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Impact of implementing emergency 
demand response program 
and tie‑line on cyber‑physical 
distribution network resiliency
Sally R. Osman , Bishoy E. Sedhom * & Sahar S. Kaddah 

Recently, due to the complex nature of cyber-physical distribution networks (DNs) and the severity 
of power outages caused by natural disasters, microgrid (MG) formation, distributed renewable 
energy resources (DRERs), and demand response programs (DRP) have been employed to enhance 
the resiliency of these networks. This paper proposes a novel multi-objective MGs formation method-
based darts game theory optimization algorithm. The microgrid formation is obtained by controlling 
the sectionalizing and tie-line switches. The network graph theory is used to represent the constructed 
microgrid, and the non-linear equations of power flow and loss calculations are adopted in the 
microgrid formation model. To measure the system’s resiliency under extreme disaster events, metrics 
are utilized to prove the system’s flexibility and resiliency. The modified IEEE 33-bus test system is 
designed to validate the proposed approach’s effectiveness. Three case studies are performed with 
and without considering the emergency demand response program (EDRP) and tie-lines.

Abbreviations
MG	� Microgrid
DN	� Distribution network
DRERs	� Distributed renewable energy resources
ESS	� Energy storage system
DG	� Diesel generator
PV	� Photo-voltaic
WT	� Wind turbine
FC	� Fuel cell
MT	� Micro-turbine
DRP	� Demand response program
EDRP	� Emergency demand response program
DGT	� Darts game theory

Indices and sets
n,m, b, r , q,j	� Set of buses, ranging from 1 to Nbus

g	� Set of distributed renewable energy resources
dg	� Set of diesel generator units
e	� Set of energy storage unit
L	� Set of lines and tie-lines indexed by l
mg	� Set of formable microgrids, ranging from 1 to Nmg

c	� Index of emergency demand response program step
d	� Index of emergency demand response program block
s	� Set of Scenarios
t 	� Index of post-event restoration time
u	� Set of variables
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v	� Set of events
ϕ	� Set of neighboring nodes

Parameters
Ndg	� Number of diesel generator units
Nmg	� Number of formable microgrids
Nmaster	� Number of master diesel generator units
PGmin

g ,mg ,s,t , PGmax
g ,mg ,s,t	� Minimum and maximum allowed active output (KW)

QGmin
g ,mg ,s,t , QGmax

g ,mg ,s,t	� Minimum and maximum allowed reactive output (kVar)
ECe	� The capacity of ESS
SoCmin

e ,SoCmax
e 	� Minimum and maximum state of charge (kwh)

µ
ch,µdch	� The charging and discharging efficiency of energy storage units

Cen	� The cost of energy ($/kWh)
Cg ,s,t	� The operational cost of gth distributed renewable energy resources ($)
τg	� The operational cost coefficient price of distributed renewable energy resources ($/kW)
Copf 	� The outage penalty factors the distribution network operator forces to pay when apply-

ing the load-shedding program ($/kW-hr)
CEDRP	� The multi-step emergency demand response program cost ($)

Variables
Plosst	� The total power losses (kW) of formable microgrids mg at time t
Psheddt	� The total load shedding (kW) of formable microgrids mg at time t
Crestt	� The total restoration cost ($) of formable microgrids mg at time t
PGg ,mg ,s,t	� Active power generated (kW) of gth distributed renewable energy resources in micro-

grid mg

QGg ,mg ,s,t	� Reactive power generated (kVar) of gth distributed renewable energy resources in 
microgrid mg

PGn,mg ,s,t	� Active power generated (kW) by n bus in microgrid mg
QGn,mg ,s,t	� Reactive power generated (kVar) by n bus in microgrid mg
PDn,mg ,s,t	� Active power demand (kW) at bus n in microgrid mg
QDn,mg ,s,t	� Reactive power demand (kVar) at bus n in microgrid mg

P
inf
m 	� The inflexible active power (kW) at bus m

Q
inf
m 	� The inflexible reactive power (kVar) at bus m

PDrecovered
b,mg ,s,t 	� The recovered active power demand (kW) at bus b

Pche,mg ,s,t , P
dch
e,mg ,s,t	� The charging and discharging power (kW) of the eth ESS

Emergency Demand Response Program
PEDRP

c
d,mg ,s,t	� The value of offered load reduction (kW) of dth EDRP blocks

EDRPcd,mg ,s,t	� Maximum load reduction of cth step of EDRP
EDRPmin

d,mg ,s,t	� Minimum load reduction of EDRP
kc	� The coefficient of the adjusted demand reduction with a step of EDRP
kmin	� The coefficient of the minimum allowed demand reduction

Line & bus
αn,mg	� Binary variables of buses
Nbus	� Number of buses
rn,mandxn,m	� Resistance and reactance between bus n and bus m
In,m	� Current between bus n and bus m
ω
pr
b 	� The priority of load at bus b

∂l	� ϑl : The set of start and end points of line l
Lineinitiall 	� The initial status of lines
Businitialn 	� The initial status of lines
βl,mg	� ρl,n,r : Binary variables of lines
P
flow
n,m 	� The active power flow between bus n and m

Q
flow
n,m 	� The reactive power flow between bus n and m

Vn,Vm	� The voltage at bus n and bus m
|V |min

m 	� |V |max
m  : Minimum and maximum voltage magnitude at bus m

|V |m	� The voltage magnitude at bus m
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Darts Game Theory
Np	� Number of players
Ftbest	� The value of best fitness function
Ybest	� The value of best variables
Ftworst	� The value of worst fitness function
Yworst	� The value of worst variables
Ftn	� The fitness function’s normalized value
Pi	� The probability function of each scenario
S	� The score of the player

