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Mapping tropical forest 
aboveground biomass using 
airborne SAR tomography
Naveen Ramachandran  1*, Sassan Saatchi 2, Stefano Tebaldini 3, 
Mauro Mariotti d’Alessandro 3 & Onkar Dikshit 1

Mapping tropical forest aboveground biomass (AGB) is important for quantifying emissions from 
land use change and evaluating climate mitigation strategies but remains a challenging problem for 
remote sensing observations. Here, we evaluate the capability of mapping AGB across a dense tropical 
forest using tomographic Synthetic Aperture Radar (TomoSAR) measurements at P-band frequency 
that will be available from the European Space Agency’s BIOMASS mission in 2024. To retrieve AGB, 
we compare three different TomoSAR reconstruction algorithms, back-projection (BP), Capon, and 
MUltiple SIgnal Classification (MUSIC), and validate AGB estimation from models using TomoSAR 
variables: backscattered power at 30 m height, forest height (FH), backscatter power metric (Q), and 
their combination. TropiSAR airborne campaign data in French Guiana, inventory plots, and airborne 
LiDAR measurements are used as reference data to develop models and calculate the AGB estimation 
uncertainty. We used univariate and multivariate regression models to estimate AGB at 4-ha grid 
cells, the nominal resolution of the BIOMASS mission. Our results show that the BP-based variables 
produced better AGB estimates compared to their counterparts, suggesting a more straightforward 
TomoSAR processing for the mission. The tomographic FH and AGB estimation have an average 
relative uncertainty of less than 10% with negligible systematic error across the entire biomass 
range (~ 200–500 Mg ha−1). We show that the backscattered power at 30 m height at HV polarization 
is the best single measurement to estimate AGB with significantly better accuracy than the LiDAR 
height metrics, and combining it with FH improved the accuracy of AGB estimation to less than 7% 
of the mean. Our study implies that using multiple information from P-band TomoSAR data from the 
BIOMASS mission provides a new capability to map tropical forest biomass and its changes accurately.

Forest ecosystem structure and AGB play a significant role in the global carbon cycles1–3. Accurate quantifica-
tion of forest three-dimensional (3D) structure, biomass, and its dynamics over a regional and global scale are 
essential to understanding anthropogenic carbon emission and its climate response3,4. However, the heterogeneity 
in forest structure results in the variation of biomass stocks across the landscape that may introduce significant 
uncertainty in calculating emissions and removals of carbon from disturbance and recovery of forests5,6. A vari-
ation of forest structure and AGB is also reflected in forest dynamics over time, suggesting additional difficulty 
in quantifying forest AGB over time. Measurements that can provide spatial variations of forest structure and 
AGB over time are considered critical for reducing the uncertainty of the terrestrial carbon cycle3,7,8. Mapping 
AGB and its changes are more challenging in humid tropical forests because of the diversity of tree species, the 
complexity of structure due to tree size and shape, and temporal dynamics due to natural and human-induced 
changes9. Furthermore, these ecosystems are a significant carbon pool in AGB and contribute more than two-
thirds of global terrestrial fluxes10,11.

Satellite remote sensing has been utilized for monitoring and mapping forests, including AGB, for several 
years12–15. The ability of Synthetic Aperture Radar (SAR) sensors to penetrate through clouds and forests, along 
with its sensitivity to dielectric and geometric properties of the target16,17, provides unique information, making 
it a viable tool for forestry. The SAR signal’s sensitivity and level of saturation (decrease in sensitivity of SAR 
signals to AGB values beyond a particular AGB value) to AGB varies according to its wavelength18–20. The lower 
frequency (L- and P-band) SAR can penetrate deep into the forest, interacting with its components, such as 
branches, trunks, etc.21,22, and hence better correlated to AGB over dense tropical forests. In addition, its ability 
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to provide polarimetric and interferometric data helps to characterize the forest 3D structure using PolInSAR 
or TomoSAR approaches21,23–25, improving AGB estimates. Using multi-baseline SAR interferometric measure-
ments to develop TomoSAR observations of forest structure has been one of the most promising remote sensing 
techniques to map AGB and its changes through time25–28. TomoSAR measurement acquires data at different 
view angles by changing spatial baselines to form a data stack containing multiple SAR images of the same area. 
The data stack is then focused via digital signal processing to produce a collection of voxels representing the 
reflectivity in three dimensions, thus allowing direct imaging of the interior of the forest canopy29. Different 
approaches have been adopted to inverse the reflectivity profile from multi-baseline data, the simplest of which 
is via the back-projection (BP) approach30–33. However, this approach is constrained by the limited vertical 
resolution of the profile, which is related to the total TomoSAR aperture length ( Ltomo ). Several super-resolution 
spectral estimation approaches used for TomoSAR image processing in the literature16,24,25 resolve the vertical 
backscatter power with higher resolution but suffers from poor radiometric accuracy.

