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Decision making in a rapidly changing context, such as the development and progression of a 
pandemic, requires a dynamic assessment of multiple variable and competing factors. Seemingly 
beneficial courses of action can rapidly fail to deliver a positive outcome as the context changes. In this 
paper, we present a flexible data-driven agent-based simulation framework that considers multiple 
outcome criteria to increase opportunities for safe mobility and economic interactions on urban transit 
networks while reducing the potential for Covid-19 contagion in a dynamic setting. Using a case study 
of the Victoria line on the London Underground, we model a number of operational interventions with 
varied demand levels and social distancing constraints including: alterations to train headways, dwell 
times, signalling schemes, and train paths. Our model demonstrates that substantial performance 
gains ranging from 12.3–195.7% can be achieved in metro service provision when comparing the 
best performing operational scheme and headway with those realised on the Victoria line during the 
pandemic.

Public transport plays a key role in the everyday functioning of large dense cities, and it supports the operation 
and productivity of local and national economies. Under normal circumstances, mass shared use is the key 
characteristic that renders public transport sustainable and economically efficient, but amid the threat of an 
infectious disease, the trade-off between disease containment and the desire for mobility presents huge challenges. 
Furthermore, the rapidly changing conditions during a pandemic requires consideration of multiple variable and 
competing factors in a dynamic setting. In this paper, we present a flexible data-driven agent-based simulation 
platform that evaluates multiple outcome criteria to increase safe travel and economic interactions on urban 
transit networks while reducing the potential for contagion. We note the while our work is motivated by the 
particular experience of Covid-19, it provides insights that generalise to any context that requires restrictions 
on social interactions and mobility, including future pandemics.

SARS-CoV-2, the virus pathogen associated with the Covid-19 disease, is thought to be transmissible directly 
via droplets or aerosols and indirectly via fomite tranmission1,2. Due to the physical proximity of people in 
enclosed spaces, public transport networks are considered potential environments where virus transmission can 
take place intensely. Indeed, there are a number of empirical and theoretical studies demonstrating the potential 
for SARS-CoV-2 to spread within public transport networks (refer to a review3 of relevant papers). Moreover, 
many studies report positive associations between mobility in general and the incidence of Covid-19 cases due 
to mixing of populations between different locations4–8.

In response, most governments around the world have imposed restrictions on travel to inhibit transmission 
of the virus. The mechanisms of virus transmission, travel restrictions, and subsequent impacts on perceptions 
of travel during the pandemic have led to markedly reduced demand levels on public transit networks9–16. For 
rail modes in particular, the Transport Strategy Centre (TSC) at Imperial College London have been tracking 
demand changes over the pandemic for over 40 metro operators via the COMET metro benchmarking group17. 
The TSC report that average demand levels dropped to below 40% of pre-pandemic levels across all metros after 
the initial lockdowns in early 2020, with metros in Europe and North America experiencing more severe demand 
reductions with average levels reaching approximately 10% of pre-pandemic demand. As of the last quarter of 
2021, demand has not yet fully recovered, with levels ranging from 40–75% of pre-pandemic levels across all 
metros in the COMET group.
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Though there are vast numbers of studies reporting the extent to which public transport demand has reduced, 
research and implementation of modelling platforms to test best practice transit operations in the context of 
reduced demand levels is limited. Moreover, though some cities around the world have begun relaxing social 
distancing requirements, many other cities have kept the requirement, particularly in response to the spread of 
the most recent Omicron variant, and so operators must continue to consider the need to accommodate social 
distancing policies in their operations. Under regular conditions, transit operators typically target full utilisation 
of vehicles up to their maximum physical capacities. Under pandemic conditions, however, operations must 
be adjusted to accommodate lower levels of demand and social distancing requirements. Though many transit 
operators possess in-house network models, they are typically calibrated to a narrow set of operating conditions 
and are often too inflexible and intractable to model the atypical demand and supply conditions imposed during 
the pandemic. Furthermore, these applied models are usually not informed by the latest evidence from the 
academic literature, which we believe provides a solid empirical foundation for simulation.

This research creates a flexible and tractable agent-based simulation platform to test the effectiveness of 
operational interventions on urban mass transit during the Covid-19 pandemic. The model comprises three 
main parts: (i) definition of train and passenger movements, (ii) allocation of individual agents (or passengers), 
and (iii) multidimensional performance evaluation. The operational interventions modelled include: alterations 
to headways, dwell times, signalling schemes, and alterations to train paths. We use the simulation model to 
undertake a case study of the Victoria line on the London Underground using open-source data from Transport 
for London (TfL).

The paper contributes to the literature from a number of perspectives. To our knowledge, only three 
studies18–20 present a quantitative framework to evaluate demand and/or supply of transit networks under 
pandemic conditions. The objective criteria is either to minimise operator and passenger costs18, or to minimise 
Covid-19 infection levels19,20. These approaches assume that (i) demand is unresponsive to exogenous supply-side 
interventions and (ii) do not include an evaluation of the societal economic benefits of travel. In our model, we 
explicitly specify that passenger demand is responsive to supply, and this is a key contribution of our work. In 
the multidimensional performance evaluation module, we allocate all passengers in an unconstrained queue and 
assign heterogeneous and correlated values to specify the willingness to pay and value of time of each passenger. 
Passengers travel if their willingness to pay is greater than their generalised cost; if not, passengers are removed 
from the queue, and the next passenger in the queue moves ahead thus updating their generalised cost. The model 
is re-run in an iterative manner until stabilisation i.e. when all passengers who opt not to travel are removed. 
Furthermore, we adopt a multidimensional performance criterion which captures the trade-off between costs 
incurred by operators and the economic benefits of travel at a societal level.

