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Descriptor engineering in machine 
learning regression of electronic 
structure properties for 2D 
materials
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Stéphane Vézian  & Philippe Boucaud 

We build new material descriptors to predict the band gap and the work function of 2D materials by 
tree-based machine-learning models. The descriptor’s construction is based on vectorizing property 
matrices and on empirical property function, leading to mixing features that require low-resource 
computations. Combined with database-based features, the mixing features significantly improve 
the training and prediction of the models. We find R 2 greater than 0.9 and mean absolute errors (MAE) 
smaller than 0.23 eV both for the training and prediction. The highest R 2 of 0.95, 0.98 and the smallest 
MAE of 0.16 eV and 0.10 eV were obtained by using extreme gradient boosting for the bandgap and 
work-function predictions, respectively. These metrics were greatly improved as compared to those 
of database features-based predictions. We also find that the hybrid features slightly reduce the 
overfitting despite a small scale of the dataset. The relevance of the descriptor-based method was 
assessed by predicting and comparing the electronic properties of several 2D materials belonging to 
new classes (oxides, nitrides, carbides) with those of conventional computations. Our work provides a 
guideline to efficiently engineer descriptors by using vectorized property matrices and hybrid features 
for predicting 2D materials properties via ensemble models.

Data is one of the core rudiments that feeds artificial intelligence (AI) algorithms for training and data-driven 
inference. In the field of materials science, many efforts for discovering novel functional materials and their 
properties with help of the power of data and AI models have been intensely dedicated, providing alternatives 
to classical computation techniques such as work-horse computational and quantum chemistry methods1,2. 
As a matter of fact, the data-driven technique permits to mitigate impediments of the classical methods which 
require huge computational resources, time consumption and complexity of simulated physics. For instance, 
Pimachev et al.3 pointed out that the time consumption for Density Functional Theory (DFT) calculations scales 
quadratically while feature extraction for model training scales linearly with system size. For a same system size, 
one would need few hours to have comparable results with AI algorithms (feature extraction, training data and 
prediction) against 103 CPU hours of DFT calculations. Using machine learning (ML) to predict the band gap 
of materials, with or without combining DFT calculations is a notable illustration of feasibility and effectiveness 
of ML in the prediction of materials properties4–6. Efforts to develop algorithms in ML which are suitable to 
predict specific physical properties were also addressed7–9. These works have shown the power of ML in terms 
of theoretical characterization of materials.

The application of data science to bi-dimensional (2D) materials has been boosted by the quest of new classes 
of 2D materials since the discovery of graphene, the first 2D monolayer10. The milestones in the development 
of 2D materials like the experimental discovery of new synthetic 2D materials11 would be speeded up thanks 
to AI assistance12–14. In the same perspective, the quest of 2D materials possessing high-temperature ferromag-
netic order at long range has been also subject to data-driven studies for rapid discovery of stable magnetic 2D 
materials15. In another physics picture, defects in 2D lattices of transition metal dichalcogenides (TMDs) or 
hexagonal boron nitride (h-BN) are of particular interest because they might play a prime role as single emitters 
in the quantum emission process16,17 and non-volatile resistance switching18. ML-assisted design of point defects 
in 2D materials has been proposed by using a transfer learning procedure, then scoring the defect structures in 
order to predict ideal 2D candidates hosting defects for these specific applications19. Recently, the inference of 
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2D materials band gap, which is indicative of electronic structures and band offset in 2D heterostructures, is a 
relevant example regarding the use of ML in the characterization of intelligent data cycles20,21.

Besides algorithms employed to predict these properties, the descriptor engineering and feature selection 
are pivotal factors for reducing the error loss in the training process and for improving the prediction. Univer-
sal descriptors based on a set of feature vectors, which is constructed by structural inputs, have shown a good 
estimation of important properties22. However, such a method working solely with specific features could touch 
limit of physics description when downsizing the dataset size. Up to date, the dataset size of 2D materials is in 
general small since theoretical and experimental data regarding 2D materials are scarce. A graph-based multilayer 
descriptor was introduced to discover new magnetic 2D materials endowing stable magnetic ordering23. The 
descriptors were built based on multilayer-based crystal graph that induces a set of more than 230 features even 
after having used pooling technique to reduce the dimension. Although the results are promising, the approach 
seems to be tedious because of involvement of high number of features and expensive calculations.