However, the P-band SAR data or TomoSAR measurements from the spaceborne sensor are still unavailable. 
The ESA’s Earth Explorer’s BIOMASS spaceborne sensor is expected to be launched in 2024 with the first P-band 
SAR sensor34,35. The sensor will provide the first 3D measurements of the global forest using TomoSAR observa-
tion for a period of fourteen months after the initial commissioning phase. Since the data is acquired at P-band, it 
could also assist first mapping of terrain topography, even in dense forests36,37. Apart from these observations, the 
sensor will also operate in PolInSAR mode, allowing us to measure FH35,38. The mission is expected to produce 
global AGB and FH maps at a resolution of 4-ha (200 m × 200 m). As part of the calibration and validation activi-
ties of the BIOMASS mission, numerous airborne campaigns have been carried out demonstrating the capability 
of PolInSAR and TomoSAR techniques in estimating FH and/or AGB in boreal and tropical forests25,27,28,39–41. 
The results of these measurements have demonstrated that the TomoSAR backscatter power at linear polariza-
tions and at an average height of 30 m above ground is strongly correlated with the AGB without any indication 
of saturation across the entire biomass range (up to 500 Mg ha−1)20,24. The 30 m height corresponded to the total 
backscatter power within a layer between 20 to 40 m (the tomogram resolution was about 20 m for TropiSAR), 
which is expected to have about 35% to 40% of the total AGB of the forest as predicted with the TROLL ecological 
model42. A similar relationship was found using the vertical profile from airborne LiDAR scanning (ALS) data 
relating AGB to the total canopy area of larger trees at approximately 30 m (25–32 m) above ground43. However, 
the TomoSAR-biomass relationship’s robustness and the AGB estimation uncertainty depended on the ground 
contribution. At P-band, it was observed that the SAR signal reaches the ground, and a considerable backscat-
tering from the ground was observed in all polarization channels (but at different levels)27,44. Depending on the 
terrain slope, the double-bounce (canopy-ground or trunk-ground interaction) scattering is dominated if the 
terrain is flat, whereas,  in contrast, over sloped terrain, single-bounce scattering is visible44. One approach was to 
use a precise Digital Terrain Model (DTM) to minimize the terrain’s contribution and fine-tune the backscatter 
AGB model28,39. However, the lack of available precise and high-resolution DTM globally made this approach less 
effective over regions with high slopes. A recent approach estimated DTM directly from TomoSAR measurements 
comparable to LiDAR DTM in terms of precision36,37 and can be adopted for the same. Another solution is to 
decompose the TomoSAR backscatter contribution into ground and volume components45 and then correlate 
the volume contribution to AGB. Further, recent studies based on removing ground-level contribution from 
interferometric pairs46–49 have been shown to improve the results but fail to achieve the same level of accuracy 
as the 30 m TomoSAR backscatter intensity.

Although the airborne datasets have demonstrated the excellent performance of TomoSAR data for AGB 
estimation, retrieving AGB from spaceborne data over various regimes still poses challenges. (a) the spaceborne 
sensor will acquire data at a coarser resolution with a large coverage resulting in increased variation of forest 
and environmental characteristics within the resolution cell. For example, the variation of moisture and/or 
forest species and/or terrain condition may vary due to the increased size of the resolution cell. (b) Further, 
the viewing geometry of spaceborne sensors will have a narrow incidence angle, causing deeper penetration, 
resulting in more ground contribution effect than in airborne sensors. (c) although the backscattered power at 
the 30 m layer has shown the highest correlation with AGB over the tropical forest dataset28, the 30 m height 
doesn’t geometrically and physically justify the canopy height of global forest biomes and the related biomass 
content. For example, regions with smaller tree heights (say 15 m) or very high tree heights (say 50 m) will not 
necessarily have a good correlation for AGB with backscatter power at a 30 m layer. Further, the limitation of 
ground AGB data to find the fixed height, for a region, with the best correlation to AGB is constrained. Hence, 
addressing and validating backscattered power quantities other than a fixed height layer is essential. Recently, a 
new study integrated intensity along vertical profiles between 10 and 30 m heights as the volume contribution 
for estimating AGB, pointing to the role of vertical resolution in reducing the bias during AGB retrieval40,41. 
However, the effectiveness of this fixed height approach may constrain its practicability across regimes. Hence, 
a quantity that uses an adaptive approach depending upon the forest heights of the regimes has to be adopted. 
(e) The development of AGB estimate from the TomoSAR study has been widely dependent on the ground and 
LiDAR AGB and FH products. The lack of distribution of ground data around the globe constrains this approach. 
The availability of GEDI data allows us to overcome this limitation. However, recent studies using GEDI data 
have also shown a higher level of uncertainty in AGB estimates over multi-layered forests50. Hence, the validity 
of using LiDAR AGB products has to be assessed.

In view of these, our study attempted to predict AGB over the dense tropical forest by addressing the following 
questions. (a) can multi-polarization information enhance the accuracy of AGB estimates? (b) can the combina-
tion of backscattered power at 30 m height and tomographic height improve the AGB estimates counteracting 
the drawbacks of each other? (c) can an adaptive backscattered power quantity be derived to account for varia-
tion in FH over different regimes and with minimal dependency on reference AGB data? (d) does LiDAR AGB 
provide better accuracy compared to TomoSAR AGB estimates? and (e) Can the LiDAR AGB data be used to 
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calibrate/validate TomoSAR AGB models? The experimental data for this study is from airborne P-band obser-
vations and in situ measurements acquired over the Paracou test site in French Guiana during ESA’s TropiSAR 
2009 campaign22.

Materials and methods
Study area.  The experimental site (5°18′ N,52° 55′ W) is located in the moist tropical forests of Paracou, 
40 km west of Kourou and 12 km east of Sinnamary village, in French Guiana (Fig. 1a,b). The study area is hilly, 
with terrain heights varying from 5 to 50 m above mean sea level, with average annual precipitation of 3041 mm. 
The flora in the site is primarily dominated by tree families of Caesalpiniaceae, Lecythidaceae, Chrysobalan-
aceae, and Sapotaceae51. In 1984, twelve 9-ha (300 m × 300 m) were established, which were divided into three 
homogenous blocks52. Between 1986 and 1988, they underwent three types of silvicultural treatments (applied 
to one plot within each block and the last one as a control plot) with different intensities based on the rand-
omized block design. For the details of the silvicultural treatments, one can refer to52. Later, three more 9-ha 
(300 m × 300 m) and 25-ha (500 m × 500 m) plots were established in 1990 and 1991/1992, respectively. Since 
1986, these sixteen plots (12 + 3 + 1) have been regularly surveyed, and trees above 10 cm in diameter, along with 
species information, were mapped (Fig. 1c). However, over the fifteen 9-ha plots, the tree characteristic was 
monitored only in a core area covering 6.25-ha (250 m × 250 m), as shown in Fig. 1c. This periodic monitoring 
of the site forms a solid forest research database.