The train movement module of our model is based on cellular automata (CA) principles. The concept of 
CA modelling was first applied in transport applications by21 for road traffic, and was later built upon by22 who 
introduced the seminal Nagel-Schreckenberg model of road traffic flows. CA has since been adapted for rail 
applications23–25. In our model, we extend beyond the conventional modelling of train movements only, and 
additionally incorporate passenger flows to enable calculation of individual passenger itineraries. Moreover, 
our model is flexible such that a wider range of operational interventions beyond those tested earlier18–20 can 
be generated. The flexibility of the model also enables the incorporation of up-to-date empirical estimates of 
operational characteristics and passenger travel behaviour. In this application of the model, we include the most 
recent empirical estimates on metro operational costs including returns to density effects26. The results from the 
simulation framework enable the relative disadvantages and benefits of different operational and demand schemes 
to be quantified. These outputs can in turn be used by transit authorities and operators to make evidence-based 
decisions on interventions for travel demand and capacity management during pandemic conditions.

Methods
As shown in Figure 1, the model comprises three main components: (1) the definition of train and passenger 
movements, (2) the allocation of individual agents (passengers), and (3) the performance evaluation (split into 
3a and b in the figure). In (1), the train and passenger movements are simulated and outputs are generated on 
the position and speeds of each train and the distribution of passengers on each train and at each station at every 
time step. In (2), each passenger is allocated to a train on a first-come-first-serve basis and individual passenger 
itineraries are defined. In (3), the generalised cost of travel for each passenger is calculated and it is determined 
whether each passenger makes the decision to travel or not. The passengers who opt out of travelling are removed, 
and (1), (2), and (3a) are re-run until stabilisation is reached where all passenger who chose not to travel have 
been removed. Final calculations of the multidimensional performance criterion (3b) are then undertaken with 
the stabilised set of passengers who opt to travel.

In the following section, we summarise the main components of the model. Further details on explicit train 
and passenger movement rules are presented in the Supplementary Material in Appendix A. All modelling is 
undertaken using R statistical analysis software.

Train and passenger movements.  As mentioned, we adopt the CA modelling framework to define train 
movements. Unlike conventional models which stop at the modelling of train movements only, we extend the 
model to incorporate passenger flows. This enables individual passenger itineraries to be generated. We model 
at the level of individual lines, and define a one-dimensional space as discrete cells enabling movement in one 
direction. Each cell is allocated a given state i.e. empty/occupied. The state of each cell at time t + 1 is determined 
by rules based on the current cell’s state at time t and the state of surrounding cells. The following train movement 
simulation framework corresponds to a moving block signalling system.

The governing rules for train movement are as follows: 
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	 (i)	 Trains travel at their maximum specified velocity, unless boundary conditions impose constraints.
	 (ii)	 Trains must maintain a minimum separation distance δ from the end of the previous train to the front 

of the current train as follows: 

 where db is the braking distance as per the fundamental equation of motion: 

 where v is velocity of train and b is the deceleration/braking capacity of the train. ds is a fixed safety 
distance.

	 (iii)	 Trains stop at stations to enable passenger boarding/alighting. The dwell times are calculated when the 
train reaches the station platform for the first time. A degree of randomness is introduced to reflect 
realistic dwell time movements.

	 (iv)	 New trains are introduced at the specified headway value, subject to minimum train distance constraints. 
A degree of randomness is incorporated into the headway value to reflect realistic train dispatch.

Passenger movements are integrated within the train movement model. From the initialisation of the simulation 
time, passenger arrivals begin at station platforms. Passengers are assumed to follow a random Poisson arrival 
process as is conventional for high frequency transit networks (refer to the authors’ previous work27 and 
references therein). When trains stop at stations, passengers board and alight during the specified dwell time 
subject to train capacity and boarding rate constraints.

Individual agent allocation.  From the train movement modelling output of passenger volumes at each 
platform and on-trains, we assign journey itineraries to each individual passenger. For each passenger i, we 
calculate the following quantities: passenger arrival time yentryio  at the origin station o, passenger boarding time 
yboardino  on train n, passenger alighting time yalightind  at the destination station d. It should be noted that we do not 
specify station entry times at the origin station nor station exit times at the destination station; each passenger 
itinerary represents passenger wait times and on-train times only. The general process of allocating passengers 
to unique itineraries is as follows: 

1.	 From the simulation modelling output we calculate total passenger arrivals Qγ sn , boards Qβsn , and 
alights Qαsn for every station s per train n over the total simulation time. Missed boards are calculated as 
Qεsn = Qγ sn − Qβsn . The missed boarding passengers are allowed to queue at the station platform in an 
unconstrained manner.

(1)δ = db + ds

(2)db =
v2

2b

Figure 1.   Summary of modelling process.
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2.	 We then calculate origin-destination flows for every train using iterative proportional fitting (IPF) to ensure 
that the row sums i.e. Qβsn and column sums i.e. Qαsn are achieved. The ‘ipfr’ package in R is used to perform 
the IPF. Since the OD flows obtained from the IPF result in decimal values, we apply an integerisation 
method28 to ensure that OD flows are integers representing whole passengers.

3.	 From OD flows per train, we randomly allocate destination stations to each passenger, and allocate arrival 
times at the origin station according to the known Poisson arrival process of passengers at each station.

4.	 Passengers are then allocated to trains on a first-come-first served basis, and wait ywaiti  and in-vehicle yivti  
times are calculated as follows. (Note: all journey times are measured in seconds). 