Resiliency Metrics
ENS	� The total amount of energy not-served (kWh)
Esheddmg 	� The total amount of energy not served (kWh) per MG mg

CLOUR,s	� The total loss of utility revenue per scenario s ($)
Cop,s	� The total outage penalty cost ($)
Cavd,s	� The total avoided outage cost ($)
RINets 	� The network resilience index

With the increasing number of extreme weather catastrophes such as hurricanes, earthquakes, and floods, power 
utilities face many challenging issues, such as equipment failure, increased maintenance and operation costs, 
and inefficient operations, which may lead to system blackouts. While the growing advancement of distribu-
tion network information and communication technology, and the integration of distributed renewable energy 
resources (DRERs), smart networks can be described as complex cyber-physical distribution networks (DNs). 
The cyber-physical DNs include two networks: firstly, the physical network for power flow, and secondly, the 
cyber network for information flow. Recently, most blackouts have been caused by physical natural disasters, 
known as high-impact low, probability events1. These kinds of incidents cause massive losses and severe dam-
age. For example, in the United States, the damage cost due to extreme weather events is about 25$-75$ billion a 
year2. Seven of the ten significant storms occurred in the last ten years, and each event caused damages of over 
1-billion dollars3. Also, cyber-physical DNs are the most vulnerable to such events. Therefore, the importance of 
introducing a critical concept called "Resiliency" has been highlighted to complement other power system topics 
such as reliability, security, risk, and stability. The smart grid cyber-physical distribution network resiliency is the 
ability of the distribution network to resist, adapt, and rapidly recover in the presence of system disturbances4. 
Figure 1. demonstrates the changes in the performance index of a resilient network when facing a destructive 
event. In power systems, the reliability concept may confuse with resilience, but there are differences between 
the reliability and resilience concepts. The reliability is based on the operating point when the power system is 
static. In contrast, resilience is based on the network topology changes influenced by weather-related events. 
However, existing power systems are known to be reliable but not resilient5. Therefore, enhancing the network 
resiliency against natural disasters is considered the research gap in much energy sector research6,7. Breaking 
the distribution networks into self-supplied microgrids with connected distributed renewable energy resources 
to restore loads, especially critical ones, is a well-known procedure during major outages for improving cyber-
physical resiliency through sectionalizing switches11,17.

Many researchers have introduced the microgrid formation strategy to enhance distribution network resil-
iency in inevitable natural disasters and achieve many objectives, such as loss minimization, operating cost 
reduction, load-shedding decrement, bus voltage regulation, and reliability improvement18. In8–15, the after-
math of natural disaster microgrid formation-based DRERs is addressed to improve the network resiliency. 
Ref8 proposes a post-event microgrid formation based on the automatic remotely controlled ON/OFF switches 

Figure 1.   Conceptual resilience curve with a physical natural disaster.
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and available distributed generators (DGs) to restore critical loads in the distribution network. Furthermore, 
a resilient microgrid formation based on exact power flow equations with linear characteristics is presented to 
maximize the total restored load after a natural disaster considering power losses and voltage constraints9. How-
ever, the authors in8,9 don’t consider the master–slave capability of DGs in the microgrid formation model. The 
idea of network reconfiguration based on different DGs with master–slave capacities with single and multiple 
fault consideration is discussed in10. In11, a two-stage microgrid formation strategy considers the pre-scheduling 
of energy storage systems (ESSs) for the first stage and vulnerability analysis for the second stage. However, the 
consideration of different extreme weather events in the distribution network and the failure period is neglected 
in8–11. Two moderate and heavy damages with different weather scenarios are analyzed through a networked 
microgrids framework with DRERs formulated in12. In13, a multi-stage optimization framework of islanded 
microgrid formation under different weather scenarios is introduced to minimize the total utility cost-based 
PV-DGs and ESSs, considering budget limitations. Similarly14, presents a two-stage multi-step time horizon for 
restoring critical loads after natural disasters by forming an island microgrid to maximize the total weighted 
supplied energy. Additionally, an island MG formation via a predictable two-phase natural disaster, windstorm 
events followed by flooding, in DN aiming to minimize the curtailed energy is presented in15. In those studies, 
the demand response program isn’t utilized in the MG formation method after natural disasters.

Considering demand response program for improving the distribution networks resiliency in the microgrid 
formation process against natural disasters is discussed in16–24. A resilience framework of dynamic microgrid 
formation to restore loads according to their priority after a natural disaster using renewable energies and demand 
response program is proposed considering emergency budget constraints proposed in16. The impact of utilizing 
internal combustion engine cars is demonstrated in17 to enhance the distribution network resiliency through the 
microgrid formation model after a natural disaster-based demand response program to maximize the prioritized 
restored load. An optimal microgrid reconfiguration method is formulated for 24-h based on obtaining the 
best state of interconnecting switches between MGs considering the demand response program to reduce the 
total operational cost and the total losses18. Moreover, in19, an incentive-based demand response program is 
implemented to enhance DN resiliency after natural disasters via a two-stage critical load restoration. However, 
the load-shedding cost considered the big obstacle after natural disaster occurrence doesn’t consider in16–19.

Furthermore, a resilience enhancement restorative model-based microgriod formation after extreme events 
using demand response program with different load characteristics DRERs is presented in20 to minimize the 
load-shedding and the restoration cost. The impact of load-shifting DRP participation to maximize the electricity 
market profit is addressed in21. Authors in22, the effect of customer participation and different incentive values 
in emergency demand response program on microgrid operation discussed to minimize DG operation cost. 
Additionally, the emergency demand response program is proposed as a smart outage management model to 
minimize the load-shedding cost in a crisis23. In24, the microgrid formation after natural disasters is implemented 
by controlling sectionalizing and tie-line switches within an outage management strategy to enhance the DN 
resiliency to reduce the restoration cost. A new model of game-based optimization mechanism, namely darts 
game theory (DGT), is investigated. The darts game theory optimizes the objective function, and the superiority 
of DGT is indicated when comparing DGT results with other optimization techniques25. Ref26, a two-stage 
interactive energy management framework between the distribution network and privately-owned MGs to 
enhance the resilience of power-water distribution systems considering an incentive demand response program 
is presented with the objectives of minimizing operation cost and load shedding cost.

