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Taming hyperparameter tuning 
in continuous normalizing flows 
using the JKO scheme
Alexander Vidal 1*, Samy Wu Fung 2, Luis Tenorio 1, Stanley Osher 3 & Levon Nurbekyan 3

A normalizing flow (NF) is a mapping that transforms a chosen probability distribution to a 
normal distribution. Such flows are a common technique used for data generation and density 
estimation in machine learning and data science. The density estimate obtained with a NF requires 
a change of variables formula that involves the computation of the Jacobian determinant of the NF 
transformation. In order to tractably compute this determinant, continuous normalizing flows (CNF) 
estimate the mapping and its Jacobian determinant using a neural ODE. Optimal transport (OT) theory 
has been successfully used to assist in finding CNFs by formulating them as OT problems with a soft 
penalty for enforcing the standard normal distribution as a target measure. A drawback of OT-based 
CNFs is the addition of a hyperparameter, α , that controls the strength of the soft penalty and requires 
significant tuning. We present JKO-Flow, an algorithm to solve OT-based CNF without the need of 
tuning α . This is achieved by integrating the OT CNF framework into a Wasserstein gradient flow 
framework, also known as the JKO scheme. Instead of tuning α , we repeatedly solve the optimization 
problem for a fixed α effectively performing a JKO update with a time-step α . Hence we obtain a 
”divide and conquer” algorithm by repeatedly solving simpler problems instead of solving a potentially 
harder problem with large α.

A normalizing flow (NF) is a type of generative modeling technique that has shown great promise in applications 
arising in  physics1–3 as a general framework to construct probability densities for continuous random variables 
in high-dimensional  spaces4–6. An NF provides a C1-diffeomorphism f (i.e., a normalizing transformation) that 
transforms the density ρ0 of an initial distribution P0 to the density ρ1 of the standard multivariate normal 
distribution P1—hence the term ”normalizing”. Given such mapping f, the density ρ0 can be recovered from the 
Gaussian density via the change of variables formula,

where Jf ∈ R
d×d is the Jacobian of f. Moreover, one can obtain samples with density ρ0 by pushing forward 

Gaussian samples via f −1.

Remark 1 Throughout the paper we slightly abuse notation, using the same notation for probability distributions 
and their density functions. Additionally, given a probability distribution P0 on Rd and a measurable mapping 
f : Rd → R

d , we define the pushforward distribution of P0 through f as (f ♯P0)(B) = P0(f
−1(B)) for all Borel 

measurable B ⊆ R
d7,8.

There are two classes of normalizing flows: finite and continuous. A finite flow is defined as a composition 
of a finite number of C1-diffeomorphisms: f = f1 ◦ f2 ◦ · · · ◦ fn . To make finite flows computationally tractable, 
each fi is chosen to have some regularity properties such as a Jacobian with a tractable determinant; for example, 
Jfi may have a triangular  structure9–11.

On the other hand, continuous normalizing flows (CNFs) estimate f using a neural ODE of the  form12:

(1)log ρ0(x) = log ρ1
(
f (x)

)
+ log | det Jf (x)|,

(2)∂t z(x, t) = vθ (z(x, t), t), z(x, 0) = x, 0 ≤ t ≤ T ,
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where θ are the parameters of the neural ODE. In this case, f is defined as f (x) = z(x,T) (for simplicity, we 
remove the dependence of z on θ).

One of the main advantages of CNFs is that we can tractably estimate the log-determinant of the Jacobian 
using Jacobi’s identity, which is commonly used in fluid mechanics (see, e.g.,8, p. 114):

This is computationally appealing as one can replace the expensive determinant calculation by a more trac-
table trace computation of ∇zvθ (z(x, t), t) . Importantly, no restrictions on ∇zvθ (z(x, t), t) (e.g., diagonal or 
triangular structure) are needed; thus, these Jacobians are also referred to as “free-form Jacobians”13.