Performance evaluation.  Our multidimensional performance criterion includes the net economic benefit 
of travelling to users alongside operator costs. The agent-based representation of travel demand enables us to 
introduce user heterogeneity with high granularity, allowing synthetic travellers to have unique but correlated 
trip benefits and travel time valuations. This approach is novel in the context of large-scale agent-based transport 
simulators.

First, the generalised cost of travel, that is, the sum of monetary and non-monetary costs, is calculated for each 
passenger. The modelling platform enables the value of time and willingness to pay parameters to be specified as 
being heterogeneous across passengers; they can be allocated as correlated (or uncorrelated) distributions with 
appropriate forms such as log-normal or uniform distributions. The generalised cost of travel of each passenger 
gci is as follows:

where tp is the ticket price, wt is the wait time multiplier, and cfp and cft are crowding multipliers for platform 
and train crowding, respectively.

A passenger is considered to travel if their willingness to pay is greater than their generalised cost, i.e. if 
wtpi > gci , i ∈ θ where wtpi is the willingness to pay of passenger i, gci is as previously defined, and θ is the set of 
passengers that take the decision to travel. Those passengers who opt not to travel, i.e. in cases where wtpi < gci , 
are removed from the arrivals process. This then enables the next passenger in the queue to move ahead and 
be considered to board, thus updating the wait times and in-vehicle times (if a previously queuing passenger 
boards) of all passengers in the queue. The calculations are re-run in this manner in an iterative process until 
stabilisation, i.e. until all passengers who do not opt to travel are removed.

We are then able to compute the consumer surplus csi for each passenger i that decides to travel. The consumer 
surplus represents the economic benefit accrued by each individual user for making the decision to travel, and 
it is defined as:

To assess the viability of the operational scheme, we adopt a multidimensional performance criterion MDP 
which is analogous to the concept of social welfare in transport economic theory; the criterion captures multiple 
and often conflicting elements including net user economic benefits of travel through the quantification of total 
consumer surplus over all travelling passengers, operator revenue from ticket sales, and operator costs. MDP 
is defined as:

where MCPF is the marginal cost of public funds, CS is the total consumer surplus over all travelling passengers 
nθ:

and PR is the profit, calculated as

where κ is the total cumulative number of kilometres travelled by all trains over the simulation time period, ncars 
is the number of cars per train. RTD is the average returns to density scaling factor which reflects the relative 
impact of intensity of use on cost26, and φ is the average cost per car km. The best performing operational scheme 
is that which takes the highest value of the multidimensional performance criterion MDP.

Case study ‑ Victoria line, London underground
Network, rollingstock, and passenger inputs.  We model the Victoria line on the London 
Underground metro system, and use rollingstock, line-layout, and passenger movement parameters from open-
source data provided by TfL29,30. We make assumptions on the maximum train velocity, acceleration and braking 
rates, and the required safety distance between trains, with parameter values set to previous estimates31. The 

(3)ywaiti = yboardino − y
entry
io

(4)yivti = y
alight
ind − yboardino

(5)gci = tp+ vot · yivti + wt · vot · ywaiti + cfp · vot · y
wait
i + cft · vot · y

ivt
i

(6)csi = wtpi − gci

(7)MDP = CS +MCPF · PR

(8)CS =

∑

i

csi , i = 1, ..., nθ ∈ θ

(9)PR = (tp · nθ )−
(

(κ ∗ ncars)
RTD

∗ φ

)
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maximum passenger movement rate (i.e. boards and alights) through all doors for a standard 8 car train is set as 
qmax = 29 passengers/second32. The station positions along the line correspond to all 16 stations from Brixton to 
Walthamstow Central on the Victoria line in the northbound direction.

Performance evaluation inputs.  As specified in a previous publication33, we assume that the value of time 
and the willingness to pay for each passenger are correlated according to a multivariate normal distributional 
form with a correlation coefficient of 0.50. We make the assumption that the value of time is log-normally 
distributed with a mean of $20/h and standard deviation of $10/h, and the willingness to pay is uniformly 
distributed between $0 and $100 as per33. The wait time multiplier wt is taken as 1.5 as per TfL standards for 
metro journey times34, and the ticket price tp is set to $2 per ticket.

For platform crowding, we calculate the average passenger density on the platform between train arrivals pp 
(passengers per m 2 ), and use this quantity to calculate the platform crowding multiplier in accordance with TfL 
standards34 as per Eq. (10). For train crowding, we calculate the average number of passengers per train pt and 
calculate the train crowding multiplier in accordance with TfL standards34 as per Eqs. (11 and 12). As shown in 
Eq. (12), we make an amendment to the TfL guidelines; if we find that the multiplier � < 1 , then we discount its 
application as this implies that passengers derive a benefit from lower levels of crowding. However, as we model 
pandemic conditions with imposed upper limits on train capacity for social distancing, we do not believe that 
passengers would perceive this to be an added benefit of travel, rather, passengers would expect lower levels of 
crowding to be mandated as a baseline.

It is difficult to obtain estimates of the impact that the Covid-19 pandemic has had on passenger perceptions 
of crowding as the severity of the pandemic has been regularly fluctuating and thus perceptions are subject to 
change quickly. However, to account for potential additional passenger sensitivity to crowding during Covid-19, 
along with modelling baseline crowding perceptions, we undertake sensitivity analysis of crowding perceptions 
by trialling the application of additional multipliers to the platform crowding multiplier cfp and train crowding 
multiplier cft . The multipliers trialled are 0 (no crowding effects), 2, and 5.

In the final calculation of the multidimensional performance criterion, the marginal cost of public funds 
MCPF is taken as 1.233.

