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Automatic comprehensive aspects 
reports in clinical acute stroke MRIs
Chin‑Fu Liu 1,2, Jintong Li 3,4, Ganghyun Kim 4, Michael I. Miller 1,2, Argye E. Hillis 5,6 & 
Andreia V. Faria 7*

The Alberta Stroke Program Early CT Score (ASPECTS) is a simple visual system to assess the extent 
and location of ischemic stroke core. The capability of ASPECTS for selecting patients’ treatment, 
however, is affected by the variability in human evaluation. In this study, we developed a fully 
automatic system to calculate ASPECTS comparable with consensus expert readings. Our system was 
trained in 400 clinical diffusion weighted images of patients with acute infarcts and evaluated with an 
external testing set of 100 cases. The models are interpretable, and the results are comprehensive, 
evidencing the features that lead to the classification. This system adds to our automated pipeline for 
acute stroke detection, segmentation, and quantification in MRIs (ADS), which outputs digital infarct 
masks and the proportion of diverse brain regions injured, in addition to the predicted ASPECTS, the 
prediction probability and the explanatory features. ADS is public, free, accessible to non-experts, has 
very few computational requirements, and run in real time in local CPUs with a single command line, 
fulfilling the conditions to perform large-scale, reproducible clinical and translational research.

The Alberta Stroke Program Early CT Score (ASPECTS) is a visual evaluation system to assess the extent and 
location of ischemic core in patients with acute strokes. Due to its relative simplicity of assessment, ASPECTS 
gained popularity and was also adapted to diffusion weighted MRIs (DWI)1. However, the capability of ASPECTS 
for selecting patients’ treatment is debatable2,3. A plausible reason might be the relative arbitrariness in human 
visual evaluation, especially when done by readers with less experience4–6. Recently, several automated methods 
have attempted to produce electronic scores (e-ASPECTS), and some have achieved comparable results to expert 
reading7–10.

All these systems, however, encountered challenges related to the ambiguous relation between visual and 
automated scores, due to the biological and technical variability. From the biological point of view, the variability 
in human evaluation, even for trained readers, increases in lesions affecting a small proportion of a given region, 
or peripherally located. From the technical point of view, the linear mapping of low-resolution clinical images 
to a common space, particularly in populations with substantial amounts of anatomical variability (e.g., elderly 
people) might lead to imprecision in the boundaries of the region of interest (ROI) and other specific areas (e.g., 
periventricular). Therefore, the visual and automated metrics need to be linked by models of order higher than 
a univariate correlation between the percentage of the lesion-affected ROI and the score.

In addition, for practical relevance, the automated systems for ASPECTS calculation have to be evaluated 
in large and independent clinical samples. They have to be readily accessible to users and report in real time. 
Finally, as any other machine learning (ML) development, the popularity of automated systems highly depends 
on their degree of interpretability11,12, i.e., in a comprehensive exposition of how the features used by ML models 
contribute to their predictions.

In this study, we developed an automatic ML system to calculate ASPECTS comparable to consensus expert 
readings on acute DWI. The results are comprehensive, showing the features that lead to the classification. This 
method adds on to our automated pipeline for acute stroke detection, segmentation, and quantification in MRIs 
(ADS13). Different from other systems, ADS is free, accessible to non- experts, running in local CPUs with a single 
command line and very few computational requirements, and outputting the results in real time. In addition to 
volumetric measures, ADS outputs the digital lesion segmentation, the brain images and lesion masks mapped 
to standard space, allowing the examination of the overlap of the lesion with specific brain structures, therefore 
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granting crucial and objective quantitative information with broad access to the research community. The addi-
tion of an efficient ASPECTS calculation indicates that our fully automated system is able to extract personalized 
information of potential clinical relevance from stroke MRIs as efficiently as human experts do. This potentially 
sets the ground for the development of further computational-aids, such as electronic radiological reports14.

Results
The dataset included in this study (flowchart for data inclusion in Fig. 1) was random split into training (n = 300) 
and testing set (n = 100); the data profile is shown in Table 1. An ASPECTS atlas (Fig. 2 was created as a consistent 
framework for the visual analysis, as detailed in Methods. We used the proportion of ASPECTS ROIs affected 
by the infarct as the ASPECTS feature vectors (the "AFVs", Fig. 3) to train the ML models to predict ASPECTS. 
The details about the dataset and inclusion criteria, the ASPECTS atlas, the calculation of AFVs, the models’ 
training, optimization, and testing are in ’Methods’ section.