The goal in training a CNF is to find parameters, θ , such that f = z(·,T) leads to a good approximation of ρ1 
or, assuming f is invertible, the pushforward of ρ1 through f −1 is a good approximation of ρ05,6,10,13. Indeed, let ρ̂0 
be this pushforward density obtained with a CNF f; that is, ρ̂0 = f −1♯ρ1 . We then minimize the Kullback-Leibler 
(KL) divergence from ρ̂0 to ρ0 given by

where ℓ(x,T) = log | det∇z(x,T)| . Dropping the θ-independent term log ρ0 and using Eqs. (2) and (3), this 
previous optimization problem reduces to the minimization problem

subject to ODE constraints

The ODE Eq. (5) might be stiff for certain values of θ , leading to extremely long computation times. Indeed, 
the dependence of v on θ is highly nonlinear and might generate vector fields that lead to highly oscillatory 
trajectories with complex geometry.

Some recent work leverages optimal transport theory to find the  CNF14,15. In particular, a kinetic energy 
regularization term (among others) is added to the loss to “encourage straight trajectories” z(x, t). That is, the 
flow is trained by solving the following minimization instead of Eq. (4):

subject to Eq. (5). The key insight  in14,15 is that Eq. (4) is an example of a degenerate OT problem with a soft 
terminal penalty and without a transportation cost. The first term in the objective function in Eq. (6) given by 
the time integral is the transportation cost, whereas α is a hyperparameter that balances the soft penalty and the 
transportation cost. Including this cost makes the problem well-posed by forcing the solution to be  unique16. 
Additionally, it enforces straight trajectories so that Eq. (5) is not stiff.  Indeed14,15 empirically demonstrate that 
including optimal transport theory leads to faster and more stable training of CNFs. Intuitively, we minimize 
the KL divergence and the arclength of the trajectories.

Although including optimal transport theory into CNFs has been very  successful14,15,17,18, there are two key 
challenges that render them difficult to train. First, estimating the log-determinant in Eq. (4) via the trace in Eq. 
(5) is still computationally taxing and commonly used methods rely on stochastic  approximations13,14, which add 
extra error. Second, including the kinetic energy regularization requires tuning of the hyperparameter α . Indeed, 
if α is chosen too small in Eq. (6), then the kinetic regularization term dominates the training process, and the 
optimal solution consists of not moving, i.e., f (x) = x . On the other hand, if α is chosen too large, we return to 
the original setting where the problem is ill-posed, i.e., there are infinitely many solutions. Finally, finding an 
”optimal” α is problem dependent and requires tuning on a case-by-case basis.

Our contribution. We present JKO-Flow, an optimal transport-based algorithm for training CNFs without 
the need to tune the hyperparameter α in Eq. (6). Our approach also leverages fast numerical methods for exact 
trace estimation from the recently developed optimal transport flow (OT-Flow)15,19.

The key idea is to integrate the OT-Flow approach into a Wasserstein gradient flow framework, also known 
as the Jordan, Kinderlehrer, and Otto (JKO)  scheme20. Rather than tuning the hyperparameter α (commonly 
done using a grid search), the idea is to simply pick any α and solve a sequence of ”easier” OT problems that 
gradually approach the target distribution. Each solve is precisely a gradient descent in the space of distributions, 
a Wasserstein gradient descent, and the scheme provably converges to the desired distribution for all α > 021. 
Our experiments show that our proposed approach is effective in generating higher quality samples (and density 
estimates) and also allows us to reduce the number of parameters required to estimate the desired flow.

Our strategy is reminiscent of debiasing techniques commonly used in inverse problems. Indeed, the trans-
portation cost that serves as a regularizer in Eq. (6) introduces a bias—the smaller α the more bias is introduced 
(see, e.g.,22), so good choices of α tend to be larger. One way to remove the bias and avoid the need to tune the 
regularization parameter is to perform a sequence of Bregman  iterations23,24, also known as nonlinear proximal 
steps. Hence our approach reduces to debiasing via Bregman or proximal steps in the Wasserstein space. In the 
context of CNF training, Bregman iterations are advantageous due to the flexibility of the choice for α . Indeed, 