Demand and operational scenarios.  We trial 4 demand levels and 2 maximum train capacity levels. The 
demand levels are as follows: 35%, which corresponds to the average demand level on the London Underground 
throughout the 2020 pandemic period, 50%, 75% and 100% of 2019 weekday demand levels for the Victoria 
line30. The base demand data levels (i.e. 100%) correspond to demand levels during weekday PM peak periods 
in 2019 on the Victoria line. The maximum train capacities trialled are: M = 180 passengers which corresponds 
to 4m2 social distancing for standing passengers (2 m straight line distance) and every second seat occupied; 
and M = 290 passengers which corresponds to 1 m2 social distancing for standing passengers (1 m straight line 
distance) and every second seat occupied.

We trial 4 different operational schemes over headways ranging from h = 60 to h = 240 s: 

1.	 Moving block operations - This is the base operational condition trialled. The minimum dwell time to enable 
alighting movements Cα is set as 15 s in line with minimum dwell times on the Victoria Line.

2.	 Moving block + 25 s and 35 s minimum alighting time - In these two options we wish to investigate the effect 
of increasing minimum dwell times for alighting movements and thus set Cα to 25 s and 35 s. Increasing dwell 
times may yield better performance in higher demand and higher capacity conditions as trains are able to 
load more passengers at each stop.

3.	 Fixed block operations - Though the Victoria line and many newer metro lines around the world operate via 
a moving block signalling scheme, many older lines operate using the fixed block system. Under this scheme, 
the line is divided into ‘blocks’ and each block may only be occupied by one train at any given time. We trial 
equal block lengths of 1200 m, which conservatively accommodates two trains and separation distances. 
The fixed block system may perform worse than the moving block system, particularly at shorter headways, 
as the required separation distances between trains are likely to be longer.

4.	 Skip-stop operations - Trains stop at every second station in an alternating fashion. Approximately 47% of 
passengers require a transfer to travel from even to odd stops (and vice versa) and we assume that this occurs 
at the trip end; we assume that the passenger alights at one stop after the desired destination, and turns 
back making use of the opposite (southbound) direction. We assume that passengers would be opposed to 
two interchanges in one trip, and so we specify that all train runs stop at the terminal stop in the line. An 

(10)cfp =







0 ifpp < 0.5
4.0 ifpp > 2
2.5+ (0.667 ∗ (pp − 0.5)2) if0.5 ≤ pp ≤ 2

(11)� = 0.09+ 1.823

(

pt − 280

748

)

(12)cft =

{

0 if� < 1
� if� ≥ 1
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additional fixed penalty of 3.5 min transfer time is applied in the calculation of the generalised cost in Eq. 
(5) in line with TfL specifications34.

Prior to the pandemic, the regular operating headway of the Victoria line in 2019 during weekday PM periods 
was 100 s. As the Victoria line runs through central London, minimal restrictions were imposed during the 
pandemic as the line was still required to serve essential workers. Two stations, Blackhorse Road and Pimlico, 
were closed entirely from 21 March 2020 to 18 May 202035. We are not aware of any headway changes for the 
weekday PM peak period during the pandemic. After 18 May 2020, the Victoria line resumed regular operations 
with no additional changes; all stations were operational and weekday PM peak hour headways were 100 s.

For the two month period from 21 March 2020 to 18 May 2020 when the two stations were closed, demand 
on the London Underground was 5% of 2019 levels36. Since we do not model the scenario where demand is at 
5%, and since the Victoria line predominately ran regular operations of 100 s with all stations operational for 
the majority of the pandemic, we will assume that the base case of operations to compare against during the 
pandemic is a 100 s headway with all stations operational using the base moving block scheme.

Results and discussion
Comparing across all operational schemes, the skip-stop scheme performs worst in all cases. In a majority of 
cases, the multidimensional performance criterion yields a negative value of performance for the skip-stop 
scheme, while all other schemes generate positive values in all cases. The substantially lower level of performance 
is likely due to the fact that the skip-stop scheme leads to much longer wait times and the need for some 
passengers to undertake interchange movements, which greatly increases the generalised cost of trips. Due to 
its substantial relative under-performance, we exclude further discussion of the results of the skip-stop scheme 
for the remainder of this section.

For the remaining operational schemes, i.e., the base moving block, the moving block with 25 s minimum 
dwell time, the moving block with 35 s minimum dwell time, and the fixed block scheme, the results for the 
multidimensional performance values vs headway are illustrated in Fig. 2. It is worth noting that the random 
fluctuations in the graphs is due to the stochastic allocation of individual passenger value of time and willingness 
to pay values for each iteration of the models.

Figure 2.   Performance vs headway for all operational scenarios, baseline Covid-19 crowding multiplier of 1.
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Best performing headway.  In terms of general findings, there is a trend that at lower levels of demand, 
best levels of performance are attained when fewer trains are run at longer headways to meet the low demand 
levels. As demand increases, the best performing value of headway reduces. This finding is in line with the 
theoretical literature of public transport provision; the best performing value of headway decreases with 
increasing demand, as pronounced waiting time and crowding cost savings justify the operating cost of running 
more frequent trains. Furthermore, for a given level of demand, there is a general trend that the best performing 
value of headway is longer for the 1m social distancing scenario compared to the 2 m social distancing scenario. 
This result is as expected and plausible; at a 1  m level of social distancing, each train is able to carry more 
passengers, and thus fewer trains are required to serve passenger demand. Moreover, the best performance level 
is higher under more relaxed social distancing rules for a given level of demand. Across all demand levels, best 
performance increases on average by 38% when moving from 2 m to 1 m social distancing. This is because more 
passengers are able to board thus leading to increased net economic benefits to users and increased revenue for 
operators at the same operational cost.