Figure 1.   The locations of the Paracou test sites, French Guiana. (a,b) are based on the shapefiles from OCHA 
Field Information Services Section (FISS)53, and (c,d) are generated from the shapefiles discussed in Labriere 
et al.54 and the dataset can be obtained from55 (e) 0.25-ha plots selected for 4-ha plot generation (f) generated 
4-ha plots. This Figure is generated using python 3.7.4.56.
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Inventory data.  As a part of the preliminary activities supporting the BIOMASS mission, the ESA con-
ducted TropiSAR 2009 campaign and collected ground, airborne SAR, and LiDAR data over two sites, Nour-
agues and Paracou, in French Guiana22. The Office National d’Etudes et de Recherches Aérospatiales (ONERA) 
acquired SAR data, while The Evolution and Diversité Biologique laboratory (EDB) and Centre de coopération 
internationale en recherche agronomique pour le développement (CIRAD) where responsible for measuring 
reference ground and LiDAR data. ESA provides the standardized ground and LiDAR datasets at 0.25-ha reso-
lution (50 m × 50 m). At Paracou, the 6.25-ha plots were divided into twenty-five 50 m × 50 m, and 25-ha plots 
were divided into hundred 50 m × 50 m plots (Fig. 1d). Labriere et al.54 estimated ground AGB values, which use 
height derived from the local H:D relationship, over the 0.25-ha were used as a reference AGB. For this work, 
analogous to BIOMASS products (AGB and tree height) resolution, the 4-ha plots (200 m × 200 m) were gener-
ated by aggregating the corresponding values from 0.25-ha plots. The 0.25-ha plots used to generate 4-ha plots 
are shown in Fig. 1e. The aggregated ground and LiDAR AGB and tree height values estimated at the 4-ha resolu-
tion (Fig. 1f) were used in this study. The average tree height was 27 m, with a mean biomass value of 340 Mg ha−1 
over both 4-ha and selected 0.25-ha plots. However, the standard deviation was much higher (71.08 Mg ha−1 and 
3.22 m) for 0.25-ha plots compared to the 4-ha plots (44.64 Mg ha−1 and 2.57 m) (Supplementary Table S1). The 
distribution of 0.25-ha and 4-ha AGB and tree heights are shown in Supplementary Fig. S1.

Airborne SAR data.  The TomoSAR image stack collected over the study site consists of six fully polarimet-
ric single-look complex (SLC) data acquired at P-band during TropiSAR 2009 campaign. The sensor operates at a 
central frequency of 397.5 MHz with 125 MHz bandwidth. Flying at an altitude of 4014 m, the SAR sensor covers 
a swath width of 5 km with incidence angles between 25° and 60°. The TomoSAR stack is acquired by shifting 
the trajectory vertically by ~ 15 m below the reference track and a pixel spacing of 1 m and 1.245 m in slant range 
and azimuth direction, respectively. Further information about the campaign and datasets can be found in22. The 
configuration of P-band ONERA used during the campaign is shown in Table 1.

Airborne LiDAR data.  The ALS data from the study site was acquired under the project GUYAFOR by 
CIRAD. The laser operated at a wavelength of 0.9 μm with a pulse density of approximately 4 m-2 and a footprint 
size of approximately 45 cm at ground level. The raw data were processed, and the final canopy height model 
(CHM) and digital elevation model (DEM) were sampled at 1 m × 1 m pixels in size57. However, the LiDAR data 
is not available for the entire extent of the SAR image. The LiDAR-derived height matrices over these plots were 
used to estimate the LiDAR AGB product54.

Methods.  The details on the TomoSAR processing, generation of TomoSAR cube, forest profiles, and tree 
height estimation over the same dataset have been discussed in47, to which readers can refer a detailed under-
standing of TomoSAR processing. Here, we only summarize these steps, as the main focus of this study is to 
estimate AGB from the TomoSAR cube reconstructed and its derived variables. The overall methodology is 
shown in Fig. 2.

The focused and co-registered multi-baseline SAR data stack was phase-calibrated using the Phase Centre 
Double Localization approach21. Later, the interferometric coherence was calculated, and the TomoSAR reflectiv-
ity cube was reconstructed using BP25, Capon62, and MUSIC62 estimators (summarized in Supplementary Method 
S1). The reconstructed TomoSAR reflectivity cube was converted from radar geometry to ground geometry by 
interpolating the backscattered power from slant range-cross range geometry to the ground-elevation geometry 
with the knowledge of platform positions and terrain topography. Finally, the TomoSAR reflectivity cube was 
corrected for the influence of terrain relief25,28,39 and is given by

(1)Psm
(
x, g , z

)
= Pm

(
x, g , z

)
.sin(θ − α)

Table 1.   Description of the TomoSAR Dataset acquired using P-band ONERA SETHI sensor.

Geometry

 Flight ground altitude (m) 4014

 Aircraft speed (m/s) 120

Waveform

 Band/ Mode P/Full-polar

 Incidence angle range (deg.) 24–62

 Frequency range (MHz) 260–460

 PRF (KHz) 2.5

 Wavelength (cm) 0.75

SLC image

 Pixel size (rg/az) (m) 1.0/1.245

 Resolution (rg/az) (m) 1.2/ 1.5

 No. of passes 6

 Baseline range (m) 76.2
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Here, Psm
(
x, g , z

)
 is the slope compensated TomoSAR reflectivity within the azimuth-ground range resolution 

cell ( x, g ) at height layer z from the ground level using estimator m , θ is the radar incidence angle α denotes the 
local slope in ground range geometry, and m represents the reconstruction algorithm ( m can be BP or Capon 
or MUSIC). The FH was estimated from the TomoSAR using the approach adopted by27 (summarized in Sup-
plementary Method S2).