(3)∂t log | det∇xz(x, t)| = ∇z · vθ (z(x, t), t) = trace(∇zvθ (z(x, t), t)).

min
θ

Ex∼ρ0 log(ρ0(x)/ρ̂0(x)) = min
θ

Ex∼ρ0

[
log ρ0(x)− log ρ1(z(x,T))− ℓ(x,T)

]
,

(4)min
θ

Ex∼ρ0 C(x,T), C(x,T) := − log ρ1(z(x,T))− ℓ(x,T)

(5)∂t

[
z(x, t)
ℓ(x, t)

]
=

[
vθ (z(x, t), t)

trace(∇zvθ (z(x, t), t))

]
,

[
z(x, 0)
ℓ(x, 0)

]
=

[
x
0

]
.

(6)min
θ

Ex∼ρ0

∫ T

0

1

2
�vθ (z(x, t), t)�

2dt + αC(x,T)
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the resulting loss function is non-convex and its optimization tends to get harder for large α . Thus, instead of 
solving one harder problem we solve several “easier” problems.

Optimal transport background and connections to CNFs
Denote by P2(R

d) the space of Borel probability measures on Rd with finite second-order moments, and let 
ρ0, ρ1 ∈ P2(R

d) . The quadratic optimal transportation (OT) problem (which also defines the Wasserstain metric 
W2 ) is then formulated as

where Ŵ(ρ0, ρ1) is the set of probability measures π ∈ P(R2d) with fixed x and y-marginal distributions ρ0 and ρ1 , 
respectively. Hence the cost of transporting a unit mass from x to y is �x − y�2 , and one attempts to transport ρ0 to 
ρ1 as cheaply as possible. In Eq. (7), π represents a transportation plan, and π(x, y) is the mass being transported 
from x to y. One can prove that (P2(R

d),W2) is a complete separable metric  space8. OT has recently become a 
very active research area in PDE, geometry, functional inequalities, economics, data science and elsewhere partly 
due to equipping the space of probability measures with a (Riemannian)  metric8,16,25,26.

As observed in prior works, there are many similarities between OT and  NFs14,15,18,27. This connection becomes 
more transparent when considering the dynamic formulation of Eq. (7). More precisely, the Benamou-Brenier 
formulation of the OT problem is given  by28:

Hence, the OT problem can be formulated as a problem of flowing ρ0 to ρ1 with a velocity field v that achieves 
minimal kinetic energy. The optimal velocity field v has several appealing properties. First, particles induced by 
the optimal flow v travel in straight lines. Second, particles travel with constant speed. Moreover, under suitable 
conditions on ρ0 and ρ1 , the optimal velocity field is  unique8.

Given a velocity field v, denote by z(x, t) the solution of the ODE

Then, under suitable regularity conditions, we have that the solution of the continuity equation is given by 
ρ(·, t) = z(·, t)♯ρ0 . Thus the optimization problem in Eq. (8) can be written as

This previous problem is very similar to (4) with the following differences:

• the objective function in Eq. (4) does not have the kinetic energy of trajectories,
• the terminal constraint is imposed as a soft constraint in Eq. (4) and as a hard constraint in Eq. (9), and
• v in Eq. (4) is θ-dependent, whereas the formulation in Eq. (9) is in the non-parametric regime.

So the NF defined by Eq. (4) can be thought of as an approximation to a degenerate transportation problem 
that lacks transportation cost. Based on this insight one can regularize Eq.  (4) by adding the transportation cost 
and arrive at Eq. (6) or some closely related version of  it14,15,18,27. It has been observed that the transportation cost 
(kinetic energy) regularization significantly improves the training of NFs.