As mentioned in the “Case study - Victoria line, London underground” section, the regular operational 
scheme on the Victoria line during the PM peak period corresponds to a base moving block scheme with a 
headway of 100 s. In Table 1, we compare the best performing schemes with the regular operational scheme 
on the Victoria line for each demand and social distancing level. Furthermore, we include a comparison of the 
best performing schemes with the regular operational configuration on the Victoria line during non-pandemic 
conditions; the operational scheme is the base moving block scheme with a 100 s headway, the train capacity is 
modelled at the full capacity of 1000 passengers for Victoria line rollingstock, and demand levels are set to 100% 
of 2019 demand levels.

As shown in the table, across all best performing schemes, the best performing headway is not equivalent to 
the regular operating headway of the Victoria line of 100 s. Moreover, the best performing schemes determined 
as per our analysis yield better performance in all demand and train capacity scenarios when compared to the 
base moving block scheme under pandemic conditions for the different demand and train capacity scenarios. 
The improvement in the multidimensional performance criterion ranges from 12.3–195.7%, with an average 
improvement of 78.6% across all demand and train capacity scenarios.

When compared to the non-pandemic situation where demand is 100% of 2019 values and train capacity is 
a maximum of 1000 passengers, the best performance level for a 100% demand level and 2m social distancing 
(180 passenger capacity) is approximately 380% lower. This result is as expected, the 2 m social distancing results 
in a 82% reduction in capacity compared to non-pandemic operations. However, when we compare the non-
pandemic performance with a 1 m social distancing scenario (290 passenger capacity), the 1 m social distancing 
scenario actually yields a 58% higher performance level. This result may be a consequence of the spare train 
capacity not being utilised efficiently in non-pandemic conditions; the tradeoff between the number of trains run 
and associated cost of this may outweigh the number of passengers that arrive and build up at station platforms 
within a 100 s headway.

Indeed, undertaking further analysis, we find that the best performing headway for the non-pandemic scenario 
(1000 passenger capacity and 100% of 2019 demand) is 160 s. We note that this headway is the longest headway 
value out of all best-performing schemes during the pandemic, and longer than the regular 100 s headway used 
during non-pandemic conditions. This result is as expected; in non-pandemic conditions when train capacities 
are being utilised at their maximum, much fewer trains are required to be run to meet demand levels. Comparing 
the pandemic scenarios to the 160 s headway for the non-pandemic scenario, the social distancing scenarios 
both perform markedly worse as expected, with a −478% and −110% reduction in performance compared to the 
non-pandemic scenario for 2 m and 1 m social distancing train capacities, respectively.

Impact of crowding multipliers.  Table 2 provides a summary of the best performing operational scheme, 
with the associated headway and multidimensional performance values for each demand and social distancing 

Table 1.   Best performing scenario vs regular operations, baseline crowding multiplier of 1.  MB base moving 
block, MB+25D  moving block with 25 s minimum dwell time, MB+35D moving block with 35 s minimum 
dwell time,  FB fixed block.  1Demand is reported as a percentage of 2019 demand levels, 2The scheme used 
during the pandemic is the base moving block and 100 s headway, 3The scheme used during non-pandemic 
times is the base moving block and 100 s headway with a 1000 passenger train capacity.

Train capacity Demand (%)1 Scenario
Headway
(s)

Max. MDP
($)

Pandemic 
scheme MDP 
($)2 % change

Non-pandemic 
scheme MDP 
($)3 % change

180

35 MB 110 8.59E+04 7.47E+04 14.94

50 MB 70 1.29E+05 7.24E+04 78.44

75 MB+25D 60 2.20E+05 7.42E+04 195.71

100 MB+35D 60 2.01E+05 7.86E+04 155.44 3.24E+05 −379.53

290

35 FB 150 1.06E+05 8.31E+04 27.27

50 MB+25D 120 1.58E+05 1.41E+05 12.30

75 MB 80 2.45E+05 1.53E+05 60.06

100 MB+25D 70 3.43E+05 1.85E+05 84.77 3.24E+05 58.41
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level, for the 4 values of the additional Covid-19 multiplier applied to the platform and train crowding multipliers: 
(i) a baseline value of 1, (ii) multiplier of 0, (ii) multiplier of 2, and (iv) multiplier of 5.

Comparing across the four levels of the Covid-19 crowding multiplier, the results show that increasing the 
multiplier from a minimum of 0 to 5 has a relatively low impact on the resulting performance of the best 
operational schemes. On average, across all social distancing and demand levels, there is a reduction of 
approximately 8.4% in best performance when the crowding multiplier is inflated from 0 to 5. Plots of all 
crowding multiplier levels per demand and train capacity scenario for each operational scheme are included 
in Appendix B. As shown, the patterns of performance tend to be similar across all values of the crowding 
multipliers. The aforementioned results indicate that optimal supply-side decisions can neutralise a significant 
fraction of the user cost of crowding sensitivity due to Covid-19. As mentioned previously, it is difficult to 
ascertain passenger perceptions of crowding during the Covid-19 pandemic, and further work in estimating a 
more accurate crowding multiplier value is recommended for future work.

Returns to density effects for demand levels.  To investigate potential returns to density effects in 
terms of demand, we have calculated the value of the multidimensional performance indicator ($) normalised 
by demand levels (% of 2019 demand levels). A series of plots for each operational scenario for all demand and 
social distancing levels for a baseline crowding multiplier of 1 are included in Appendix C. A summary of the 
results, which shows the best performing headway and demand level per operating scheme is given in Table 3.