Further, in this study, we derive the TomoSAR power metric (Q) based on vertical resolution, retrieved FH, 
and phase center, as defined below in Eq. (2), to estimate and validate a variable that can substitute for TomoSAR 
backscatter power at 30 m. To provide simplified notation, Psm from Eq. (1) is written as Ppq in Eq. (2), where 
P = Ps

m and p, q represents transmitted and received polarization.

(2)

PHpq = Ppq
�
H , x, g

�
(Q1)

PH−
pq
= P

pq

�
H − 0.5∗δz , x, g

�
(Q2)

PH+
pq
= P

pq

�
H + 0.5∗δz , x, g

�
(Q3)

PIpq =
H�

0.5∗δz

Ppq
�
x, g

�
dz (Q4)

PHcpq
= Ppq

�
Hc , x, g

�
(Q5)






Figure 2.   Overview of the methodology followed in this research. This Figure is generated using Inkscape 
1.2.258. The images of tree, ground and airplane in figure are used from59–61, respectively.
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Here, PHpq, PH−
pq ,
, PH+

pq
, P

Ipq
andPHcpq

 are the reflectivity of the TomoSAR cube at tree height (Q1), tree height 

minus half vertical resolution (Q2), tree height plus half vertical resolution (Q3), integrated reflectivity from half 
vertical resolution from ground to tree height (Q4) and phase center (Q5). It is to be noted that the metric Q4, 
the lower cut-off of half of the vertical resolution from the ground, is selected to minimize the limitation due to 
the ground and double bounce scattering that degrades the correlation between the integrated power and AGB 
and is integrated up to estimated tree height values to adopt for representative heights rather than just the 30 m 
layer. Thus, this metric provides a much better representation of the physical structure than a single-layer 
metric.

AGB model parameterization and validation.  Previous studies25,28,40,41,46 have validated the potential 
of the backscattered power at the 30 m layer to estimate AGB using the BP estimator. However, this paper focuses 
on the AGB estimation from three variables: backscattered power at the 30 m layer, FH and Q (shown in Fig. 2.), 
and their combination, estimated from BP, Capon, and MUSIC. The model notations and quantity used are sum-
marised in Table 2, and the corresponding AGB models are detailed in Supplementary Tables S4–S10. The back-
scattered power at the 30 m layer-based AGB models is classified into (a) single polarization AGB models (P1-
P15) and (b) multi-polarimetric AGB models (P16-P34). Past studies have used different assumptions to explore 
the relationship between AGB and conventional SAR backscatter data18,19,63–65. Further, it was observed that 
combining information at different polarization5,65–67 and also with other parameters5,68,69, such as tree height, 
improved the AGB estimates in the case of conventional SAR backscatter data. Previous TomoSAR studies used 
a linear relationship assumption between AGB and backscattered power at 30 m of TomoSAR cube25,28. Hence, 
to explore further possibilities, we test the relationship between the backscattered power at the 30 m layer of the 
TomoSAR cube with the field AGB using linear, pure quadratic, exponential, power, and sigmoid forms. The 
power and sigmoid forms utilized linear values of backscattered power at the 30 m layer, whereas the other forms 
used log values. Similarly, we tried to establish a relationship between tomographic FH and the field AGB using 
the same assumptions (H1–H15). However, all the forms utilized linear values of FH. Further, the tomographic 
FH is combined with the single (C1–C9) and multi-polarization (C10-C18) backscattered power at the 30 m 
layer to calibrate and validate the AGB model. TomoSAR power metric-based (QP1–QP24) and the integrated 
TomoSAR power metric and tomographic FH (QC1–QC18) models are also evaluated. Once the average value 
of TomoSAR variables is extracted over the 4-ha plots, the AGB models are calibrated/validated using the hold-
out validation approach by randomly selecting 75 percent as training and 25 percent as testing data iteratively 
500 times. The accuracy statistics are provided as average over all the iterations. The field AGB (y) is fitted to 
TomoSAR estimated variables [x] using linear or nonlinear minimization of the cost function J to estimate the 
model parameters [a]. The cost function, J, is given by

Once the parameters of AGB models [a] are estimated, the corresponding model is calibrated over the entire 
SAR scene to map the estimated biomass.

Here, ŷSAR is estimated AGB over the area covered by the SAR image, F is the selected AGB model, 
[
â
]
 is AGB 

model parameter and [xSAR] are the TomoSAR variables. The correlation of variables to AGB is assessed using 
the Pearson correlation coefficient (rp). Further, the quantification of estimation accuracy was performed using 
the statistical measures;  root-mean-square error (RMSE) and coefficient of determination (R2).

(3)J = min
[a]

�F([a], [x])− y�2

2

= min
[a]

∑

n

(
F([a], [x])− y

)2

(4)ŷSAR = F
([
â
]
, [xSAR]

)

Table 2.   Summary of AGB models using different TomoSAR variables.