JKO-flow: Wasserstein gradient flows for CNFs
While the OT-based formulation of CNFs in Eq. (6) has been found successful in some  applications14,15,18,27, a 
key difficulty arises in choosing how to balance the kinetic energy term and the KL-divergence, i.e., on selecting 
α . This difficulty is typical in problems where the constraints are imposed in a soft fashion. Standard training 
of CNFs typically involves tuning for a “large but hopefully stable enough” step size α so that the KL divergence 
term is sufficiently small after training. To this end, we propose an approach that avoids the need to tune α by 
using the fact that the solution to Eq. (6) is an approximation to a backward Euler (or proximal point) algorithm 
when discretizing the Wasserstein gradient flow using the Jordan–Kinderlehrer–Otto (JKO)  scheme20.

The seminal work  in20 provides a gradient flow structure of the Fokker–Planck equation using an implicit 
time discretization. That is, given α > 0 , density at kth iteration, ρ(k) , and terminal density ρ1 , one finds

(7)W2
2 (ρ0, ρ1) = inf

π∈Ŵ(ρ0,ρ1)

∫

R2d
�x − y�2dπ(x, y),

(8)

T

2
W2

2 (ρ0, ρ1) = inf
v,ρ

∫ T

0

∫

Rd

1

2
�v(x, t)�22ρ(x, t)dxdt

s.t. ∂tρ(x, t)+∇ · (ρ(x, t)v(x, t)) = 0

ρ(x, 0) = ρ0(x), ρ(x,T) = ρ1(x).

∂t z(x, t) = v(z(x, t), t), z(x, 0) = x, 0 ≤ t ≤ T .

(9)
inf
v

∫ T

0

∫

Rd

1

2
�v(z(x, t), t)�22ρ0(x)dxdt

s.t. ∂t z(x, t) = v(z(x, t), t), z(x, 0) = x, z(·,T)♯ρ0 = ρ1.
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for k = 0, 1, . . . , and ρ(0) = ρ0 . Here, α takes the role of a step size when applying a proximal point method to 
the KL divergence using the Wasserstein-2 metric, and {ρ(k)} provably converges to ρ120,21. Hence, repeatedly 
solving Eq. (9) with the KL penalty acting as a soft constraint yields an arbitrarily accurate approximation of ρ1 . 
In the parametric regime each iteration takes the form

Thus we solve a sequence of problems Eq. (6), where the initial density of the current subproblem is given by 
the pushforward of the density generated in the previous subproblem.

Importantly, our proposed approach does not require tuning α . Instead, we solve a sequence of subproblems 
that is guaranteed to converge to ρ120 prior to the neural network parameterization; see Algorithm 1. Indeed, 
since the traditional approach is equivalent to JKO-Flow with one iteration, JKO-Flow is generally more com-
putationally expensive. But we crucially note that in the traditional single-shot setting, tuning α may require 
training the model many times as well. JKO-Flow provides a way to automate hyperparameter tuning of α . In 
our experiments, we observe that ten iterations of JKO-Flow leads to good results for a high-dimensional phys-
ics problem, see “Numerical experiments”. While our proposed methodology can be used in tandem with any 
algorithm used to solve Eq. (11), an important numerical aspect in our approach is to leverage fast computational 
methods that use exact trace estimation in Eq. (5); this approach is called OT-Flow15. Consequently, we avoid the 
use of stochastic approximation methods for the trace, e.g., Hutchinson’s  estimator22,29,30, as is typically done in 
CNF  methods13,14. A surprising result of our proposed method is that it empirically shows improved performance 
even with fewer number of parameters (see Fig. 3).

Algorithm 1 Proposed Algorithm

1: Input: Samples from ρ0, step size α > 0, number of steps K
2: Initialize θ1 at random
3: for k = 1, . . . ,K do
4: Solve for θk using samples by solving (11)
5: Update distribution of samples using vθk
6: end for
7: Output: saved weights θ1, . . . , θK

Related works
Density estimation. Multivariate density estimation is a fundamental problem in  statistics31,32, High 
Energy Physics (HEP)33 and in other fields of science dealing with multivariate data. For instance, particle physi-
cists in HEP study possible distributions from a set of high energy data. Another application of density estima-
tion is in confidence level calculations of particles in Higgs searches at Large Electron Positron Colliders (LEP)34 
and discriminant methods used in the search for new  particles33. One of the main advantages of NFs over other 
generative models is that they provide density estimates of probability distributions using Eq. (1). That is, we do 
not need to apply a separate density estimation technique after generating samples from a distribution, e.g., as 
in  GANs35.