Many researchers have been carried out to measure the distribution network resiliency for maintaining a 
reliable and efficient operation under extreme weather incidents. The resilience metrics can be generally classified 
into qualitative and quantitative approaches2,5. In12, a quantitative approach can be classified as 1) Electrical 
service class, such as total customer energy not served, and 2) Monetary class, such as total outage cost and 
avoided outage cost. In27, another quantitative resiliency metric is formulated, such as recovery time and the time 
to reach the power balance. The classification of previous resilience studies regarding post-disaster microgrid 
formation is summarized in Table 1. From the literature review, there are research gaps in the MG formation 
methods after natural disasters for enhancing distribution network resilience as follows;

1.	 Many researchers do not consider the cyber-physical coordination of the smart distribution network that 
enhances bidirectional power and information transfer between the system’s agents.

2.	 Multi-objective optimization problem of the microgrids formation method is not implemented in many 
researches. Also, the topological constraints of the islanded microgrids formation process based on graph 
theory to model the physical network are not investigated.

3.	 Demand response program, as a cost-efficient tool and resilient solution after a natural disaster to avoid 
outage penalties, is not considered in many researches.

4.	 Measuring and assessing the resilience of the constructed microgrids after a catastrophic event is not studied 
in many researches.

This paper proposes a multi-objective microgrid formation strategy for the cyber-physical distribution net-
work to enhance resiliency after severe disasters while ensuring topological and electrical constraints. This 
method is based on the darts game theory approach and emergency demand response program. During natu-
ral disasters, the faulty area is isolated from the main supply; hence it’s divided into self-sufficient MGs with 
their DRERs to feed their loads regarding their priority. The DGT optimization technique is applied to obtain 
optimal formation after a severe disaster. The main objectives are minimizing the power loss, decreasing the 
load-shedding, and reducing the restoration cost while satisfying the operational constraints of the islanded 
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MGs. The modified IEEE-33 bus system is designed to study the effect of the physical natural disaster and test 
the proposed microgrid formation method on the DN after extreme weather events. Three case studies are 
implemented and tested, with and without an EDRP, under a set of scenarios using MATLAB/Script environ-
ment. The appropriate resilience metrics are assessed for each case study to evaluate the distribution network 
resilience to natural disasters.

The main contributions of this paper are summarized as follows;

1.	 Proposing an optimal formation strategy for microgrids after inevitable catastrophes based on darts game 
theory, emergency demand response program, and tie-lines for enhancing the distribution network resiliency.

2.	 Designing a cyber-physical framework of the smart distribution network with its three layers; physical, 
information, and communication.

3.	 Using the darts game theory algorithm to solve a multi-objective MG formation to minimize the power loss, 
load-shed power, and restoration cost to obtain the optimal MG formation and for scenarios’ generation and 
reduction.

4.	 Comparing the results obtained from the three case studies with and without applying the emergency demand 
response program and tie-lines to prove the effectiveness of the proposed method.

The remainder of this paper is organized as follows: Section "Cyber-physical framework of the smart 
distribution network" presents the cyber-physical framework of the smart distribution network. Section "Problem 
formulation" discusses the problem formulation to formulate the objective functions and the system constraints. 
Section "Darts game theory (DGT) optimizer" introduces the principles of DGT, its mathematical formulation, 
and the DGT optimizer for optimal topology. In section "Resiliency metrics formulation", the resiliency metrics 
are formulated. In section "Test system description", the test system description and the important parameters 
of the system are presented. In section "Cas studies and results", the three case studies are tested under scenarios. 
Section "Conclusion" concludes the paper.

PL*: Power Loss, LS*: Load Shedding, MILP*: Mixed Integer Linear Programming, MISOCP*: Mixed 
Integer Second Order Cone Programming, NBD*: Nested Bender Decomposition, GBD*: Generalized Bender 
Decomposition, and MINLP*: Mixed Integer non-linear Programming.

Cyber‑physical framework of the smart distribution network
Cyber and communication technology transferred the traditional physical network to the cyber-physical network. 
Furthermore, the power grid may face a blackout due to cyber-attacks and physical disasters4,8. So, resilience 
enhancement against physical and cyber fault disturbances is an essential issue in the load restoration process 
by altering the network structure, load, and resources. The cyber-physical distribution network includes a 
complex interaction mechanism of computational and physical devices that adopted modern technologies such 
as wireless sensor networks (WSN), the internet of things (IoT), smart devices, deeply emerging energy systems, 
information, and communication system. The proposed cyber-physical distribution network mainly consists 
of three layers: the physical layer, the information layer, and the communication layer, which are coupled. The 
communication layer and information layer are called cyber systems collectively. The physical layer includes 
primary electrical equipment with load consumers and DRERs. The communication layer contains suitable 

Table 1.   Classification of previous resilience studies regarding post-disaster MG formation.