Correlations of visual ASPECTS and AFVs.  Table 2a illustrates how ASPECTS attributed (by humans) 
to different ROIs relate to each other. High correlation between a pair ASPECTS ROIs’ mean they tend to co-
exist in the population. As expected, given the spatial coalescence of infarcts, ASPECTS in neighboring ROIs 
were highly correlated (e.g., caudate–lentiform, insula–M5, M1–M4, M2–M5, and M3–M6). The lowest "neigh-
boring" correlations were found in internal capsule, IC. The IC also showed the lowest inter-evaluator scoring 
agreement (Balanced Accuracy, BACC = 0.768), likely due to the challenges of visual analysis in this region, 
leading to increased variability in human classification.

Table 2b demonstrates the correlation between AFV components. It represents the quantitative version of the 
qualitative scores in Table 2a, to which it highly agrees. This indicates that the quantitative information encoded 
in the AFVs (the proportion of each ROI affected by the infarct) is likely reflecting the qualitative information 
that humans relay on for their visual analysis. As expected, each AFV component is highly correlated to the 
AFV components of its neighbor ROIs. We note that the correlations between AFVs tend to be higher than the 
correlations between visual ASPECTS, which is probably related to the continuous nature of the former.

Table 2c combines the information above, showing the correlation between visual consensus ASPECTS and 
AFV components. It indicates more directly how humans inconspicuously use the quantitative information 
about the spatial distribution of the infarct lesion (reflected by the AFVs) to attribute ASPECTS. The rows of 2c 
indicate that the ASPECTS attributed to each ROI is mostly correlated to the AFV component that corresponds 
to the ROI in question, and secondly, to the AFV components corresponding to neighboring ROIs, as expected. 
As observed in the correlations between visual ASPECTS, as the infarct extends beyond the artificial limits of the 
areas semantically defined, the human evaluation is not purely based on how individual areas are affected, but 
also in the regional lesion pattern. Interestingly, the columns of Table 2c show that the greatest AFV component 
(which corresponds to the ROI mostly affected by the infarct) is not always firstly correlated with ASPECTS of 
the ROI in question. For example, the AFV-IC is more correlated to caudate visual ASPECTS than to IC visual 
ASPECTS. The same applies to AFV-lentiform. This again may reflect human challenges and variability to define 
infarction of regions as IC. It may also reflect imprecision in the linear brain mapping, affecting the alignment 

Figure 1.   Flowchart of data inclusion (top) and training and testing sets for ML models (bottom).
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between the template and atlas to the lesion masks. This imprecision is particularly more noticeable around 
the caudate and IC due to common midline shifts caused by acute stroke edema and hydrocephalus, frequently 
observed in the stroke population (an illustrative example is shown in Fig. 4).

Performance of ML models for ASPECTS prediction.  The performance of the ML models to predict 
ASPECTS in the external testing set is summarized in Table 3. The performance in the cross-validation sample is 
shown in the Supplementary Table 3. The prediction of ASPECTS was comparable to inter-evaluators’ agreement 

Table 1.   Population, lesion and scanner profiles. The table shows means or counts [interquartile range]. There 
were no statistical significant differences in distributions between testing and training sets, as shown in the "p 
value" column.

Dataset Training Testing p value

Number of subjects 300 100

Age in years 63 [53, 74] 60.5 [50.75, 72.25] 0.277

Sex

 Female 149 46
0.603

 Male 151 54

Race/ethnicity

 African American 165 52

0.783
 Caucasian 116 40

 Asian 6 3

 Not recorded 13 5

Hours from symptomns to MRI

 < 2 26 7

0.817

2–6 29 11

6–12 30 19

12–24 87 22

 > 24 21 3

 Not recorded 107 38

Lesioned hemisphere

 Left 151 52

0.793 Right 149 47

 Bilateral 0 1

Lesion volume in log ml 1.42 [0.99, 1.85] 1.39 [0.80, 1.90] 0.675

Scan manufacturer

 Siemens 271 93

0.181
 Philips 3 0

 GE 21 3

 Other 5 4

MRI magnetic field

 1.5 T 193 66
0.856

 3.0 T 107 34

Voxel size in mm3

 Volume 5.7 [3.58, 7.60] 5.7 [2.33, 7.20]