Finite flows. Finite normalizing  flows4–6,36 use a composition of discrete transformations, where spe-
cific architectures are chosen to allow for efficient inverse and Jacobian determinant computations.  NICE37, 
 RealNVP38,  IAF39, and  MAF10 use either autoregressive or coupling flows where the Jacobian is triangular, so the 
Jacobian determinant can be tractably computed.  GLOW40 expands upon RealNVP by introducing an additional 
invertible convolution step. These flows are based on either coupling layers or autoregressive transformations, 
whose tractable invertibility allows for density evaluation and generative sampling. Neural Spline  Flows41 use 
splines instead of the coupling layers used in GLOW and RealNVP. Using monotonic neural networks,  NAF42 
require positivity of the weights, which  UMNN43 circumvent this requirement by parameterizing the Jacobian 
and then integrating numerically. A recent work, called Normalizing Field Flows (NFFs)44, generalizes NFs to 
include learning random fields from scattered measurements; in particular, NFFs can be used to solve data-
driven forward, inverse, and mixed forward/inverse stochastic partial differential equations.

Continuous and optimal transport-based flows. Modeling flows with differential equations is a 
natural and commonly used  method27,45–50. In particular, CNFs model their flow via a neural ordinary dif-
ferential  equation12,13,51. Among the most well-known CNFs are  FFJORD13, which estimates the determinant 
of the Jacobian by accumulating its trace along the trajectories, and the trace is estimated using Hutchinson’s 

(10)

ρ(k+1) = argmin
ρ∈P2(Rd)

1

2α
W2

2 (ρ, ρ
(k))+ KL(ρ||ρ1)

= argmin
v

1

α

∫ 1

0

∫

Rd

1

2
�v(z(x, t), t)�22ρ0(x)dxdt + KL(z(·, 1)♯ρ(k)||ρ1)

s.t. ∂t z(x, t) = v(z(x, t), t), z(x, 0) = x

(11)argmin
θ

Ex∼ρ(k)

∫ T

0

1

2
�vθ (x, t)�

2dt + αC(x,T) subject to 5.
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 estimator22,29,30. To promote straight trajectories,  RNODE14 regularizes FFJORD with a transport cost L(x,T) . 
RNODE also includes the Frobenius norm of the Jacobian �∇v�2F to stabilize training. The trace and the Frobe-
nius norm are estimated using a stochastic estimator and report speedup by a factor of 2.8.

Monge-Ampère  Flows18 and Potential Flow  Generators17 similarly draw from OT theory but parameterize a 
potential function instead of the dynamics directly. OT is also used in other generative  models52–57. OT-Flow15 
is based on a discretize-then-optimize  approach58 that also parameterizes the potential function. To evaluate 
the KL divergence, OT-Flow estimates the density using an exact trace computation following the work  of19.

Wasserstein gradient flows. Our proposed method is most closely related  to59, which also employs a 
JKO-based scheme to perform generative modeling. But a key difference is  that59 reformulates the KL-diver-
gence as an optimization over difference of expectations  (see59, Prop. 3.1); this makes their approach akin to 
GANs, where the density cannot be obtained without using a separate density estimation technique. Our pro-
posed method is also closely related to methods that use input-convex  CNNs60–62.  Reference62 focuses on the 
special case with KL divergence as objective function.60 solve a sequence of subproblems different from the fluid 
flow formulation presented in Eq. (11). They also require an end-to-end training scheme that backpropagates 
to the initial distribution; this can become a computational burden when the number of time discretizations is 
large.  Reference61 utilizes a JKO-based scheme to approximate a population dynamics given an observed trajec-
tory and focus on applications in computational biology. Other related works include natural gradient  methods63 
and implicit schemes based on the Wasserstein-1  distance64.

