy ageing metrics consisted 
of items related to intrinsic capacity, rather than psychosocial or physiological function. Although only two (i.e., 
the inflammatory markers fibrinogen and C-reactive protein) of the six biomarkers of physiological function 
originally identified were retained after conducting factor analyses, suggesting it may be challenging to develop 
and validate an empirical measure of AHA, we argue that the inclusion of psychosocial variables in the present 
metric enables a more holistic assessment of AHA relative to existing  instruments9.

It is well-established that biological function generally plateaus in adulthood and declines in later  life9,51, 
whereas there appears to be no unitary trajectory of psychosocial  wellbeing52. Therefore, in future research, it 
may be fruitful to unpick the constituents and predictors of AHA that are responsible for driving the divergent 
 trajectories9. Importantly, the three core components of AHA (physical and cognitive health, psychosocial well-
being, and physiological function) may interact to counterbalance declines in a specific  domain53. While 79.3% 
of the analytical sample maintained a stable, favourable AHA trajectory (i.e., the high-stable group), the results 
also provide evidence for moderate-stable and decliners groups, underscoring AHA as a societal  challenge9. 

Table 5.  Mixed-effects multilevel regression to explore associations between lifestyle behaviours and Active 
and Healthy Ageing, adjusting for demographic covariates (n = 12,684). CI confidence interval, SE standard 
error. Results are reported as raw regression coefficients. Number of participants = 12,684; number of 
observations = 30,329.

Coefficient (95% CI) z p value

Fixed effects

 Intercept 90.51 (89.13, 91.89) 128.85 < 0.001

 Age (continuous) − 0.34 (− 0.36, − 0.32) − 37.09 < 0.001

 Biological sex

  Male (reference) 0.00

  Female − 2.42 (− 2.87, − 1.98) − 10.72 < 0.001

 Ethnicity

  White (reference) 0.00

  Non-White − 3.80 (− 5.08, − 2.52) − 5.83 < 0.001

 Smoking

  Never a smoker (reference) 0.00

  Former smoker − 2.08 (− 2.49, − 1.67) − 9.93 < 0.001

  Current smoker − 4.14 (− 4.65, − 3.63) − 15.84 < 0.001

 Alcohol consumption

  Did not drink (reference) 0.00

  Twice a week or less 2.77 (2.45, 3.10) 16.92 < 0.001

  More than twice a week 3.81 (3.38, 4.24) 17.37 < 0.001

 Physical activity

  Inactive (reference) 0.00

  Mild activity 5.88 (5.40, 6.36) 24.05 < 0.001

  Moderate activity 11.70 (11.25, 12.16) 50.70 < 0.001

  Vigorous activity 13.82 (13.32, 14.31) 54.78 < 0.001

Random effects Estimate SE 95% CI

Variance intercept 108.99 2.09 (104.97, 113.17)

Variance slope 0.72 0.05 (0.63, 0.83)
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Complexities from a clinical standpoint are also envisaged, although a heightened awareness of the differing 
AHA trajectories may help to inform healthcare professionals’ decisions related to treatment  priorities9.

We found that lower wealth was associated with worse trajectories of AHA (i.e., membership in the mod-
erate-stable or decliners groups) and lower quality-of-life after 14 years of follow-up. This finding is consistent 
with previous literature demonstrating that wealth is positively associated with health  status18,24,39 and physical 
 functioning54. However, while participants with at least some higher education showed favourable AHA trajec-
tories, there was no credible evidence that occupational class was associated with class membership, when the 
socio-economic covariates adjusted for one another, which was unexpected in view of the existing  literature19,21 
and the conceptual  framework9,14. Importantly, wealth reflects both the past and contemporary socio-economic 
status of older adults, whilst also providing an insight into future economic  prospects33. This contrasts with edu-
cation and occupational class, individual level variables which are frequently determined in younger age but do 
affect the lifecycle accumulation of  wealth33,54. To understand how inequalities accrue from early developmental 
stages, authors may consider adopting a life-course  approach55. Although it was beyond the scope of this study 
to explore mechanisms underlying associations between wealth and AHA, modifiable behavioural mediators, 
such as physical activity and healthy eating, have previously been proposed and warrant further  investigation56,57. 
These advancements could foster opportunities to develop early preventive interventions, which may improve 
health and economic outcomes in later  life9,19.

In a sensitivity analysis, higher AHA scores were associated with better quality-of-life. The maintenance of 
quality-of-life is especially important in an ageing context, since middle-aged and older adults may be more 
prone to adverse health or social  outcomes58. In addition, this study examined associations between health 
behaviours and AHA scores. Current and former smokers exhibited lower scores on AHA than people who had 
never smoked. Furthermore, weekly engagement in mild, moderate, or vigorous physical activities was associated 
with higher scores relative to physical inactivity, lending further support to the promise of lifestyle interventions 
as a means of reducing socio-economic disparities in AHA. Although these associations were in the expected 
 directions14, it was surprising to observe that participants who consumed alcohol had higher AHA scores than 
people who did not drink in the previous 12 months. Nevertheless, several studies using ELSA data have found 
positive associations between alcohol consumption and health-related  outcomes24,59. As such, it is possible that 
the frequency of one’s drinking behaviour may be an indicator, rather than a cause, of good health in later  life59.