0.164 Height/width 1.20 [0.90, 1.30] 1.20 [0.60, 1.20]

 Thickness 5.00 [4.00, 5.00] 5.00 [4.00, 5.00]

Figure 2.   The ASPECTS ATLAS. The regions of interest (ROIs) are overlaid in the template T1-WI.
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in Balanced Accuracy (BACC) and F1 score (defined in Methods). The lowest agreement, while still satisfactory, 
occurred in the IC (aligned with the lowest inter-evaluators’ agreement). The second lowest agreement, com-
pared to inter-evaluators, occurred in the caudate. Again, technical factors related to the linear mapping and spe-
cific characteristics of this population (e.g., hydrocephalus) may be responsible for the slightly low accuracy. The 
most efficient models were Random Forest (RF), Multi-layer Perceptron (MLP), and Support Vector Machine 
(SVM). These three best models were assembled to generate a final model that is included in our deployed pipe-
line to calculate ASPECTS in ADS13.

The accuracy to predict the total ASPECTS was inferior of that to predict regional scores, for both humans and 
machine. The lowest accuracy can be attributed to the larger number of classes to predict (10 "total ASPECTS" 
classes, instead of 2 "injury" classes (yes/no) per ROI), and to the imbalance in these classes. As a comparison, as 
depicted in Supplementary Table 1, the binary ASPECTS of IC have the most imbalanced numbers of classes of 
all the regions, 71 out of 400 (17.75%). For total ASPECTS, classes 0, 1 and 2 are respectively 8, 15, and 10 sam-
ples out of 400 (2%, 3.75%, and 2.5%). Hence, for evaluating total ASPECTS, we favored weighted metrics, such 
as weighted Cohen’s Kappa coefficient. We also favor the "tolerance" scores, which accept predicted ASPECTS 
within ± 1 difference from the ground true ASPECTS as true positives. Both weighted and tolerance metrics for 
total ASPECTS prediction were high and comparable, or superior, to inter-evaluators’ agreement. As shown in 
the confusion matrices (Fig. 5), although some models have a slight tendency to overestimate ASPECTS (e.g., 
Quadratic Discriminant Analysis, QDA) while others tend to underestimate (e.g., Linear Discriminant Analysis, 
LDA) no model had drastic errors. The ensemble model with the 3 best models was again the one with less false 
predictions beyond the ±1 tolerance in total ASPECTS.

The ASPECTS prediction was more accurate in large infarcts (volume > 14ml, n = 51), compared to small 
infarcts (volume < 14ml, n = 49) (p values in Supplementary Table 4). This is not surprising as large infarcts have 
large AFV components (i.e., higher percentages of affection per region), and therefore clearer classification 
features. In addition, the AFV of large infarcts is relatively less affected by inaccuracies in brain mapping. As the 
infarct volume and location are correlated (i.e., small areas as internal capsule and caudate, which are irrigated 
by perforating arteries of small caliber, tend to have smaller strokes), large ROIs (such as M1, M2 and M3) have 
better accuracy performance for all ML models and annotators. There was no significant difference in the pre-
diction accuracy regarding the patient sex (male or female) or race (Black/African America or Caucasian), time 
from stroke onset (> or < 6 h), magnetic field (1.5 T or 3 T), and infarct side (left or right).

Prediction interpretability.  Instead of building black-box ML models, we aimed to provide interpretable 
models to elucidate whether the machine uses features of biological relevance, similar to humans. Fig. 6 and Sup-
plementary Table 5 indicate the importance of features in the RF models. In general, the most important feature 
was the percentage of injury in the region in question, followed by the injury of neighbor regions, as shown in 
Fig. 6. For example, the top 3 features for each ROI are mostly similar to the top correlations of visual ASPECTS 
and AFV (Table 2), indicating that, in general, RF models and humans are using very similar features for scor-
ing. The permutation feature importance test (Supplementary Materials) showed feature selection very similar 
to that from the impurity decrease method and demonstrated consistency of the importance features learned in 
the training set, and their generalization to the testing set.