Numerical experiments
We demonstrate the effectiveness of our proposed JKO-Flow on a series of synthetic and real-world datasets. As 
previously mentioned, we compute each update in Eq. (10) by solving Eq. (6) using the OT-Flow  solver15, which 
leverages fast and exact trace computations. We also use the same architecture provided  in15. Henceforth, we 
shall also call the traditional CNF approach the “single-shot” approach. We also clarify that α in our experiments 
refers to the parameter in Eq. (6).

Maximum mean discrepancy metric (MMD). Our density estimation problem requires approximating 
a density ρ0 by finding a transformation f such that f −1♯ρ1 has density ρ̂0 close to ρ0 , where ρ1 is the standard 
multivariate Gaussian. However, ρ0 is not known in real-world density estimation scenarios, such as in phys-
ics applications, all we have are samples X = {xi}

n
i=1 from the unknown distribution. Consequently, we use the 

observed samples X and samples X̂ = {x̂j}
m
j=1 , x̂j = f −1(qj) , generated by the CNF and samples Q = {qj}

m
j=1 from 

ρ1 to determine if their corresponding distributions are close in some sense. To measure the discrepancy we use 
a particular integral probability  metric65–67 known as maximum mean discrepancy (MMD) defined as  follows68: 
let x and y be random vectors in Rd with distributions µx and µy , respectively, and let H be a reproducing kernel 
Hilbert space (RKHS) of functions on Rd with Gaussian kernel  (see69 for an introduction o RKHS’s)

Then the MMD of µx and µy is given by

It can be shown that MMDH defines a metric on the class of probability measures on Rd68,70. The squared-
MMD can be written in terms of the kernel as follows:

where x, x′ are iid µx independent of y, y′ which are iid µy . An unbiased estimate of the squared-MMD based 
on the samples X and X̂ defined above is given  by68:

Note that the MMD is not used for algorithmic training of the CNF, it is only used to compare the densities 
ρ0 and ρ̂0 based on the samples X and X̂.

Synthetic 2D data set. We begin by testing our method on seven two-dimensional (2D) benchmark data-
sets for density estimation algorithms commonly used in machine  learning13,43; see Fig. 2. We generate results 
with JKO-Flow for different values of α and for different number of iterations. We use α = 1 , 5, 10, and 50, and 
for each α we use the single shot approach k = 1 and JKO-Flow with k = 5 iterations from Eq. (10). Note that 
in CNFs, we are interested in estimating the density (and generating samples) from ρ0 ; consequently, once we 
have the optimal weights θ(1), θ(2), . . . , θ(5) , we must “flow backwards” starting with samples from the normal 
distribution ρ1 . Figure 1 shows that JKO-Flow outperforms the single shot approach for different values of α . In 
particular, the performance for the single shot approach varies drastically for different values of α , with α = 1 
being an order of magnitude higher in MMD than α = 5 . On the other hand, JKO-Flow performs consistently 
regardless of the value of α for most datasets. There is one exception for the spirals dataset with α = 1 ; this is 

(12)k(xi , xj) = exp

(
−
1

2
�xi − xj�

2

)
.

MMDH(µx,µy) = sup
�f�H≤1

|E f (x)− E f (y) |.

MMD2
H(µx,µy) = E k(x, x′)+ E k(y, y′)− 2E k(x, y),

MMD2
H(X, X̂) =

1

n(n− 1)

∑

i �=j

k(xi, xj)+
1

m(m− 1)

∑

k �=ℓ

k(x̂k , x̂ℓ)−
2

nm

∑

i,ℓ

k(xi, x̂ℓ).
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because only five iterations are used in the JKO scheme and more are needed. When 10 iterations are used 
instead, we achieve a similar order of accuracy ( 2.3e − 4 ). As previously mentioned, this is expected as JKO-
Flow is a proximal point algorithm that converges regardless of the step size α . In this case, five JKO-Flow itera-
tions are enough to obtain this consistency. Additional plots and hyperparameter setups for different benchmark 
datasets with similar performance results are shown in the Supplementary Information. Table 1 summarizes 
the comparison between the single shot and JKO-Flow on all synthetic 2D datasets for different values of α . We 
also show an illustration of all the datasets, estimated densities, and generated samples with JKO-Flow in Fig. 2.