As shown in the figures and table, the results are mixed. The best performing headway value corresponds to 
each of the four different demand levels in 2 cases each. If there was an increasing returns to density effect, we 
would expect to see that the best performing headway value across all operational scenarios would correspond 
to the highest demand level of 100% of 2019 demand levels only. However, the results for the best performing 

Table 2.   Best performing operational scenarios by train capacity, demand level, and Covid-19 crowding 
multiplier. MB base moving block, MB+25D moving block with 25 s minimum dwell time, MB+35D moving 
block with 35 s minimum dwell time, FB fixed block. 1 Demand is reported as a percentage of 2019 demand 
levels.

Covid-19 multiplier Train capacity Demand (%)1 Scenario Headway (s) MDP ($)

1

180 35 MB 110 8.59E+04

50 MB 70 1.29E+05

75 MB+25D 60 2.20E+05

100 MB+35D 60 2.01E+05

290 35 FB 150 1.06E+05

50 MB+25D 120 1.58E+05

75 MB 80 2.45E+05

100 MB+25D 70 3.43E+05

0

180 35 MB 110 8.92E+04

50 MB 80 1.21E+05

75 MB+25D 60 2.02E+05

100 MB+35D 70 2.09E+05

290 35 FB 160 1.07E+05

50 MB 110 1.62E+05

75 MB+25D 90 2.47E+05

100 MB+25D 60 3.30E+05

2

180 35 MB 100 8.26E+04

50 MB 60 1.28E+05

75 MB+25D 60 1.88E+05

100 MB+35D 60 2.08E+05

290 35 FB 160 1.06E+05

50 MB 110 1.68E+05

75 MB+25D 80 2.37E+05

100 MB+25D 60 3.27E+05

5

180 35 MB 100 8.25E+04

50 MB 80 1.34E+05

75 MB+25D 60 1.84E+05

100 MB+25D 60 2.24E+05

290 35 FB 160 1.06E+05

50 MB 110 1.62E+05

75 MB+25D 80 2.35E+05

100 MB+25D 60 3.27E+05
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scenario are mixed and do not support any distinct returns to density effect (either increasing, decreasing, or 
constant returns to density) in terms of demand.

Comparison across different operating schemes.  In the following sections, we analyse the 
performance of each operational scenario for a baseline crowding multiplier of 1. We compare the performance 
of each scenario with the regular performance configuration of the Victoria line during pandemic conditions, 
which is a base moving block scheme operated at a 100 s headway.

Moving block.  The base moving block scheme performs best in 3 out of 8 demand and social distancing cases. In 
the base moving block scheme, separation distances between trains are minimised and dwell times on platforms 
are shorter; therefore more trains can be run to serve demand while minimising train crowding. On average 
across all demand and social distancing scenarios, performance gains of approximately 60.2% are achieved when 
comparing the best performing headway for the moving block scheme with the regular operating scheme of the 
Victoria line during pandemic conditions.

Moving block with longer minimum dwell times.  The moving block scheme with a 25 s minimum dwell time 
performs best across 3 out of 8 cases tested, while the moving block scheme with a 35 s minimum dwell time 
performs best in 1 case. Generally, the moving block schemes with longer minimum dwell times of 25 s and 35 s 
tend to perform better than the base moving block scheme at higher demand levels. This is likely a result of more 
passengers being able to board when the dwell time is longer, and that this effect becomes more advantageous at 
higher demand levels. At lower demand levels, it is likely that having longer dwell times is not beneficial, as all 
passengers waiting on the platform are able to board within a shorter dwell time, and the additional dwell time 
is lost time.

When comparing the best performing headway of the longer dwell time schemes with the regular scheme 
on the Victoria line, the moving block scheme with a minimum 25 s dwell time performs 70.3% better than the 
regular scheme and the moving block scheme with a minimum 35 s dwell time performs 66.2% better than the 
regular scheme on average across all demand and social distancing scenarios.

Fixed block.  The fixed block signalling scheme is the best performing scheme for one scenario, when demand 
is at 35% of 2019 levels and the train capacity is 290 passengers. However, across all other scenarios, the fixed 
block scheme performs worst. The fixed block scheme requires the greatest separation distances between trains, 
which can lead to train delays and train bunching particularly at shorter headways, thus leading to longer 
passenger wait times, and higher levels of crowding on platforms. At the lowest demand level with the highest 
train capacity, the savings from running fewer trains with the fixed block scheme outweighs the penalties from 
longer wait times and crowding, thus the fixed block scheme performs best in this scenario. However, in all other 
cases, the penalties for longer wait times and crowding are more prominent, hence the fixed block scheme’s poor 
performance in all other cases. Averaged across all demand levels and distancing levels, the best performing 
headway for the fixed block scheme is 11% lower than the regular scheme on the Victoria line.

Comparison with other performance criteria.  So far, we have presented the best performing headway 
calculated as per the multidimensional performance criterion defined in Eq. (7). As our simulation modelling 
platform is flexible, we can also evaluate the different operational schemes with respect to other performance 
criteria. Here, in addition to the multidimensional performance criterion, we present the best performing 
schemes for each demand and social distancing scenario in terms of the following criteria:

•	 Average total number of Covid-19 cases - We estimate the number of Covid-19 cases for each scenario 
using the well known Wells-Riley equation for airborne disease transmission in enclosed spaces. We take 
the standard approach for undertaking comparative analyses and assume that there is one infectious person 
at the platform and in the train at any given time. We then calculate the average infection probability at 

Table 3.   Performance normalised by demand - best performing headway value for each operating scheme 
for baseline crowding multiplier of 1. MB base moving block, MB+25D moving block with  25 s minimum 
dwell time, MB+35D moving block with  35 s minimum dwell time, FB fixed block 1 Demand is reported as a 
percentage of 2019 demand levels.