Here, we make use of Computational 2D Materials Database (C2DB) dataset of about 4000 entries, which 
is reliable data based on DFT calculations, to introduce novel descriptors for boosting the prediction of the 
electronic structure properties of 2D materials24,25. Complementary to the study conducted by Zhang et al.20 
where the models (R2 > 90%) are strongly biased (the feature “gap-nosoc” values are too close to the predicted 
values), our approach consists of introducing descriptors vectorized from property matrices for ML cycles. The 
descriptors are simple to compute and directly related to electronic properties. We combined these descriptors 
with empirical function-based descriptor (electronegativity)26 to strengthen the efficiency and the stability of 
the descriptors against the change of target properties and models. Such a combination permits to considerably 
reduce the dimension of the input features and results in a high performance of models as compared to previ-
ous studies. Furthermore, the proposed descriptor processing is simple to implement, robust and it requires 
low-computation cost.

The efficiency of the constructed descriptors was evaluated through the performance of the ML cycles where 
the accuracy (R2 > 90%, mean absolute error (MAE) down to 0.1 eV) is much higher than the performance 
obtained with database-based features. Our results are comparable to those of ML cycles with DFT-generated 
features20. Moreover, we have found that the hybrid descriptors or features contribute to reduce the overfitting 
in the prediction of the work function. Indeed, the discrepancy of MAE metrics for the training set and the test 
set were decreased by 0.1 eV. Our findings point to consistent relationship of the descriptors with electronic 
structure properties of 2D materials. Apart from the classical construction of empirical descriptor (electronega-
tivity), the introduction of vectorized descriptors indicates that one could “skip” certain expensive-calculated 
features which are sometimes biasing sources of the outcomes20. Therefore, conventional ML cycles could get 
decent and comparable results although the volume of features is much less than other approaches23. Our findings 
clearly indicate the breakthrough of the descriptor engineering based on vectorizing, empirical function-based 
descriptors and domain knowledges in the data-driven prediction of 2D materials properties. Finally, the infer-
ence of the band gap and the work function of recently synthesized 2D materials and undiscovered ones (oxides, 
nitride, transition metal carbides) was carried out to underline the relevance of the descriptor-tailoring method. 
We could correlate the obtained values with those of ab initio calculations and forecast that the unknown work 
functions of Mo2Ga2 C and V2Ga2 C are 4.9 eV and 4.6 eV, respectively.

Methodology
Additional descriptor construction.  To do so, we have selected relevant atom-atom interactions based 
on elemental parameters to generate molecule-level descriptors that closely describe their impact on target prop-
erties. We use in this study 8 descriptors in total. Four descriptors (number of atoms, cell volume, molecular mass 
and formation heat) are picked up from the C2DB database. Four additional descriptors were created according 
the following procedure. One descriptor (electronegativity) was calculated by using empirical equation26. For 
instance, the electronegativity of a molecular formula A aBbCc is expressed as χ = (AaBbCc)1/(a+b+c) . The three 
remaining descriptors being vectorized descriptors (covalent radius, dipole polarizability, ionization energy) 
were built based on atomic property data27. Indeed, the band gap and the work function are inherent properties 
of materials which are fundamentals for featuring their electronic structure. At molecule level, the elemental 
properties of constituents and the intra-molecular interactions are indicative of how electronic structure evolves. 
The construction of the vectorized descriptors consists of computing vector-based properties of a molecule 
derived from property matrices which should have a strong physico-chemical relationship with target proper-
ties. The property Pi of a molecule is represented by a property matrix those values are filled by the atom-atom 
pair contribution: Pi = [aij]