Varying network size. In addition to obtaining consistent results for different values of α , we also empiri-
cally observe that JKO-Flow outperforms the single shot approach for different numbers of network parameters, 
i.e., network size. We illustrate this in Fig. 3. This is also intuitive as we reformulate the problem of finding a 

Figure 1.  Checkerboard dataset: generated samples of ρ̂0 using the standard one-shot approach (top row). 
Generated using our proposed JKO-Flow using five iterations (bottom row). Here, we use α = 1 , 5, 10, 50. JKO-
Flow returns consistent results regardless of the value of α.

Table 1.  Synthetic 2D data: JKO-flow performance for different values of α . JKO-flow returns consistent 
performance for different α.

α 1 5 10 50

Dataset Approach MMD2

Checkerboard
Single shot 3.58e−2 3.56e−3 1.42e−3 1.26e−3

JKO-flow (5 iters) 4.9e−4 5.67e−4 6.40e−4 9.00e−4

2 spirals
Single shot 7.21e−2 2.30e−2 1.84e−2 7.73e−4

JKO-flow (5 iters) 2.10e−2 4.62e−4 1.02e−4 5.37e−5

Swiss roll
Single shot 4.74e−3 7.33e−4 2.86e−4 7.03e−4

JKO-flow (5 iters) 5.16e−4 8.3e−5 3.27e−5 6.07e−4

8 Gaussians
Single shot 9.18e−3 2.69e−4 3.94e−4 7.10e−4

JKO-flow (5 iters) 1.07e−4 4.13e−5 2.67e−4 7.27e−6

Circles
Single shot 9.84e−3 2.24e−4 6.51e−4 1.04e−4

JKO-flow (5 iters) 9.49e−4 9.97e−6 2.38e−5 9.28e−5

Pinwheel
Single shot 1.18e−2 1.8e−3 1.37e−3 2.2e−5

JKO-flow (5 iters) 4.7e−4 2.63e−4 3.84e−4 4.30e−4

Moons
Single shot 1.45e−3 2.05e−3 2.49e−4 2.42e−4

JKO-flow (5 iters) 1.92e−4 4.65e−5 4.3e−5 1.08e−4
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single “difficult” optimal transportation problem as a sequence of “smaller and easier” OT problems. In this 
setup, we vary the width of a two-layer  ResNet71. In particular, we choose the widths to be m = 3, 4, 5, 8 , and 16. 
These correspond to 40, 53, 68, 125, and 365 parameters. The hyperparameter α is chosen to be the best perform-
ing value for each synthetic dataset. All datasets vary m for fixed α = 5 , except the 2 Spiral dataset, which uses 
α = 50 ; we chose these α values as they performed the best in the fixed m experiments. Similar results are also 
shown for the remaining synthetic datasets in the Supplementary Information. Table 2 summarizes the compari-
son between the single shot and JKO-Flow on all synthetic 2D datasets.

Density estimation on a physics dataset. We train JKO-Flow on the 43-dimensional Miniboone data-
set which is a high-dimensional, real-world physics dataset used as benchmark for high-dimensional density 
estimation algorithms in  physics72. For this physics problem, our method is trained for α = 0.5, 1, 5, 10, 50 
and using 10 JKO-Flow iterations. Fig. 4 shows generated samples with JKO-Flow and the standard single-shot 
approach for α = 5 . Since Miniboone is a high-dimensional dataset, we  follow15 and plot two-dimensional 

Figure 2.  Density estimation on 2D toy problems using five JKO-Flow iterations. Top: samples from the 
unknown distribution ρ0 . Middle: density estimate for ρ0 computed by inverting the flow through the five 
iterations of JKO-Flow from ρ1 via Eq. (2). Bottom: samples generated by inverse JKO-Flow through five 
iterations where y has density ρ1.