Train capacity Scenario MDP/demand ( $/%) Headway (s) Demand level (%)1

180

MB 2582 70 50

MB+25D 2927 60 75

MB+35D 2538 70 75

FB 1563 140 35

290

MB 3404 60 100

MB+25D 3426 70 100

MB+35D 3136 110 50

FB 3022 150 35
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each platform between train arrivals, and the average infection probability aboard each train. The number 
of cases is calculated as the infection probability multiplied by the number of passengers in the space of 
concern. The average total number of Covid-19 cases for each operational scenario is the sum of the potential 
average number of cases per platform and per train. The calculations are summarised in Appendix D. The 
operational scheme and headway value which has the minimum number of Covid-19 cases is taken as the best 
performing. It should be noted that there is a high degree of uncertainty in the virus transmission factors, with 
potential uncertainty up to a factor of 537. Furthermore, we do not consider higher order effects of potential 
transmission when passengers interact during boarding and alighting, as demonstrated for example by Qian 
et al.38 in their quantification of infection risk through the construction of individual level contact networks. 
Therefore, the number of Covid-19 cases calculated here should not be taken as an accurate absolute estimate, 
but should be interpreted as a relative measure to compare different operational schemes.

•	 Profit ($) - Profit is calculated as the difference between revenue from ticket prices from boarding passengers 
and the costs of running trains as per Eq. (9). The operational scheme and headway value which has the 
greatest profit is taken as best performing.

•	 Total journey time (s) - Total journey time is defined as the the sum of journey times across all passengers 
who make the decision to board. Journey times at an individual passenger level are the sum of a passenger’s 
in-vehicle time as per Eq. (4) and wait time as per Eq. (3). The operational scheme and headway value which 
has the shortest total journey time is taken as the best performing.

•	 Maximum number of passengers per platform - For each headway scenario, the maximum number of 
passengers that build up on each platform is calculated, and then the maximum value across all platforms 
is taken as the maximum number of passengers per platform for that scenario. The operational scheme and 
headway that performs best is that which has the minimum number of maximum passengers per platform.

Table 4 and Figure 3 illustrate the best performing headway results for each performance criteria by train capacity 
and demand level for a baseline Covid-19 multiplier of 1. Please note that the results for the MDP criterion have 
been previously presented in Tables 1 and 2, and so are not included in Table 4 to avoid repetition.

As seen in the figure and table, there is not a single consistent value of headway or operational scheme which 
yields the best performance across all criteria and all demand and social distancing scenarios. As previously 
discussed, the best performing headway according to the MDP decreases as demand increases and as train 
capacity decreases. The best performing headway for profit and platform crowding is constant over all demand 
and train capacity scenarios. For profit, the best performing scheme is that which has the longest headway. This 
reflects the high cost of running trains; the highest profit is attained when the fewest trains are run in all scenarios 
tested here. For platform crowding, the best performing headway is the shortest. This is as expected; the fewest 
passengers build up at station platforms when the headway between trains is shortest. For the total journey time 
and Covid-19 cases indicators, there is no clear pattern. For total journey time, the best performing headway 
ranges from 90–230 s for a 180 passenger train capacity and 170–210 s for a 290 passenger train capacity. For 
the number of Covid-19 cases, the best performing headway ranges from 120–240 s for a train capacity of 180 
passengers and 170–240 s for a train capacity of 290 passengers.

As a result of the wide dispersion across the different performance criteria, the results clearly highlight that 
the selection of the performance criteria is an important factor in determining the best performing operational 
scheme. It is typically at the operator’s discretion to determine their target priorities and hence specify the 
performance criteria which best reflects this. In this paper, we have focused on evaluating performance as per 
the MDP indicator as we believe that it is well suited to the general evaluation of public goods such as public 
transport. During pandemic conditions, it would indeed be pertinent to include the risk of virus transmission 
in the calculation of MDP, however, as mentioned previously, the Covid-19 disease dynamics have been subject 
to rapid change throughout the pandemic and it has been difficult to estimate correct values of the transmission 
factors in the calculations; moreover, it is difficult to assign a monetary cost of Covid-19 cases for direct inclusion 
in the MDP indicator. In the future, if more reliable information becomes available for the transmission dynamics 
of Covid-19 and valuing the cost of Covid-19 cases, then we recommend to expand the MDP indicator to include 
the effect of Covid-19 cases directly.

Conclusion
In this paper, we present a flexible and tractable agent-based simulation platform to evaluate the performance 
of mass public transport networks during the Covid-19 pandemic. Using the Victoria Line on the London 
Underground as a case study, we demonstrate a range of potential operational solutions for varied demand 
levels under 2 m and 1 m social distancing restrictions. The advantage of the flexible and tractable modelling 
platform that we have developed is that a wide range of operational solutions can be trialled under a number 
of different demand and social distancing requirements. This capability is not necessarily currently available to 
transit operators, who typically possess complex and intractable in-house modelling platforms calibrated to a 
narrow range of operating conditions.