Refs Cyber-physical DRP

Objective Constraints

Algorithm Resiliency MetricsPL* LS* Cost Topological Electrical
8 ⨯ ⨯ ⨯ MILP* ⨯
9 ⨯ ⨯ ⨯ ⨯ MILP* ⨯
10 ⨯ ⨯ ⨯ ⨯ MISOCP* ⨯
11 ⨯ ⨯ ⨯ –
12 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ –
13 ⨯ ⨯ ⨯ ⨯ NBD* ⨯
14 ⨯ ⨯ ⨯ ⨯ MILP* ⨯
15 ⨯ ⨯ ⨯ ⨯ ⨯ MILP* ⨯
16 ⨯ ⨯ ⨯ MILP*
17 ⨯ ⨯ ⨯ MILP* ⨯
18 ⨯ ⨯ ⨯ – ⨯
19 ⨯ ⨯ GBD* ⨯
20 ⨯ ⨯ ε-constraint method
21 ⨯ ⨯ ⨯ ⨯ – ⨯
22 ⨯ ⨯ ⨯ ⨯ MINLP* ⨯
23 ⨯ ⨯ ⨯ MILP* ⨯
24 ⨯ ⨯ ⨯ – ⨯

Our Paper DGO
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communication infrastructure, equipment, and lines. The information layer is mainly composed of a control 
center and intelligent interfaces responsible for information collection, monitoring, measurement, metering, 
and decision control of the entire system. The proposed method focuses on physical natural disasters such 
as hurricanes, earthquakes, and floods and the cyber network is considered a cloud communication network 
that allows the DN operator to collect information about predicting sudden disasters, consumer behavior, and 
energy production. This in turn is useful for this work when applying a multi-step emergency demand response 
program where the DN operator signs contracts with participants before the disaster to minimize the outage 
cost. The collected information is sent to the physical network through the communication network. The role 
of information layer and its serious impact on resiliency is cleared when hampering the data process, the DN 
operator may receive misleading feedback, and its result is power outage11. The cyber layer is not entered in the 
microgrid formation and optimization problem.

The structure of the cyber-physical distribution network is shown in Fig. 2. The theoretical model of cyber-
physical distribution network is associated with modeling the incidence matrix and analyzing network topology. 
According to a network graph theory and matrix operation model, the model of a physical information network 
is constructed as follows2;

where, V = {v1, v2, . . . , vo} is the set of cyber-physical DN nodes. E =
{

Eqj
}

 is the connection matrix between 
two nodes, Eqj is the connection state between node  q and node j , when there’s a link between node q and node 
j, Eqj = 1 , otherwise Eqj = 0 . Ac =

{

Ac,qj

}

 is the incidence matrix between the physical network and the cyber 
network, Ac,qj is the connection status between the physical network node q and the cyber network node j . When 
there’s a connection between node i and node j, Ac,qj = 1 , Otherwise Ac,qj = 0.

Problem formulation
When a cyber-physical DN operator faces single or multiple faults after natural disasters, the distribution network 
is isolated from the main utility grid, and some switches are opened. Several unsupplied electrical islands can 
be formed. The approved solution in this situation is to divide a distribution network into some self-supplied 
microgrids with their DRERs to feed loads according to their priorities. The DN operator might be forced to pay 
outage penalties after natural disasters due to applying for the costly load-shedding program in the distribution 
network. The emerging of the demand response program is one of the cost-efficient and resilient solutions to 
avoid these outage penalties and enhance the resiliency of the cyber-physical distribution network. The network 
topology can be reconfigured to restore more loads by implementing tie switches, meaning that the load at one 
feeder can be transferred to another feeder in the microgrid formation model.

In this paper, the objective functions and the system constraints of the cyber-physical DN-MG formation 
method based on the DGT technique and multi-step EDRP after a natural disaster are formulated as follows,

Objective functions.  The objectives are minimizing total power loss, load shedding, and total restoration 
cost. The objective function can be expressed as follows20,28;

Network power losses. 

where Plosst is the total power losses of formable MGs at time t .Nmg and Nbus represent a set of MGs and a 
set of buses, and rn,m and In,m represent resistance and current between bus n and bus m , s represents a set of 
scenarios28.

Network load shedding. 

where Psheddt is the total load shedding of constructed mg th MGs. Nbus represents a set of b th buses. PGb,mg ,s,t 
and PDb,mg ,s,t represents active power generated and active power demand at bus b.ωpr

b,s,t represents the priority 
of load 20.

Network restoration cost. 

(1)











G = (V, E, Ac)

V =
�

v1, v2, . . . , vp
�

E =
�

Eqj
�

Ac = {Ac,qj}

(2)min
�

Plosst
�

= min





�

s





Nmg
�

mg=1

�

(n,m)∈Nbus

rn,mI
2
n,m









(3)min
�

Psheddt
�

= min





�

s





Nbus
�

b=1

�

t

PGb,mg ,s,t −

Nbus
�

b=1

Nmg
�

mg=1

�

t

ω
pr
b,s,t ∗ PDb,mg ,s,t









(4)min(Crestt ) = min

(

∑

s

[

∑

t

Cg ,s,t +
∑

t

Cop,s,t +
∑

t

CEDRP,s,t

])
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where, Crestt is the total restoration cost of formable mgth MGs. Cg ,s,t represents the operational cost of gth 
DRERs.Cop,s,t is the outage penalty cost due to natural disasters.CEDRP,s,t is the multi-step EDRP cost. Pg ,mg ,s,t 
represents active power output. τg represents the operational cost coefficient price ($/kW)20.

The following constraints should be satisfied for MG formation under natural disasters to meet the required 
objectives.