n
i,j=1 = [Ĥ(ij)]ni,j=1 , where Ĥ is a predefined operator applying on atoms i, j and n 

is the number of atoms in the reduced stoichiometric formula of the molecule. Depending on the nature of the 
property, the operator employed in the construction process may be addition, subtraction (absolute value) or 
multiplication. For instance, a dipole polarizability of an atom-atom pair results from a summation of individual 
polarizabilities. This operation allows to take into account the atom-atom pair interaction in the molecule. In 
this study, the choice of the properties (covalent radius, dipole polarizability, ionization energy) was based not 
only on the relationship with the electronic structure of molecules but also on the non-complexity of calculations 
to efficiently assess the prediction performance of ML models for low-cost computations. Indeed, by employing 
these descriptors as input features, we get access to the low levels of the intra-molecular interactions which help 
the ML solvers to determine resulting electronic properties of molecules. Compared to classical and sophisti-
cated approaches enabling to compute a whole picture of the energy distribution of states in momentum space, 
descriptor engineering-based ML set-up is fully accessible for low-cost computations. For the sake of simplicity, 
we adopt a reduced stoichiometry of molecular formula to build the property matrices.
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The next step is to compute property vectors based on the property matrices. We define a property vector as a 
set of eigenvalues that characterize the property matrix : PiX = �X , where � stands for eigenvalue corresponding 
to eigenvector X. As the property matrices are symmetric, the eigenvalues get real values. A eigenvalue-based 
property vector represents characteristic spectrum of a property feature. The purpose of this conversion is 
twofold: (i) flatten the property matrices, thus greatly reduce the volume of input data for the training process 
by keeping physics meaning since the eigenvalues, i.e. energy states, are unique for each property matrix; (ii) 
provide evidence for an efficiency of this hybrid approach, i.e. combination of the ready-to-use features and the 
simply-built features regarding the property-prediction performance on the limited size of the dataset (around 
4000 entries for C2DB). Since the molecule lengths (number of atoms) are different, for the sake of data and input 
consistency, we impute the missing data of short property vectors with zero eigenvalue (zero state) to achieve 
the longest molecular length. Figure 1 describes the scheme of data flow that shows the DB, descriptor builder, 
model solvers and output inference.

Model selection and machine learning.  Random Forest (RF), Gradient Boosting (GB), Extreme Gra-
dient Boosting (XGB) were selected to perform the inference on the band gap and the work function of 2D 
compounds in the C2DB dataset (see Supplementary Information for basic explanation of the models). These 
algorithms are tree-based models, in particular gradient boosting algorithms which are well suitable for proper-
ties classification and regression as compared to other algorithms28. The dataset was randomly split into training 
and test sets with a ratio of 4:1, respectively. For each ML model, the training was carried out by tuning hyper-
parameters with help of grid search (see Supplementary Information) in scikit-learn29 and python 3.8 environ-
ment. The search permits to select the best model based on the best score (lowest function loss) for a given 
training set and given ensemble of features. We also employed the cross validation for training and prediction 
to reduce the randomness effect due to the dataset splitting and the overfitting of the data. The cross-validation 
sampling is generated by k-fold cross validator for a regression estimator. The selected models showed stable 
outcome scores regarding the random splits.

Results and discussion
The outcome evaluation is based on the feature selection: 4 database-based features as reference (feature set 1) 
and 8 hybrid features (feature set 2, composed of the set 1 and 4 additional constructed features). The details 
of the features for model training are given in table S1 (Supplementary Information). The first set of features 
is available in C2DB DB and is intuitively relevant to the target properties. These features are basically related 
to chemical and crystalline structures. We note that since the dataset and the models are pre-defined, less the 
number of DB features is, more the generated features-based ML assessment of inference is convincing and 
generalizing. The comparison with DB features is to show how our descriptor engineering could be simple but 

Figure 1.   Workflow of the concept of hybrid descriptor engineering: C2DB database feeds the descriptor 
processing that produces input features for ML training and prediction. The generated features are mixed 
features from vectorized property matrices and empirical function property.
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as efficient as complex descriptors for a same prediction purpose. To create the second set of features (set 2), we 
built 4 additional features by following the method described in previous section, then, by merging them with the 
first set of features. This results in hybrid inputs for a full evaluation of our approach of descriptor engineering.