We trial the following operational interventions: alterations to headways, dwell times, signalling schemes, 
and alterations to train paths. We demonstrate that the modelling platform can be used to determine the best 
performing headway and operational scheme over a specified range of headways. We compare the schemes 
against the regular operations of the Victoria line during weekday PM periods during the pandemic, i.e. a base 
moving block scheme with a 15 s minimum dwell time and 100 s headway. We find that the best performing 
schemes across all social distancing and demand scenarios do not identify the regular 100 s headway as the best 
performing in any case. The best performing headways differ depending on the demand and social distancing 
levels, ranging from 60 to 150 s. Moreover, the results do not identify a single operational scheme that performs 
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best consistently in all scenarios, the best scheme is again highly context dependent on demand and social 
distancing levels. Over all demand and social distancing scenarios, the performance gains for the best performing 
headway and operational scheme range from 12.3–195.7%, with an average improvement of 78.6%, when 
compared to the regular operations on the Victoria line during the pandemic. The results therefore highlight 
the need and benefit of the flexible simulation platform; multiple demand and social distancing scenarios can 
be simulated to achieve substantial performance gains.

In terms of comparisons across the different operational schemes, we find that the moving block schemes 
with varying dwell times perform similarly well and far better than the fixed block scheme, while the skip-stop 
scheme performs worst across all demand and social distancing scenarios. Compared to the regular operations 
on the Victoria line during the pandemic, when averaged across all demand and social distancing scenarios, 
the best performing headway for the moving block scheme with a minimum 25 s dwell time has a 70.3% higher 
MDP value, for the moving block scheme with a minimum 35 s dwell time the performance is 66.2% higher, 
and for the moving block scheme with a minimum 15 s dwell time the performance is 60.2% higher. Across all 
demand and social distancing levels, the best performance of the older fixed block signalling scheme is 11% 

Table 4.   Summary of best performing headway and operational scheme for different performance criteria 
per train capacity and demand level, for baseline Covid-19 crowding multiplier of 1. MB base moving block, 
MB+25D  moving block with 25 s minimum dwell time, MB+35D moving block with  35 s minimum dwell 
time, FB fixed block 1 Demand is reported as a percentage of 2019 demand levels.

Train capacity Demand (%)1 Scenario Headway (s) Min. value

Total Covid-19 cases

 180

35 MB+25D 230 2.08E−01

50 MB+35D 120 2.41E−01

75 MB+35D 240 2.68E−01

100 MB+35D 230 3.07E−01

 290

35 MB 210 2.76E−01

50 MB+35D 170 3.08E−01

75 MB+25D 200 3.49E−01

100 MB+35D 240 4.42E−01

Profit ($)

 Train capacity Demand (%)1 Scenario Headway (s) Max. value

 180

35 MB+35D 240 −2.81E+04

50 MB+35D 240 −2.82E+04

75 MB+35D 240 −2.79E+04

100 MB+35D 240 −2.71E+04

 290

35 MB+35D 240 −2.80E+04

50 MB+35D 240 −2.70E+04

75 MB+35D 240 −2.65E+04

100 MB+35D 240 −2.59E+04

Total journey time (s)

 Train capacity Demand (%)1 Scenario Headway (s) Min. value

 180

35 MB+25D 230 3.48E+05

50 MB+25D 230 1.36E+05

75 MB+35D 240 1.92E+04

100 FB 90 9.70E+03

 290

35 MB 210 7.04E+05

50 MB 170 7.64E+05

75 MB+35D 210 1.31E+04

100 MB+35D 190 7.56E+03

Maximum number of passengers on platform

 Train capacity Demand (%)1 Scenario Headway (s) Min. value

 180

35 MB+25D 60 28

50 MB+25D 60 39

75 MB+35D 60 86

100 MB+25D 60 307

 290

35 MB+25D 60 26

50 MB 60 41

75 MB+25D 60 63

100 MB 60 85
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lower than the regular moving block scheme used during the pandemic. Comparing the best performance of 
the fixed block scheme with the best performance of the moving block scheme with a minimum 25 s dwell time, 
the performance of the fixed block scheme is 42.3% lower. Transit authorities can therefore use the modelling 
platform (with inputs of the actual rather than simulated fixed block locations) to make an evidenced-based case 
for upgrading signalling technologies.

In terms of future work, we have identified a number of areas to explore further. First is the potential inclusion 
of passenger perceptions of Covid-19 risk in the generalised costs calculations and second is the direct inclusion 
of the social cost of Covid-19 infections in the calculation of the multidimensional performance criterion. In 
our analysis, we undertook sensitivity testing of passenger perceptions of crowding during pandemic conditions 
by trialling the application of additional multipliers to the platform and train crowding costs. We found that 
our results were relatively robust to crowding sensitivity, with the average change in the best performance levels 
being 8.4% when inflating the crowding multipliers from 0 to 5, however, we acknowledge that future work to 
generate more accurate estimates of crowding sensitivity would be beneficial. We also used a simplified Wells-
Riley method to calculate the potential infection risk and number of Covid-19 cases that could arise in each 
operational scheme. However, we note that there is substantial uncertainty in the estimates of the transmission 
dynamics of the virus potentially up to a factor of 5 as reported in the literature37, we do not consider higher 
order individual contact effects, such as those shown earlier38, which could be included to improve the accuracy 
of infection risk estimation, and there is uncertainty in determining the societal costs of infection. Therefore, we 
recommend these areas for further work to potentially improve the evaluation of operational scenarios. Finally, 
the current model assumes unconstrained queuing when passengers are unable to board the train. In future 
work, the model can be expanded to incorporate demand side interventions to control queue length. Potential 
solutions have been documented in our paper3, and include ticket pricing, advanced booking, slot auctioning, 
and tradeable travel permit schemes.

Data availability
The data used in the model were obtained from the Transport for London open-source data repository, which 
is freely available at http://​crowd​ing.​data.​tfl.​gov.​uk.

Code availability
The R code for the model can be made available on request.
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