Topological constraints.  Graph theory is implemented in this model to represent the topological con-
straints of the islanded post-event MG formation method. The set of nodes that can be considered master units 
is considered by Nmaster , and the set of nodes that are connected to DGs is denoted by Ndg . The topological 
constraints can be modeled as follows17,19,20. To guarantee that each node can belong to one of the formed MGs 
or it none of them, Eq. (6) can be represented as follows to model this concept23,

(5)Cg ,s,t =

Nmg
∑

mg=1

Pg ,mg ,s,t ∗ τg , ∀g , s, t

(6)
Nmg
∑

mg=1

αn,mg ≤ 1,∀n ∈ Nbus

Figure 2.   Structure of cyber-physical distribution network.
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where αn,mg represents binary variable (1 if bus n belongs to MG, 0 otherwise).

–	 Node n can be connected to MG if the mgth member of Nmaster
(

r = Nmaster
(

mg
))

 and αr,mg = 1 selected as 
the root node. The root node constraints are expressed as follows17,

where ∂l,ϑl are the set of start and end points of line l  . βl,mg represents binary variable (1 if line l  in MG is 
active, 0 otherwise). L represents a set of lines .

–	 During the formation of islanded MG, if the two sides of a line are not located on the same MG, the binary 
variable status of the line must be zero. This can be formulated as follows17,

where ∂l , ϑl are the set of start and end points of line l  . βl,mg represents binary variable (1 if line l  in MG is 
active, 0 otherwise). L represents a set of lines .

–	 The line status and the damaged bus status are indicated in (12)-(13). Also, the switch status can be 
represented in (14) to indicate that there are no remote-control switches on all lines in the DN20,

where Lineinitiall  , Businitialn   represents the initial status of lines and buses.  ρl,n,r represents binary variable (if 
there is a line between bus n and r , 0 otherwise).

–	 To guarantee the radiality, spanning tree constraints19 for each formed MG are formulated in (15)-(17)

where αnm binary variable indicating the parents of nodes, if node m is a parent of node n , αnm = 1 , βnm 
represent the status of line nm . Nt set of total nodes in the DN.  E set of all available lines in the post-disaster 
DN. ϕ(n) set of neighboring nodes of the node n . r is the root node of the spanning tree.

Electrical constraint.  DRERs constraints:. 

where PGg ,mg ,s,t ,QGg ,mg ,s,t represent active and reactive power generated, PGmin
g ,mg ,s,t and PGmax

g ,mg ,s,t represent 
minimum and maximum allowed active output, QGmin

g ,mg ,s,t and QGmax
g ,mg ,s,t represent the minimum and maximum 

allowed reactive output11.

Energy storage system (ESS) constraints. 

(7)αn,mg ≤ αr,mg , r = Nmaster
(

mg
)

, ∀n ∈ Nbus

(8)Linel =

Nmg
∑

mg=1

βl,mg , ∀l ∈ L

(9)βl,mg ≤
∑

n∈∂l

αn,mg , ∀n ∈ Nbus

(10)βl,mg ≤
∑

n∈ϑl

αn,mg , ∀n ∈ Nbus

(11)βl,mg ≥
∑

n∈ϑl

αn,mg +
∑

n∈∂l

αn,mg − 1,∀n ∈ Nbus

(12)βl,mg ≤ Lineinitiall , ∀l ∈ L

(13)αn,mg ≤ Businitialn ,∀n ∈ Nbus

(14)αn,mg ≤ αr,mg ,∀n, r ∈ Nbus ,∀l ∈ Landρl,n,r = 1

(15)αnm + αmn = βnm∀(n,m) ∈ E

(16)
∑

m∈ϕ(n)

αnm = 1∀n ∈ Nt\r

(17)αnm = 0∀n ∈ r,m ∈ ϕ(n)

(18)PGmin
g ,mg ,s,t ≤ PGg ,mg ,s,t ≤ PGmax

g ,mg ,s,t

(19)QGmin
g ,mg ,s,t ≤ QGg ,mg ,s,t ≤ QGmax

g ,mg ,s,t
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The state of charge (SoC) of ESS and its limits are presented as follows,

where Pche,mg ,s,t , P
dch
e,mg ,s,t represent the charging and discharging power of the eth ESS.SoCmin

e , SoCmax
e  Represent 

minimum and maximum state of charge, ECe represents the capacity of ESS and µch,µdch represent the charging 
and discharging efficiency of ESS29.

Power balance constraints. 

where Pnm , Qnm represent the active and reactive power flow in branch nm . PGn,mg ,s,t , QGn,mg ,s,t represent active 
and reactive power generated by n bus, PDn,mg ,s,t , QDn,mg ,s,t represent active and reactive power demand at bus 
n20.

Power flow constraints. 

where Pflown,m  and Qflow
n,m  represent active and reactive power flows between bus n and m . Pinfm  and Qinf

m  represent the 
inflexible active and reactive power. rn,m and xn,m represent resistance and reactance. I represents the current 
between buses28.

Bus voltage constraints. 

where Vn   represents the voltage at bus n , |V |min
m  , |V |max

m  represent minimum and maximum voltage magnitude 
at bus m , |V |m represents the voltage magnitude at bus m28.

Emergency demand response program constraints. 