Model notation Quantity

Backscattered power at the 30 m layer-based AGB models

 P1–P15 It uses single-polarization P30

 P16–P34 It uses multi-polarization P30

Forest height-based AGB models

 H1–H15 It uses TFH

Backscattered power at the 30 m layer and Forest height integrated AGB models

 C1–C9 It uses single-polarization P30 and TFH

 C10–C18 It uses multi-polarization P30 and TFH

TomoSAR metric-based AGB models. It is the same as Backscattered power at the 30 m layer-based and backscattered power at the 30 m 
layer and forest height integrated AGB models, except that backscattered power at the 30 m layer is replaced with TomoSAR metric

QP1–QP15 It uses single-polarization Q

QP16–QP28 It uses multi-polarization Q

QC1–QC9 It uses single-polarization Q and TFH

QC10–QC18 It uses multi-polarization Q and TFH
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Results
Similar to the methodology, the results are TomoSAR processing and tomographic FH are discussed in detail in47. 
In this section, we present the summary for the completeness of this work. No or negligible temporal decorrela-
tion was assumed as the TomoSAR data set was collected within two hours. The phase calibration was performed, 
and the covariance matrix was estimated using a window size of 9 × 9 (9.0 × 11.205 m) in the range-azimuth direc-
tion. Then, the three TomoSAR reconstruction algorithms (BP, Capon, and MUSIC) were applied to generate a 
multi-layer stack. The generated multi-layer stack represents the backscattered power at a fixed height (say 0, 5, 
10…50 m) from the terrain surface. The reflectivity profile and tomographic FH estimates agreed well with Lidar 
CHM values47. With the multi-layer backscattered power values, tomographic FH, and TomoSAR power metric, 
we performed calibration/validation of AGB models at a 4-ha resolution in further sections.

AGB estimation from backscattered power at the 30  m layer.  Firstly, we use the linear regres-
sion approach to perform the correlation analysis between the multi-layer stacks and AGB layers. The purpose 
was two-fold (a) to assess the correlation behavior of the backscattered power of Capon and MUSIC in com-
parison to the BP multi-layer stack and (b) to assess the impact of different TomoSAR compensation47 on AGB 
estimation. The following can be observed in Fig. 3. (a) BP and MUSIC have the best and worst correlation, 
respectively. (b) Layers below 15 m had a negative correlation, whereas layers between 25 and 35 m had a strong 
positive correlation. (c) The maximum correlation was found at the 30 m layer for both the Capon ( rp = 0.85) 
and MUSIC ( rp = 0.80) estimators, similar to BP (0.92) estimator. (d) The correlation of HV ( rBPp =− 0.51, rCaponp  = 

− 0.50, rMUSIC
p  = − 0.68) at ground level is quite different from HH ( rBPp =− 0.21, rCaponp  = − 0.14, rMUSIC

p  = − 0.12) 

and VV ( rBPp =− 0.21, rCaponp  = − 0.16, rMUSIC
p  = − 0.22) polarization.

Analyzing the correlation of different TomoSAR compensations revealed that slope compensation back-
scattered (TGS) values had the highest correlation values (Supplementary Table S3). Hence, we will use the 
backscattered power at the 30 m layer, the tomographic FH, and the TomoSAR backscatter power metric (Q) 
estimated from slope-compensated multi-stack for AGB retrieval. Apart from linear regression (P1–P3), we 
also examined pure-quadratic (P4–P6), exponential (P7–P9), power series (P10–P12), and sigmoid (P13–P15) 
models to understand the relation between the backscattered power at the 30 m layer and AGB. It was observed 
that for all models employing the backscattered power at the 30 m layer estimated from BP, AGB values below 
350 Mg ha−1 indicate a good fit, but values above 350 Mg ha-1 indicate greater dispersion. However, higher disper-
sion is observed for both the Capon and MUSIC estimators, particularly the MUSIC estimator (Supplementary 
Fig. S2). Comparing these models, the linear and pure-quadratic models performed consistently the best for all 
model-polarization combinations (Supplementary Table S4). The best result is obtained using the BP estimator at 
HV, with the lowest RMSE and R2 values of 17 Mg ha−1 and 0.86, respectively, for the pure-quadratic model. The 
pure-quadratic model also consistently performed with Capon (RMSE = 21.93 Mg ha−1, R2 = 0.76) and MUSIC 
(RMSE = 25.35 Mg ha−1, R2 = 0.68) P30 , and hence will be considered the baseline models for the rest of the 
analysis. The exponential model performed the worst. It can be seen from higher RMSE and R2 values that the 
exponential model tends to overfit the values.

We adopted linear and pure-quadratic models to combine multiple polarization data based on the above 
results. In general, a degradation or minor improvement in accuracy was observed for BP and MUSIC, while 
for Capon, significant improvement was noticed compared to their baseline models (Supplementary Table S5). 
In addition, non-linear polarization states were synthesized to assess how the addition of synthesized polariza-
tion information impacts the performance of multi-polarization-based AGB models. The combination of the 
backscattered power at the 30 m layer in PiH, HH, and HV polarization using BP improved the accuracy of the 

Figure 3.   The Pearson correlation of TomoSAR backscattered power associated with different heights reference 
AGB for different polarizations at 4 ha resolution (a) BP, (b) Capon, and (c) MUSIC. Blue, orange, and green 
represent HH, HV, and VV polarizations.
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estimator for both linear (RMSE = 14.31 Mg ha−1, R2 = 0.9) and pure-quadratic (RMSE = 14.73 Mg ha−1, R2 = 0.89) 
models. However, no such behavior was observed for Capon and MUSIC estimators (Supplementary Table S6).

AGB estimation from tomographic FH.  The tomographic FH was estimated at a 4-ha resolution with 
an RMSE of less than 10% using the BP, Capon, and MUSIC estimators47. Now, similar to the backscattered 
power at the 30 m layer, we studied the linear (H1–H3), pure-quadratic (H3–H6), exponential (H7–H9), power 
series (H10–H12), and sigmoid (H13–H15) models to comprehend the relation between tomographic FH and 
AGB (Supplementary Table S7). None of these models, however, outperformed the base models. Interestingly, 
while tomographic FH estimation based on BP slightly underperformed compared to MUSIC and Capon, the 
tomographic FH-based AGB estimations using BP performed better than MUSIC and Capon. Among the 
tomographic FH-based models, the BP FTH at HV polarization was the most accurate (RMSE = 23 Mg ha−1, 
R2 = 0.73). Compared to base models, the tomographic FH-based models displayed an average RMSE increment 
of ~ 7–15 Mg ha−1, depending on polarization-model combinations.