This study has several strengths in comparison to previous research, including potential clinical, academic, 
and policy implications. One advantage is the use of Bayesian MLIRT, enabling a comparison of AHA scores 
across waves (independent of heterogeneities in item availability), and, in future research, across  cohorts22. 
Notably, the Bayesian MLIRT approach allows for the estimation of a common AHA metric, independent of 
fluctuating sets of self-reported questions, measured tests, and/or biomarkers between  studies39. Since the metric 
was based on a uniform conceptualisation of  AHA9, it could be utilised as a sound methodological tool to facili-
tate the harmonisation of existing datasets. The use of ELSA also strengthened the results, as the long follow-up 
period contained sufficient reassessments to explore various functional forms of  trajectories19,22,42. In particular, 
the three-step procedure for the inclusion of predictor variables in GMM has the advantage of separating the 
estimation of a latent trajectory model for AHA from the modelling of the relationship of the latent classes with 
 covariates41. Providing our results hold in future analyses with other cohorts, the finding that lower wealth was 
associated with membership in the moderate-stable and decliners groups should reinforce the need to place 
socio-economic inequalities at the centre of global policy  agendas19. Although this study focused on socio-
economic inequalities, there is scope to employ the metric to explore modifiable predictors of AHA trajectories, 
such as physical activity behaviour, with implications for intervention  development24. In addition to represent-
ing a useful research outcome to quantify effects of experimental research trials, the metric could be developed 
into a succinct measurement instrument and integrated into everyday practice to enable the identification and 
surveillance of at-risk older  adults9,22.

However, this study has several limitations. First, there is a high attrition rate over the seven follow-up waves. 
Data were assumed to be missing at random; however, in longitudinal studies with older people, considerable 
attrition occurs due to death, creating a survival bias towards healthier  individuals22. This likely explains the 
high proportion of adults in the high-stable class. Secondly, only participants aged 50+ years were included in 
the models, as this was the population targeted by  ELSA27. As such, it was not possible to account for the influ-
ence of early life exposures at a social, biological, or an environmental level on AHA scores and  trajectories9,14. 
Although this study used sophisticated statistical approaches, results should be interpreted with caution. Indeed, 
since we only adjusted for age, biological sex, ethnicity, and socio-economic variables in the GMM analyses, the 
influence of other confounding factors cannot be  dismissed22,42. Furthermore, many of the items included in this 
study consisted of self-report measures, which are prone to recall and social desirability biases.

While the metric was based on a sound operational  definition9, the selection of items to represent AHA was 
subjective. Indeed, it is possible that alternative or additional items (e.g., vision, hearing, social status) would 
further increase the utility and sensitivity of the  metric60. Although the ELSA dataset contains diverse variables 
related to the three domains of AHA, it does not include a complete set of constituents, as ELSA measures were 
chosen to inform specific research  questions27. The length of the current metric, as well as the inclusion of bio-
markers that can be challenging to obtain and involve numerous ethical considerations, may hinder its practical 
utility. To improve the speed of administration, it may be fruitful to identify a minimum set of important items 
for measuring AHA and develop a shorter version for use in academic and clinical  settings60.

With regards to the GMM analyses, there is potential for misspecification issues to arise surrounding the 
distributions of the error terms and variance–covariance matrix structures, which could influence the number 
of classes in the final solution and bias regression  coefficients40,41. In this study, adding complexity was not 
advisable given the estimation issues encountered in models containing more parameters (e.g., freely estimated 
within-class variances of intercept and slope)46. Nonetheless, a primary benefit of the GMM framework resides 
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in its ability to identify classes with consistently low-to-moderate or sharply deteriorating AHA scores, allowing 
researchers and policymakers to target specific groups of individuals for  interventions22. Furthermore, there is 
some controversy as to which indices should inform model selection, albeit the indices used in the present study 
appear consistent in determining the number of classes to extract in LCGA and GMM  analyses44. In the absence 
of further theoretical and empirical work on AHA, it will be challenging to confirm whether differences among 
groups represent true underlying  processes25.

Overall, the current study showed that adults aged 50+ years in England follow heterogeneous trajectories 
of AHA. Lower wealth was associated with increased odds of membership in the moderate-stable and decliners 
groups, compared to the high-stable class. This work emphasises the need for wider policy processes addressing 
socio-economic disparities in later life. Future research should seek to compare trajectories of AHA across cohorts 
with varying socio-cultural contexts to improve  generalisability9. A deeper conceptual and empirical understand-
ing of AHA could assist governmental bodies to effectively manage population ageing in the following  years22.

Data availability
English Longitudinal Study of Ageing (ELSA) data are available through the UK Data Service (https:// ukdat aserv 
ice. ac. uk/). The main dataset is safeguarded and can be accessed via https:// beta. ukdat aserv ice. ac. uk/ datac atalo 
gue/ studi es/ study? id= 5050# !/ access- data. More information on how to access ELSA, including the conditions 
of use, can be found on the ELSA website (https:// www. elsa- proje ct. ac. uk/ acces sing- elsa- data) and the UK Data 
Service website (https:// beta. ukdat aserv ice. ac. uk/ datac atalo gue/ studi es/ study? id= 5050# !/ detai ls).
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