(20)0 ≤ Pche,mg ,s,t ≤ Pch,max
e,mg ,s,tµ

ch
e,t

(21)0 ≤ Pdche,mg ,s,t ≤ Pdch,max
e,mg ,s,t µ

dch
e,t

(22)µch
e,mg ,s,t + µdch

e,mg ,s,t ≤ 1

(23)SoCe,mg ,s,t = SoCe,mg ,s,t−1 +
1

ECe

(

µchPche,mg ,s,t −
1

µdch
Pdche,mg ,s,t

)

(24)SoCmin
e ≤ SoCPdche,mg ,s,t

≤ SoCmax
e

(25)
Nmg
∑

mg=1

(

PGn,mg ,s,t + Pdche,mg ,s,t − Pche,mg ,s,t − PDn,mg ,s,t

)

=

Nmg
∑

mg=1

Pnm

(26)
Nmg
∑

mg=1

(

QGn,mg ,s,t − QDn,mg ,s,t

)

=

Nmg
∑

mg=1

Qnm

(27)P
flow
n,m = P

inf
m +

∑

b:m→b

P
flow
m,b + rn,mI

2
n,m, ∀(n,m) ∈ Nbus

(28)Q
flow
n,m = Q

inf
m +

∑

b:m→b

Q
flow
m,b + xn,mI

2
n,m, ∀(n,m) ∈ Nbus

(29)V2
m = V2

n − 2
(

rn,mP
flow
n,m + xn,mQ

flow
n,m

)

+
(

r2n,m + x2n,m
)

I2n,m, ∀(n,m) ∈ Nbus

(30)|V |min
m ≤ |V |m ≤ |V |max

m , ∀(n,m) ∈ Nbus

(31)EDRPmin
d,mg ,s,t ≤ PcEDRPd,mg ,s,t ≤ EDRPcd,mg ,s,t

(32)PEDRPd,mg ,s,t
=

C
∑

c=1

PcEDRPd,mg ,s,t

(33)EDRPmin
d,mg ,s,t = kminPDn,mg ,s,t , ∀n ∈ Nbus
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where PcEDRPd,mg ,s,t represent offered load reduction of dth EDRP blocks. EDRPcd,mg ,s,t ,EDRP
min
d,mg ,s,t represent 

maximum load reduction of cth step of EDRP, minimum load reduction of EDRP.kcandkmin represent the coef-
ficient of the adjusted demand reduction with a step of EDRP, the coefficient of the minimum allowed demand 
reduction28.

To solve this problem, an optimization method based on DGT is proposed to achieve the objective function 
by considering the system constraints.

Darts game theory (DGT) optimizer
This paper uses darts game theory to solve the optimization problem to obtain an optimal post-event microgrid 
formation for the cyber-physical distribution network after extreme disasters. It aims to achieve the objectives by 
considering the aforementioned system constraints, which are used to reduce the number of scenarios generated 
for MG formation. The darts game theory is a sport that consists of a dartboard, darts, and darts players with their 
goals. The dartboard has 82 areas with different points, and the DGT key idea is when players try to get possible 
points in their throws toward the game board. The throw scoring in the inner bull has 50 points, and the outer 
bull has 25 points. When the darts hit the narrow inner ring, the score is tripled. However, the score doubles 
if the throw hits the narrow outer ring. The dashboard’s center is considered the game’s fifth-highest scoring 
area. The angle intervals and the areas of the different sectors in the game are presented in25. Such as with other 
optimization techniques, the DGT approach can be modeled to get the highest score or the optimal solution 
which depends on a set of equations and parameters as represented in the following subsections.

DGT algorithm is developed to find possible solutions and choose the optimal one. By assumption, each 
player has three throws to build its score matrix, S . At each throw for each player, the fitness functions and their 
variable values are determined, and then determine best and worst fitness functions and their best and worst 
variable values. The next step is to calculate the normalized value of fitness functions Ftn And the probability 
function Pi of ith player. Finally, to find the winner, the points for each player Sni  is calculated in every throw for 
each player. The status of each player and his variable values are renewed. By assumption, the number of itera-
tions in this game is 100 times.

DGT optimizer also can be used for decreasing the number of scenarios generated within the microgrid 
formation process to a tractable number regarding the objectives concerning the set of constraints. The score 
function is calculated for each scenario at each iteration of the solution procedure. The scenario with the lowest 
probability and score to other scenarios is removed. This procedure is repeated until the desired number of 
recorded scenarios is attained.

(34)EDRPcd,mg ,s,t = kcPDn,mg ,s,t , ∀n ∈ Nbus , c = 1, 2, . . .C
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Resiliency metrics formulation
The system resiliency of islanded microgrids with distributed renewable energy resources can be measured to 
study the impact of power interruption on customers and electricity utilities. The formulation of these metrics 
is represented as follows11,12,20.

Total amount of energy not served (kWh). 

where Esheddmg (t) is the total amount of energy not served per MG mg for the event v .

Total loss of utility revenue ($). 

where CLOUR,s is the total loss of utility revenue per scenario s ($), and Cen is the cost of energy ($/kWh).

Total outage penalty cost ($). 

where Cop,s is the total outage penalty cost ($), and Copf  is the outage penalty factor the DN operator forces to 
pay when applying the load-shedding program ($/kW-hr).

Total avoided outage cost. 

where Cavd,s is the total avoided outage cost, ($), Cout,s,beforeEDRP is the total outage penalty cost before applying 
EDRP. Cop,s,afterEDRP is the total outage penalty cost after applying EDRP.

Resilience index (RI). 

where RINets  is the network resilience index, PDrecovered
b,mg ,s,t  is the recovered active power demand at bus b.

Test system description
In this paper, the modified IEEE 33 bus system structure shown in Fig. 3 is implemented in17 using a MATLAB/
Script environment to study the effect of the physical natural disaster and test the proposed post-event microgrid 
formation method on the distribution network after extreme weather events. The system consists of 32 sectional-
izing switches and four tie line switches that can be controlled by the cyber network remotely, a combination of 
fifteen DRERs which are divided into five types of renewable energy with ESS (two photo-voltaic units (PV) at 
buses 22, and 32, three wind turbines (WTs) at buses 2, 9, and 18, seven diesel generators at buses 7, 14, 16, 20, 
25, 27, and 30, two micro-turbine (MT) at buses 12, and 23, one fuel cell (FC) at bus 4, and 28 load points with 
different priorities. The base power and voltage of the system are 100 MVA and 11 kV, respectively. The total 
active and reactive power consumption are 4.61 Mw and 2.15 MVAr, respectively. The generation capacity of 
WT with ESS, PV with ESS, and MT is 0.2 MW, while the diesel unit and FC generation capacity is 0.25 MW. The 
maximum generation capacity of all DRERs is 0.3 MW. The ESSs capacity, charging, discharging rates, efficien-
cies, and initial depth of discharge is 0.2 MWh, 0.2 MW, 85%, and 33%, respectively.