AGB estimation from Integrated the backscattered power at the 30 m layer and tomographic 
FH.  The integration of the backscattered power at the 30 m layer and tomographic FH (C1–C18) increased the 
accuracy of the AGB estimates. The relative RMSE improved from ~ (5–12)%—and ~ (7–11)% for the backscat-
tered power at the 30 m layer- and tomographic FH-based AGB models, respectively, to ~ (4–7) % for combined 
models. Notably, the exponential (C7–C9) AGB models integrating the backscattered power at the 30 m layer 
and tomographic FH displayed significant improvement compared to the exponential models using backscat-
tered power at the 30 m layer (P7–P9). The RMSE improved from ~ 39 to ~ 42 Mg ha−1 to ~ 15 to ~ 23 Mg ha−1 
polarization-model combinations. Compared to the base model, the best accuracy was achieved by combining 
the backscattered power at the 30 m layer and tomographic FH at HV using BP estimator and pure-quadratic 
AGB model (RMSE 16.60 to 12.23 Mg ha−1).

AGB estimation from TomoSAR power metric.  Apart from backscattered power at the 30 m layer 
and tomographic FH, we explored using the derived TomoSAR power metric to estimate AGB. We restrict 
the analysis to the TomoSAR power metric computed from multi-stack using the BP estimator for simplicity. 
It was observed that apart from Q4, none of the other TomoSAR power metric metrics showed a considerable 
relationship with reference AGB (Supplementary Fig. S3). First, we use the TomoSAR power metric indepen-
dently to estimate the AGB (QP1–QP24). These models are similar to that of P30-based models, except that the 
backscattered power at the 30 m layer is replaced with the TomoSAR power metric metrics. The Q4 metric could 
achieve the best accuracy (RMSE = 16.28 Mg ha−1, R2 = 0.87) at HV polarization using a pure-quadratic model 
(QP5), which is a minor improvement compared to the base model. Also, combining the V-receive polarization 
improved the accuracy further to RMSE = 15.83 Mg ha−1 and R2 = 0.88. Adding tomographic FH information 
and the TomoSAR power metric (QC1-QC18) significantly improved all TomoSAR power metrics other than 
Q4, where minimal or negligible improvement is observed. The best observation was still observed for the Q4 
metric (RMSE = 14.49 Mg  ha−1, R2 = 0.89). However, this accuracy was lower than the best possible accuracy 
achieved by integrating the backscattered power at the 30 m layer and tomographic FH-based model but at a 
higher computational cost.

Comparison of TomoSAR and LIDAR FH and AGB.  Currently, of all RS techniques, the best estimates 
of FH are obtained using LiDAR. However, the global coverage is limited by data sampling. Hence, Lidar-derived 
FH is expected to produce reliable AGB that can be used as a proxy for in situ measurements of forest structure 
and biomass. Here, we perform the comparison of (a) tomographic and LiDAR FH, (b) AGB estimates derived 
from LiDAR FH, tomographic FH, the backscattered power at the 30 m layer from BP estimator at HV polariza-
tion using the P2 model, and (c) AGB modeled using ground and Lidar FH-derived AGB data. The tomographic 
FH used in this section is estimated at HV polarization. To derive AGB from LiDAR and tomographic FH, we 
have used the power law model adopted by54 and given by

Here, Hx is tomographic FH or LiDAR FH. The comparison of height estimates at the 4-ha plot scale shows 
reasonable agreement across the entire range, with tomographic FH showing slight overestimation for the plots 
with the tallest average height (Fig. 4a). When the correlation between the ground AGB and the Lidar FH, 
tomographic FH, and the backscattered power at the 30 m layer from the BP estimator at HV polarisation is 
examined (Fig. 4b), it can be seen that, although these parameters show reasonable correlation, both FH exhibited 
increased dispersion. While the LiDAR FH dispersion is greater for AGB > 350 Mg ha−1, the tomographic FH 
dispersion is greater for most AGB ranges. Further, comparing the AGB estimates, the backscattered power at 
the 30 m layer showed the best correlation (0.92) with much lesser dispersion and estimated AGB with the least 
RMSE (17.07 Mg ha−1) followed by LiDAR AGB estimates (rp = 0.86; RMSE = 22.6 Mg ha−1) (Fig. 4c). Finally, we 
calibrated the P1 AGB model using Lidar FH-derived AGB estimates and validated it against both LiDAR FH-
derived and ground AGB to verify the reliability of utilizing LiDAR FH-derived AGB to calibrate and validate 
TomoSAR AGB models. AGB estimates calibrated using LiDAR FH-derived AGB are found to be overestimated 
when compared to LiDAR FH-derived AGB estimates, but comparing it to ground AGB, gives a much better 
RMSE of 19.0 Mg ha−1 (Fig. 4d).

(5)Ŵ = aHb
x
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Discussion
This study demonstrates that P-band TomoSAR techniques can accurately retrieve AGB tropical forests even 
over varying AGB and terrain conditions. The analysis shows that a less than ten percent relative error can be 
achieved using the combination of multiple variables derived from the TomoSAR over the Paracou test site. We 
also highlight the importance of selecting a robust processing chain to obtain reliable and accurate AGB esti-
mates. Finally, we demonstrate that LiDAR FH and AGB can be used as a proxy to improve the AGB estimates 
from TomoSAR variables. These results boost the possibility of using GEDI and BIOMASS data in combination 
to provide precise wall-to-wall AGB mapping.