Band gap.  With the feature set 1, we find that the scores of model training set are quite low: R 2 > 0.58 and 
MAE of about 0.2–0.4 eV (Figs. 2a, 3a). It turns out that the feature set 1 does not reflect well the inherent elec-
tronic properties of the molecules, thus, they poorly help the training, resulting in fair scores. Figure 2a shows 
the goodness of fit describing the predicted band gap against the true band gap for RF, GB and XGB models with 
corresponding R 2 values. A strong correlation is found for RF. We note that the RF model gave R 2 = 0.85 which 
is the best score for this set of features. Since the RF regressor outputs an average predicted value generated by 
the ensemble of trees, such a process greatly reduces the error in a regression process, permitting the model 
to “ignore” the data fluctuations. The model could capture significant trend of the bandgap variation although 
this set of features is not much sensitive to the bandgap variation. The MAE score is much lower (50%) for the 
RF regressor compared to those of two other models (Fig. 3a). The performance of the models on the test set is 
quantitatively assessed with the help of MAE metrics (Fig. 3b). The MAE value is of 0.42 eV for RF whereas GB 

Figure 2.   Visualization of the predicted and true values of the band gap by using the feature set 1 (a) and the 
feature set 2 (b) for RF, GB, XGB models. The values of R 2 are also shown. The lines shown with confidence 
interval of 95% are linear regression of the data points and aid as a guide to the eye.

Figure 3.   Bar plots of the MAE errors generated by the feature sets 1 and 2. The results are grouped into 
the training set (a) and the test set (b) to highlight the out-performance of the ML inference when using the 
additional features (set 2).
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and XGB predict the unseen dataset with an error of about 0.45 and 0.46 eV, respectively. The slight difference 
in MAE values (training versus test sets) is indicative of an overfitting effect for the RF model. The overfitting 
phenomenon generally occurs when the amount of data is small and there exists a certain inconsistency of data. 
Apart from this common issue, we raise two major specific reasons regarding our ML process: tiny number of 
features (set 1) which comes from only 4 descriptors available in C2DB DB; inappropriate tree-related hyper-
parameters (depth of trees, etc.) would bias the fitting mechanism of RF algorithm, thus, it fits noise rather than 
signal30. For the case of GB-based models, an underfitting occurs due to very low values of R 2 and high errors 
for both training and test sets. The simplicity of input features may be not compatible with the complexity of 
gradient-assisted tree growth, resulting in a high bias and a high variance.

The performance of the model training was greatly improved when we embedded the vector features as shown 
in Figs. 2b and 3. Accordingly, the training metrics R 2 of all models attain about 0.9 and beyond, especially the 
highest value of 0.95 for XGB model with exceptional MAE of 0.16 eV. The correlation between the predicted 
values and true values becomes stronger for both three models as the data cloud is regularly distributed (Fig. 2b). 
The MAE errors calculated for the test set were also greatly improved, around 0.35 eV for all models, indicat-
ing a decent performance of the models over the test set (Fig. 3b). It’s worth noting that the error generated by 
ML for C2DB dataset is below the error range of experiments versus theoretical simulations which is in general 
between 0.2 and 0.4 eV31. These findings clearly suggest that adding constructed features is beneficial for the 
training process and the model could catch the data tendency. This also indicates a strong relationship between 
the constructed vector features and the predicted band gap of 2D materials. Indeed, the selected vector features 
derived from the property matrices present physico-chemical relationship with respect to the electronic structure 
of molecules, resulting in a certain degree of dependence of the band gap on those features. Furthermore, a great 
increase of the scores for GB-based models (GB and XGB) as compared to the one of RF model when including 
newly designed features reveals an out-performance of descriptor engineering regarding training mechanism. 
The addition of subsequent trees built in GB-based models is more sensitive to the new features, allowing to 
optimize the loss function of the predicted band gap upon the training whereas the ensemble building of trees in 
RF predictor moderately benefits from the additional features. Therefore, these findings point out that the char-
acteristics of a given algorithm hold an important role in the descriptor engineering besides physico-chemical 
relationship with predicted properties. When the factors (additional features and appropriate model) emerge 
together, the model performance evaluated via training and prediction processes becomes optimal. We also note 
that the suppression of the underfitting when embedding additional features for GB-based models associated 
with an overfitting (about 0.2 eV) is still a good compromise for the bandgap prediction. The results allow to 
validate our approach of data processing and descriptor engineering that are simple to handle, low-computation 
cost and efficient in terms of model performance.