The hourly load demand profile for a sample day of distribution network is shown in Fig. 411. The opera-
tion cost coefficient of the diesel unit, FC, MT, PV, WT, and ESS is 0.08, 0.07, 0.06, 0.01, 0.01, and 0.01 $/kWh, 
respectively20. In the proposed model, there are three types of loads, low-priority, medium, and high or critical-
priority loads, and their priority factor is assumed to be 0.1, 10, and 100, respectively19. Three case studies are 
considered in the following section to show the effect of implementing emergency demand response program 
and tie-lines on the proposed model.

Cas studies and results
This paper applies three case studies to test the proposed microgrid formation strategy after a drastic incident. 
The three cases are as follows;

(1)	 Without applying EDRP

(42)ENS =

v
∑

t=1

Esheddmg (t)

(43)CLOUR,s = Cen ∗

v
∑

t=1

Esheddmg (t)

(44)Cop,s = Copf ∗

v
∑

t=1

Esheddmg (t)

(45)Cavd,s = Cop,s,beforeEDRP − Cop,s,afterEDRP

(46)RINets =

∑Nbus
b=1

∑Nmg

mg=1

∑

t w
pr
b,s,t ∗ PD

recovered
b,mg ,s,t

∑Nbus
b=1

∑

t PDb,s,t
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(2)	 With applying EDRP
(3)	 With applying EDRP and tie switches

In the three case studies, a single fault is assumed to be occurred in the test system due to extreme events, 
and the fault location is shown with a red cross, which isolates the distribution network from the main utility 
supply; hence the distribution network is operated in islanded mode with outage occurring over the one hour 
following the natural disaster event.

Applying the DGT optimizer for scenario reduction, the best five scenarios are chosen concerning the best 
fitness values. The microgrid formation strategy for enhancing the resiliency of the distribution network is applied 
and studied for the five scenarios for each case study.

First case: without applying EDRP.  In this case, the performance of five scenarios is analyzed without 
emergency demand response program to achieve the objectives under a set of constraints. Each microgrid is a 
separate system with its adjacency matrix and DRERs responsible for feeding its loads. When the system runs, 
power system studies such as power flow and loss calculations are applied to execute the objectives, and values of 
operational constraints are calculated. In many cases, the generated output power is less than the demand power, 
and therefore the load-shedding program is applied, and this forces the DN operator to pay a penalty cost called 
outage penalty cost ( Cop,s ) to customers. The penalty factor for load shedding programs for each load is assumed 
to be between 10 and 14 USD/kWh according to the load priority23. In this regard, the penalty factor is assumed 
to be equal to 10, 12, and 14 USD/kWh for low, medium, and high-priority loads, respectively. The DN operator 
strategy of applying the load-shedding is started with low-priority loads, then medium-priority loads, and finally 
high priority loads to reduce outage penalty cost as much as possible. It’s noted that this case is considered the 
base case, so the total avoided outage cost metric is not calculated. Table 2 represents the objectives and resil-
iency metrics calculations for each scenario.

From Table 2, the scenario with the best objective functions and more resilient out of all scenarios is scenario 
4, so it’s the best solution for the microgrid formation for the first case study, as shown in Fig. 5.

Figure 3.   Modified IEEE 33-bus test system.

Figure 4.   Hourly load demand profile for a sample day11.
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Second case: applying EDRP.  In this case, the same five scenarios of the first case study are implemented 
to achieve better performance by applying emergency demand response program. This paper pays the low-
priority loads of each microgrid for five scenarios within a multi-step emergency demand response program 
program. The demand response program price increases with each step, meaning that the first step has the 
lowest price. These incentive payments are much lower than the outage penalty cost when applying for the 
load-shedding program. In this paper, the low-priority loads in each MG for the five scenarios are assumed to 
offer four DRP blocks, each of which is 25% of the total loads, and the DN operator can use all the DRP blocks 
of the loads if needed. The EDRP step cost is 1, 2, 3, and 4 $/kW, respectively. The proposed emergency demand 

Table 2.   Summary of the objectives and resiliency metrics for the five scenarios without EDRP.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Total power losses (MW) 0.016 0.015 0.016 0.015 0.016

Total load shedding (MW) 1.01 1.19 0.982 0.903 0.931

Total restoration cost ($) 10,307.5 12,713.1 10,029.74 9766.06 9803.82

Total amount of energy not-served (kWh) 1010 1190 982 903 931

Total loss of utility revenue ($) 45.45 55.1 44.19 41.93 42.59

Total outage cost ($) 10,100 12,520 9820 9550 9590

Resiliency Index 0.7809 0.7418 0.7869 0.8041 0.7980

Figure 5.   The optimal MG formation scenario without EDRP.

Figure 6.   The step cost of EDRP program in the MG formation model.
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response program, implemented in the microgrid formation method, and the step cost are shown in Fig. 623. 
Table 3 represents the objectives and resiliency metrics calculations for each scenario.

From Table 3, concerning the load shedding and restoration cost as the most important objectives, the sce-
nario with the best performance and more resilience is scenario 3, shown in Fig. 7.

From Table 3, concerning the load shedding and restoration cost as the most important objectives, the 
scenario with the best performance and more resilience is scenario 3, shown in Fig. 4.