Firstly, we analyzed the correlation of AGB with different layers of a multi-layer stack using BP, Capon, and 
MUSIC estimators. The ground-level layer showed distinct characteristics in the cross-polarized channel com-
pared to co-polarized channels. This behavior can be attributed to lower ground contributions in HV than in 
co-polarized channels70. The sidelobe from the canopy and ground signals contribute to the intensity of ground-
level tomography. When the contribution of the ground is reduced, the contribution of the canopy’s sidelobe 
becomes dominant. As a result, there is a significant negative correlation observed. This behavior is observed for 
all estimators. Also, analyzing the impact of different backscatter compensation approaches on AGB estimates, we 
found that the slope-compensated tomographic power provides the best correlation with AGB compared to other 
compensations for the BP estimator. Although, the volume-compensated tomographic also displayed a similar 
level of accuracy over the Paracou test site, where vertical resolution is around 20 m and does not show significant 
variation over the plot. Hence, to assess the efficiency of this compensation, it has to be validated over plots with 
variable vertical resolution and will be treated as a separate problem and not considered in this paper. Another 
important observation was that even though the slope compensated tomographic power for BP significantly 
improved its correlation with AGB, it resulted in a degradation of correlation for Capon and MUSIC estimators.

Comparing all estimator-polarization combinations, the best performance was achieved using the backscat-
tered power at the 30 m layer at HV polarization using the BP estimator. With the vertical resolution of the 20 m 
over the Paracou dataset, the backscattered power at the 30 m layer represents the backscatter from scatterers 
between 20 and 40 m. Previous ecological studies reinforce these results42,43. Also, we compared the distribu-
tion of LiDAR CHM over the plots and observed that around 83 percent of CHM falls within the 20–40 m 
range (Fig. 5). Further, we assessed the correlation pattern of the mean of Lidar CHM over the bins (0–5, 5–10, 
10–15… 45–50 m) with AGB. It can be observed that the best correlation was achieved for bin 25–30 m, fol-
lowed by 30–35 m. However, for Capon and MUSIC estimators, the reduction in accuracy can be attributed 
to (a) improved vertical resolution: theoretically, the amount of AGB content with finer resolution cells should 
be ideally less. However, detailed work on the vertical resolution of the Capon and MUSIC estimator and the 

Figure 4.   The TomoSAR AGB validation using field measured and LiDAR AGB.
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content within the 30 m resolution cell has to be investigated further and is out of the scope of this paper. (b) 
Loss in radiometric quality: it is well established that Capon and MUSIC estimators are more accurate for point 
scatters and not optimized for volume scatterers, leading to degraded power estimates71.

The result of the top-performing models (Supplementary Table S4-S10) is summarized in Tables 3 and 4. The 
linear and pure quadratic models performed best with higher R2 and lower RMSE values compared to single 
polarimetric-based models. The larger dispersion is seen for AGB values greater than 350 Mg ha−1 and results 
in an underestimation of AGB estimates. However, most of the multi-polarimetric-based models showed lesser 
dispersion with improved accuracy. The model combining HH and HV and synthesized PiH polarization showed 
the best results. This gives an implication that a dual-polarization system can be adopted for the TomoSAR mis-
sion, as these combinations can be derived using a dual polarimetric system (HH + HV or VV + VH, and a third 
one can be derived using a combination of these), and it is possible to achieve improved accuracy. Integrating 
the backscattered power at the 30 m layer and tomographic FH to estimate AGB indicate improved retrievals 
compared to using them independently. This improvement is much more significant in combined models than 
in backscatter or height models for single polarization. This confirms that combined usage of TomoSAR variables 

Figure 5.   Percentage histogram of LiDAR CHM within the plot region. The correlation of AGB with the 
associated height bin is also indicated using a line diagram (blue).

Table 3.   Summary of P30 , TFH, integrated P30 at different polarization and integrated P30 and TFH AGB 
models.

Model AGB model

BP Capon MUSIC

RMSE r2 RMSE r2 RMSE r2

P2 y = a0 + a1PHV 17.07 0.85 23.32 0.72 27.41 0.62

P5 y = a0 + a1PHV + a2P
2
HV 16.60 0.86 21.93 0.76 25.67 0.67

P19 y = a0 + a1PHV + a2P
2
HV + a

3
PVV + a4P

2
VV 16.14 0.87 22.84 0.75 26.40 0.66

P23 y = a0 + a1PHH + a2P
2
HH + a

3
PHV + a4P

2
HV + a5PVV + a6P

2
VV 16.27 0.86 19.69 0.82 26.64 0.64

P25 y = a0 + a1PHH + a2PHV + a3PPiH 14.31 0.90 19.74 0.80 26.91 0.63

P30 y = a0+a1PHH + a2P
2
HH + a

3
PHV + a4P

2
HV + a5PPiH + a6P

2
PiH 14.73 0.89 19.74 0.80 26.91 0.63

H5 y = a0 + a1HHV + a2H
2
HV 23.06 0.73 26.48 0.64 27.31 0.63

C5 y = a0 + a1PHV + a2P
2
HV + a

3
HHV + a4H

2
HV 12.23 0.92 17.87 0.84 22.13 0.75

C16 y = a0 + a1PHH + a2PHV + a3PVV + a4HVV 13.59 0.91 19.42 0.81 21.76 0.76
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helps counterbalance the perturbations that affect them. These models provide the best overall performance for 
AGB estimates concerning the study area. This is confirmed by the coefficient of determination values, which is 
consistently high for all the models.