Work function.  We now make use of the concept of generated features to predict work function which is 
also an important property of the electronic structure. The work function is a key parameter enabling to assess 
electrical contacts in 2D materials with metallic electrodes and the band alignment in 2D heterostructures. 
These concerns are of high importance for the 2D-materials-based applications in electronics, photovoltaics and 
photodetectors32,33. A rapid, low-resource and accurate prediction of such a property would be of high benefit to 
speed up experimental studies.

We first consider the set of DB-based features (set 1). We find that the work function was predicted with 
high accuracy (R2 > 0.8 and MAE about 0.2–0.3 eV) for the training dataset (Fig. 4). The test dataset shows an 
overfitting for both 3 models as observed previously (Fig. 4d). The MAE scores of the test dataset are around 
0.62 eV which is relatively high compared to those of the training set (0.26 eV). The overfitting is expected due 
to the small scale of the dataset as aforementioned. The discrepancy between the training and test MAE values 
are found quite high, especially for GB model which shows the highest variation of 0.38 eV despite its R 2 value 
of 0.92. This means that the models, especially GB model, overfit the training set and catch much noise of the 
data. The results of the additional features are shown in Fig. 5. The training models are greatly improved in terms 
of R 2 and MAE scores. This finding indicates a booster effect of the additional features on the training process, 
which evidences a correlation between the generated features and the predicted property. A closer inspection 
on the results points out that R 2 value reaches the highest value of 0.98 for XGB model with a MAE value of 0.10 
eV. Likewise the bandgap prediction, the training of the GB-based algorithm seems to couple quite well with the 
generated features, leading to an out-performance of the model on the training set.