Figure 3.  Checkerboard dataset: generated samples of ρ̂0 using the standard single shot approach (top row). 
Generated samples using our proposed JKO-Flow using five iterations (bottom row). Here, we fix α = 5 and 
vary the network width m = 3, 4, 5, 8 , and 16. JKO-Flow performs competitively even with fewer parameters.
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slices. JKO-Flow generates better quality samples. Similar experiments for α = 1, 10 , and 50 are shown in the 
Supplementary Information. Table 3 summarizes the results for all values of α . Note that we compute MMD val-
ues for all the dimensions as well as 2D slices; this is because we only have limited data (  3000 testing samples) 
and the 2D slice MMD give a better indication on the improvement of the generated samples. Results show that 
the MMD is consistent across all α values for JKO-Flow. We also show the convergence (in MMD2 ) of the mini-
boone dataset across each 2D slice in Fig. 5. As expected, smaller step size α values converge slower (see α = 0.5) , 
but all converge to similar accuracy (unlike the single-shot).

Conclusion
We propose a new approach we call JKO-Flow to train OT-regularized CNFs without having to tune the regu-
larization parameter α . The key idea is to embed an underlying OT-based CNF solver into a Wasserstein gradi-
ent flow framework, also known as the JKO scheme; this approach makes the regularization parameter act as a 
“time” variable. Thus, instead of tuning α , we repeatedly solve proximal updates for a fixed (time variable) α . In 
our setting, we choose OT-Flow15, which leverages exact trace estimation for fast CNF training. Our numeri-
cal experiments show that JKO-Flow leads to improved performance over the traditional approach. Moreover, 
JKO-Flow achieves similar results regardless of the choice of α . We also empirically observe improved performance 
when varying the size of the neural network. Future work will investigate JKO-Flow on similar problems such 
as deep learning-based methods for optimal  control73–75 and mean field  games19,76,77.

Table 2.  Synthetic 2D data: network width comparison for 1 and 5 iterations given a fixed, best performing α . 
JKO-Flow performs better than the single shot approach for different network sizes.

m 3 4 5 8 16

Dataset Approach MMD2

Checkerboard
Single shot 1.10e−2 5.60e−3 2.46e−3 3.03e−3 2.70e−3

JKO-flow (5 iters) 5.60e−3 1.07e−3 2.7e−4 2.32e−4 4.16e−4

2 spirals
Single shot 5.98e−3 4.54e−3 5.47e−3 1.19e−3 3.96e−3

JKO-flow (5 iters) 1.42e−3 1.49e−5 6.11e−4 3.93e−5 2.19e−3

Swiss roll
Single shot 8.89e−3 7.71e−3 1.41e−3 1.37e−3 1.52e−3

JKO-flow (5 iters) 1.49e−3 2.90e−4 6.13e−4 2.29e−4 8.40e−5

8 Gaussians
Single shot 2.20e−3 1.05e−3 1.04e−3 2.3e−4 5.05e−4

JKO-flow (5 iters) 1.33e−4 9.85e−4 2.40e−5 3.96e−4 1.07e−4

Circles
Single shot 2.06e−3 1.72e−3 1.37e−3 1.69e−3 1.34e−3

JKO-flow (5 iters) 1.94e−3 3.24e−4 7.71e−4 5.9e−5 1.01e−4

Pinwheel
Single shot 1.10e−2 4.03e−3 2.27e−3 3.80e−3 5.43e−4

JKO-flow (5 iters) 1.20e−3 8.23e−4 1.60e−3 7.00e−5 2.69e−4

Moons
Single shot 4.98e−3 4.54e−3 5.47e−3 1.2e−3 3.96e−3

JKO-flow (5 iters) 1.42e−3 1.5e−5 6.11e−4 3.90e−5 2.19e−3

Figure 4.  Generated samples for the 43-dimensional Miniboone dataset using the single shot approach and 
JKO-Flow with 10 iterations. To visualize the dataset, we show 2-dimensional slices. We show the forward flow 
f(x) where x ∼ ρ0 and the genereated samples f −1(y) where y ∼ ρ1.
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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