We also investigated the capability of TomoSAR power metrics to estimate AGB because the fixed height 
layer analysis does not geometrically and physically justify the canopy height range of global forest biomes and 
the associated AGB. Among the five metrics, the Q4 metric performed exceptionally well. Similar to the back-
scattered power at 30 m, Q4 integrates the contribution primarily from the intermediate TomoSAR cells, which 
contain a high amount of AGB components, resulting in a stronger correlation with AGB values compared to 
other metrics40,41. proposed a metric similar to Q4 (but integrating between the fixed height range of 10–30 m) 
and observed that it correlated better with AGB than conventional SAR backscatter values. However, the effect 
of vertical resolution on Q4 will play a vital role in deciding the influence of ground contribution on this met-
ric. Further, studies must be incorporated to understand the impact of different vertical resolutions and their 
corresponding ground contribution effect on integrated power metrics. In contrast, the possible reason for the 
degrading performance of other metrics can be explained as follows: With an average tree height of around 27 m 
across the plots, the Q2 metric should yield a backscattered power of about 20–15 m. As a result, the low correla-
tion of Q2 with AGB can be attributed to power loss caused by high tree penetration as it propagates toward the 
ground. Previous research25,28,39 has also discussed the site’s weaker correlation for layers below 25 m. Similarly, 
the Q3 metric should yield a backscattered power of between 35 and 50 m. With the maximum average forest 
height of 45 m over the plots, the loss in the correlation of AGB to Q3 metric can be primarily attributed to the 
backscatter contribution from noise regions in the vertical distribution model, which may not be associated 
with any physical component of forests. Also, the phase center for the study site lies below 15 m37. The weaker 
correlation with the Q5 metric can be due to the dominance of effect due to slope and attenuation, which is more 
prominent in lower layers.

Now, compared to the backscattered power at the 30 m layer, LiDAR and tomographic FH generated less 
accurate AGB estimates. One of the possible reasons for this may be because of the limitation of LiDAR to reach 
the ground over the dense, multi-storied forest, leading to errors in FH estimates that may be reflected in AGB. 
A recent study using the GEDI data has reported higher uncertainty in AGB over multi-layered forests50. This 
suggests that height alone cannot represent AGB in tropical conditions, regardless of the approaches utilized, 
and that a multivariable model is required to quantify AGB estimates more precisely. Combining the backscat-
tered power at the 30 m layer with FH improved the accuracy, demonstrating that it is possible to counteract the 
accuracy loss due to the effect of the ground contribution that contaminates the backscattered signal from the 
forest layers and achieve accurate AGB estimates.

Conclusion
The analysis and results presented in this paper evaluate the ability of different variables derived from TomoSAR 
measurements to estimate AGB in the framework of ESA’s P-Band SAR mission BIOMASS. The analysis is per-
formed based on the data collected over the Paracou test site during the TropiSAR airborne campaigns in 2009. 
The results suggest the following: (1) irrespective of the reconstruction algorithm used, the backscattered power 
at 30 m height from ground show the highest correlation with AGB. The backscattered power at 30 m height 
estimated using BP provided the best results of the three reconstruction algorithms. Comparing the different 
polarization HV polarization demonstrated the higher accuracy across different reconstruction algorithms. 
Further, in this study, we observed that slope compensated backscattered power perform better than the volume 
compensated backscattered power. However, this result has to be reaffirmed by experimenting with datasets at 
different vertical resolution. (2) Compared with tomographic FH, the backscattered power at the 30 m layer esti-
mated the AGB values more accurate, and their integration further improved the AGB estimation, counteracting 
the limitations in each. Also, the use of integrated power metric (Q4) shows promising results and can serve as 
an alternative for the backscattered power at the 30 m layer. However, further studies should be carried out to 
understand the effect of vertical resolution on the overall accuracy in different conditions. (3) Comparison of 
FH estimation from LiDAR and TomoSAR showed better correlation. However, the AGB estimates using both 
FH products, underperformed compared to the backscattered power at the 30 m layer, indicating tree height 
is not alone sufficient to represent AGB. However, to address the global lack of field data, calibrating the AGB 
models with LiDAR-derived AGB can still provide a high level of AGB accuracy across the forest landscape. (4) 
It is well known that the best height estimates are estimated by LiDAR data, while we have seen that the best 
tomographic variable that provide the best accuracy for AGB estimates is the backscattered power at the 30 m 
layer. Therefore, the combination of these two variables could be effectively used for regional and global AGB 
mapping. To date, the spaceborne TomoSAR and LiDAR data are not available over a common operational 
period. However, with overlapping operational period of BIOMASS and GEDI sensor, the presented results 

Table 4.   Summary of TomoSAR power metric (Q) and integrated Q & TFH AGB models.

Model AGB model

Q1 Q2 Q3 Q4 Q5

RMSE r2 RMSE r2 RMSE r2 RMSE r2 RMSE r2

QP5 y = a0 + a1QnHV + a2Qn
2
HV 44.01 0.02 42.82 0.08 42.91 0.06 16.28 0.87 44.32 0.05

QP19 y = a0 + a1QnHV + a2Qn
2
HV + a

3
QnVV + a4Qn

2
VV 44.98 0.05 45.63 0.09 40.54 0.21 15.83 0.88 46.35 0.03

QC5 y = a0 + a1QnHV + a2Qn
2
HV + a

3
HHV + a4H

2
HV 15.75 0.88 29.77 0.76 19.97 0.80 14.49 0.89 19.95 0.84
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demonstrate the capability of using combined AGB models to improve our global AGB estimates significantly 
and assist global wall-to-wall AGB maps.

Data availability
The data used in this study are available upon reasonable request from the ESA under the EO campaign dataset. 
https://​doi.​org/​10.​5270/​esa-​1rtog​y6.
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