The performance of the models on the test set also shows the same trend: the MAE values generated by the 
trained models are decreased down to 0.43 eV (Fig. 5d). Interestingly, it turns out that the improvement of the 
outcome metrics is associated with a noticeable discrepancy of MAE values between the training and test sets. 
This suggests that the additional features contributed to attenuate the overfitting effect. Indeed, we find that the 
average discrepancy is reduced of about 0.1 eV which is non negligible. Note that such a report of overfitting, 
which is necessary for ML processes was not mentioned in the previous studies on property predictions15,20. For a 
comprehensive assessment of the predicted values, we further calculate the mean absolute percent error (MAPE) 
which is also an accuracy indicator of the model performance on the test set. All MAPE values generated by the 
models are less than 10% (9.4%, 9.1% and 8.9% for RF, GB and XGB, respectively). This means that the models 
are stable and properly perform on the test dataset. These results unveil the fact that together with empirical 
function-based property, descriptor engineering in the framework of vector-based features greatly improves the 
model training and its performance on the unseen data. Therefore, the results allow to validate our approach in 
processing material data inputs/features in the ML training and data-driven predictions.
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Discussion.  The feature importance regarding bandgap and work-function predictions shown in Fig. 6 cor-
roborates the merit of additional features generated by property vectors. The block scores of these features (set 
2) are quite high as compared to those of DB-based features (set 1) for both band gap and work function. In par-
ticular, the additional features completely dominate the ML prediction of the work function with an extremely 
high score of the feature “ionization energy” for XGB model. As a whole, the score importance of the addi-
tional features remains fairly stable when we change the property targets and ML algorithms while that of the 
DB-based features is not homogeneously distributed, indicating a strong impact of the additional features on 
the predicted properties. This points out to an universal characteristic of our generated features regarding the 
prediction of electronic structure properties for 2D materials. We stress that the construction of the generated 
features based on elemental properties is simple and low-computation cost. The generated features are strongly 
connected to electronic structure properties of 2D materials via atomic interactions. This relationship is one of 
the main factors that helps the ensemble ML models to learn efficiently. As the prediction of electronic structure 
properties is a supervised regression problem, the results in this study have shown that ensemble models appear 
to be appropriate for this purpose. Indeed, averaging (RF) or boosting (GB, XGB) approaches from individual 
learners allowed to efficiently reduce the error of the predicted values compared to the observed values. The 
choice of algorithms is crucial for mapping the relationship between features and target properties and RF, 
GB, XGB models have done this task successfully. The splitting mechanism at tree nodes of the ensemble ML 
algorithms using least-mean-square optimizer greatly fits the non-linearity relationship between the features 
and the electronic structure properties. Such a monotonous relationship can be pre-evaluated thanks to rank’s 
correlation (Fig.  S3, Supplementary Information). As a matter of fact, multilayer perceptron-based model, a 
simple neural network, in which a subsequent propagation of nodes in training process is rooted to a linear 
relationship : ŷ = �(bi +

∑
i=1 xiωi) , where � is activation function, bi is bias at node i, xi , ωi are values and 

weights of adjacent nodes connected to node i, showed a very poor training and prediction with the additional 
features designed in this study. Indeed, we found R 2 = 0.46 and 0.79 with MAE = 0.56 eV and 0.36 eV for band 
gap, work-function predictions on training set, respectively.

Relevance of the descriptor engineering‑based ML prediction.  Carbide-based, oxide-based and 
nitride-based 2D materials are new classes of 2D materials that have drawn increasing attention thanks to their 
outstanding electrical and opto-electrical properties. To demonstrate the practical use and the relevance of our 
ML approach as compared to costly computation techniques, we take a couple of 2D materials (experimentally 
known or not yet) belonging to these classes of materials those data are not available in the C2DB DB. Mo2Ga2 C 

Figure 4.   ML prediction of the work function with the feature set 1. Visualization of the predicted and true 
values of the work function (training set) obtained with RF, GB, XGB models (a,b,c). Bar plot shows the MAE 
errors of the training and test sets (d).
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and V2Ga2 C belong to 2D carbides like transition metal carbo-chalcogenides (TMCC) which are successfully 
synthesized recently34. Mo2Ga2 C and V2Ga2 C possess metallic character and laminated structure which may be 
used as MAX phase, a parent material for MXenes synthesis35. Only Mo2Ga2 C thin film has been synthesized 
and reported36. The 2D oxides and nitride exhibit a semiconductor behaviour with large band gap according to 
theoretical and experimental works37–41. The band structures of 2D oxides and nitride show great potential in 
photonic, electronic and catalysis applications. Figure 7 shows the bandgap and work-function predictions of 
the two types of 2D materials (conductors and semiconductors). The filled areas depict the values of band gap 

Figure 5.   ML prediction of the work function with the feature set 2. Visualization of the predicted and true 
values of the work function (training set) obtained with RF, GB, XGB models (a,b,c). Bar plot of the MAE errors 
of the training and test sets (d).

Figure 6.   Feature importance scores of the input features for RF, GB, XGB models. The scores obtained 
from the bandgap prediction (a) and the work-function prediction (b). In (b) the asterisk (*) means that the 
magnitude of “ionenergy” for XGB model was divided by 2.
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and work function of these materials reported in the literature and obtained mostly by costly computation37–45. 
We set an error range of 0.3 eV represented by the filled areas for a straightforward comparison with our ML 
approach. To our knowledge, no data of work function for Mo2Ga2 C and V2Ga2 C are available.