Third case: applying EDRP and Tie‑line switches.  Normally open tie-lines in the cyber-physical dis-
tribution network can be exploited as an efficient tool for improving network resiliency by applying the emer-
gency demand response program to attain better performance than the first case and the second case study. 
The location of the selected Tie-lines is according to11,19. After natural disasters, the network’s topology may be 
reconfigured by closing tie switches to restore the islanded loads by transferring them to another feeder.

Similarly, applying the DGT optimizer for scenario reduction, the best five scenarios are chosen and analyzed 
concerning the best fitness values. Table 4 represents the objectives and resiliency metrics calculations for each 
scenario.

From Table 2, the scenario with the best objective functions and more resilient out of all scenarios is scenario 
1, so it’s the best solution for the MG formation for the third case study, as shown in Fig. 8.

A comparison between the results obtained from the proposed method and the results from12,19,20 is performed 
to prove the effectiveness of the proposed method in Table 1. The comparison is subject to the total high-priority 
restored load and medium-priority loads with/ without DRP program and the resiliency metrics to assess the 
resilience of the formed MGs and the network under extreme weather incidents.

From Table 5, the proposed method had less energy not-served, loss of utility revenue, outage cost and the 
most avoided outage cost than the results obtained in12. Also, the proposed method could restore the most 

Table 3.   Summary of the objectives and resiliency metrics for the five scenarios with EDRP.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Total power losses (MW) 0.016 0.014 0.016 0.014 0.014

Total load shedding (MW) 0.029 0.333 0.021 0.277 0.166

Total restoration cost ($) 2424.14 5241.5 2373.88 4361.18 3580.66

Total amount of energy not-served (kwh) 29 333 21 277 166

Total loss of utility revenue ($) 1.305 14.985 0.945 12.465 7.47

Total outage cost ($) 2220 5055 2167.5 4150 3375

Total avoided outage cost ($) 7880 7465 7652.5 5400 6215

Resiliency Index 0.9899 0.9109 0.9941 0.9293 0.9556

Figure 7.   The optimal MG formation scenario with EDRP.
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percentage of high-priority and medium-priority loads with/without DRP than19. In addition, the proposed 
method had the lowest load-shedding and restoration cost, and the resiliency index of the network was the 
higher than20. It can be summarized that the proposed method achieves more resiliency and high performance 
for microgrid formation strategy in the presence of severe disturbances.

Also, a comparison based on the execution time of the proposed method and methods in11 and15 is performed. 
The execution time of the proposed method for the modified IEEE 33 bus radial test system are 15, 12, and 10 s 

Table 4.   Summary of the objectives and resiliency metrics for the five scenarios with EDRP and Tie-line.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Total power losses (MW) 0.013 0.014 0.016 0.018 0.015

Total load shedding (MW) 0.014 0.372 0.018 0.019 0.103

Total restoration cost ($) 1199.52 5528.54 1654.12 1392.18 2539.38

Total amount of energy not-served (kwh) 14 372 18 19 103

Total loss of utility revenue ($) 0.635 18.545 0.84 0.855 5.535

Total outage cost ($) 142 4442 192 190 1390

Total avoided outage cost ($) 9958 8078 9628 9360 8200

Resiliency index 0.9962 0.8997 0.9945 0.9947 0.9718

Figure 8.   The optimal MG formation scenario with EDRP and Tie-lines.

Table 5.   Comparison between different microgrid formation strategies for enhancing DN Resiliency. LS*: 
Load Shedding, High_pr load restoration: the total amount of high priority loads that are served when 
applying the proposed method, Med_pr load restoration: the total amount of medium priority loads that are 
served when applying the proposed method.

Objective
High_pr load restoration 
(%)

Med_pr load restoration 
(%) Resiliency metrics

LS*(Kwh) Cost ($)
Without 
DRP With DRP

Without 
DRP With DRP

Energy not-
served (Kwh)

Loss of utility 
revenue ($)

Outage cost 
($)

Avoided 
outage cost 
($)

Resiliency 
Index

Proposed 
method 14 1199.52 100 100 79 99 14 0.635 142 9958 0.9962

12 – – – – – – 3415 355 8537 0 –
19 – – 83 100 16 50 – – – – –
20 4791.66 1812.25 – – – – – – – – 0.498
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for the first, second, and third case studies respectively. In15, the execution time of the worst-case scenario is 36 s. 
However, in11, the computational time of the evaluation process for IEEE 33-bus system is 252, 174 s, respectively. 
So, the solving time of the proposed method is enhanced compared with other related works.

Conclusion
This paper proposes a novel model for enhancing the cyber-physical DN resiliency-based optimal MG formation 
method after natural disasters considering EDRP and Tie-line. This method is based on the DGT optimization 
technique for scenario generation and reduction. Three case studies with and without EDRP and tie-lines are 
implemented and tested on a modified IEEE 33-bus test system under five scenarios for each case study using 
Matlab/Script program. The results show the load shedding and the restoration cost are reduced by 97.8% 
and 75.7%, respectively, by applying the proposed EDRP. In addition, total amount of energy not-served, total 
loss of utility revenue, and outage penalty cost are decreased by 97.8%, 97.7%, and 77.3%, respectively. Also, 
the network resiliency index increased by 19%. Furthermore, when applying the EDRP and Tie-line, the load 
shedding and the restoration cost are minimized by 98.4% and 87.7%, respectively. Moreover, the total amount 
of energy not-served, total loss of utility revenue, and outage penalty cost are decreased by 98.4%, 98.5%, and 
98.5%, respectively. Also, the network resiliency index increased by 19.2%. In future works, modeling the system 
uncertainties and applying machine learning algorithms to enhance the performance of the proposed method 
are performed.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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