Regarding the bandgap prediction, the three models predict quasi-zero band gaps for Mo2Ga2 C and V2Ga2 C, 
which is in good agreement with the literature. For greater values of band gap, the models could catch the 
variation tendency. However, GB and XGB models poorly predict the values of 2D oxides and nitride while RF 
performs quite well the prediction for these materials except for MoO3 . We anticipate that GB, XGB are likely 
sensitive to a poor distribution of the training dataset with respect to this range of bandgap values (typically 
3 - 4 eV) as shown in the band gap histogram of the dataset (Fig. S2, Supplementary Information). The data 
concerning MoO3 we collected are perhaps not reliable for inference. For the work-function prediction, the 
three models infer really well the trend of the work function in 2D oxides and nitride. Interestingly, the XGB 
model nicely predicts the values of all 2D oxides and nitride in the error range of 0.3 eV compared to those of 
the literature. The relative errors of the band gap and the work function are calculated and can be found in the 
section 7 of Supplementary Information. Finally, we anticipate values of 4.9 eV and 4.6 eV for the work functions 
of Mo2Ga2 C and V2Ga2 C, respectively.

Conclusion
To sum up, a hybrid descriptor handling based on vectorized property matrices and molecular empirical func-
tion was proposed to train models and infer the electronic structure properties of 2D materials. We have shown 
that the data processing for building the descriptors is straightforwardly accessible, low-resource and highly 
efficient for ML training/inference. We have employed the four basic features (set 1) offered by the C2DB DB as 
a reference. The data-driven outcome obtained from these features indicates a fair performance of ML models, 
which reflects a weak relationship between the features and the band gap. Indeed, the ensemble models used 
to perform the prediction on the band gap show low values of R 2 ( ≥ 0.58) and decent errors (MAE up to 0.43 
eV). When we integrate the generated features into the ML process, the models show a great improvement with 
highest R 2 = 0.95 for XGB model. The MAE errors are substantially reduced down to maximum of 0.23 eV. The 
feature selection and feature extraction by the method described in this study have confirmed a strong relation-
ship between the generated features with the band gap. An application of the method on the prediction of the 
work function, another electronic structure property, has been carried out. Similar tendency was observed with 
R 2 ≥ 0.9 and low MAE values. Furthermore, during the ML process, we are aware of the existence of overfitting, 
which is characterized by high error metrics of the ML performance on the test set with respect to the training 
set. The training involving the additional features contributes to attenuate this effect (about 0.1 eV). Finally, the 
inference of the band gap and the work function on new classes of 2D materials (carbides, oxides, nitrides) using 
the descriptor-tailoring method have revealed a decent correlation between the outcome values and those of the 
literature (ab initio computations). By considering both the ML metrics and the performance on the completely 
unseen data, RF and XGB models that are trained with C2DB data in the framework of our descriptor engineer-
ing are good models for predicting the band gap and the work function for 2D materials. The results derived 
from vector-based features combined with empirical features benchmark an alternative concept of descriptor 
engineering that is simple to implement, robust and relevant to tree-based ML models in terms of model selec-
tion, training and inference. This work provides feature template extendable to other properties for further 
study in ML-led applied physics with low-resource requirement in the framework of the predictive regression.

Data and code availability
The data and the code (https://​gitlab.​com/​tuan2​dplus/​2dmt) that support the study are available upon reasonable 
request from the corresponding author (mtd@crhea.cnrs.fr).

Figure 7.   Prediction outcomes of the trained models (RF, GB, XGB) with help of descriptor engineering on 
selected 2D materials that are not available in the C2DB dataset. The filled areas [violet for band gap (a) and 
magenta for work function (b)] represent values collected in the literature within the error range of 0.3 eV.
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