The Partial Dependence Plots (PDP) in Fig. 7 show that the predicted ROI ASPECTS primarily depends on 
the degree of injury of the ROI in question, as expected. However, just as happened with the human scoring, 
there are "joined" conditions, in which the affection of one region influences the classification of another region. 
Distinct scenarios were observed:

ROI Caudate    Lentiform IC Insula M1 M2 M3 M4 M5 M6 Total
Number of infarct voxels within ROI 0 465 48 11157 9389 3386 0 3575 620 0 28640

Number of homolateral ROI voxels 9987 14567 16686 30717 84561 79184 51652 42439 46565 18917 395275

ROI components of AFV 0.00 0.06 0.01 0.69 0.22 0.09 0.00 0.16 0.03 0.00 N.A.

70010011000STCEPSAlausiV

Predicted ASPECTS 0 0 0 1 1 0 0 1 0 0 7

Predicted probability 0.012 0.003 0.012 0.999 0.921 0.021 0.004 0.946 0.019 0.002 N.A

Figure 3.   Example of ASPECTS feature vector (AFV) calculation. Each AFV component represents the 
percentage of the ASPECTS ROI affected by the infarct (number of voxels in which the infarct mask = 1/
total number of voxels within the respective bilateral ROIs). The “visual ASPECTS” row shows the ASPECTS 
according consensus human evaluation, which is here considered the gold standard. The bottom two rows show 
the ASPECTS predicted by ML and the predicted probability, which are outputs of our automated tool, ADS.
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1.	 In two neighboring regions, highly correlated in the visual analysis (e.g., caudate and lentiform), a given ROI, 
even minimally affected, may score 1 if its neighbor is highly affected. For example, panel a2 of Fig. 7 shows 
that caudate scores 1 when AFV-Caudate > 0.25 (i.e., if the infarct core affects more than 25% of caudate). 
However, if AFV-lentiform > 0.8, caudate still scores 1 even if AFV-caudate < 0.25. We again note that pos-
sible imprecision in the brain registration caused by midline shifts and / or hydrocephalus can be partially 
responsible for such observations in these specific mesial and periventricular structures.

2.	 The classification of several labels substantially (although not predominantly) depends on "joined" conditions. 
For example, lentiform = 1 (i.e., "injured") hardly depends on a single threshold; RF considers AFV-IC and 
AFV-lentiform higher than 0.2 and 0.3, or AFV-IC and AFV-Caudate higher than 0.2 and 0.1, respectively, 
to classify lentiform as affected, as shown in Fig. 7 panels b1 and b2.

3.	 In some "cortical" segments (M1-M6 and insula) a high AFV of adjacent regions may have a slightly nega-
tive effect on ASPECTS. For example, the panel e2 of Fig. 7 shows that when AFV-insula is too high (> 0.8), 
AFV-M1 has to be higher than the threshold used when M1 is sole injured, for M1 be classified as infarcted.

4.	 It is hard to account for how each pair of AFV features affects IC classification. The PDP illustrates the 
explanation of two features at most (via marginal expectation of other features). Because the RF model 

Table 2.   Correlation matrices of the visual ASPECTS and the ASPECTS feature vectors, AFVs. Note the high 
correlation in spatially neighbor regions found between visual ASPECTS (a) and between AFVs (b). Note that 
the highest correlation between visual ASPECTS and AFVs (c) is mostly found in the corresponding highest 
AFV component for each region, followed by the spatially neighboring regions.

Caudate Lentiform IC insula M1 M2 M3 M4 M5 M6 Total ASPECTS

(a) ASPECTS v.s. ASPECTS

 Caudate 1.000 0.509 0.343 0.178 0.158 0.152 0.062 0.194 0.112 − 0.005 − 0.520

 Lentiform 0.509 1.000 0.148 − 0.126 0.009 − 0.023 − 0.054 0.024 − 0.128 − 0.126 − 0.241

 IC 0.343 0.148 1.000 − 0.081 − 0.011 0.029 − 0.004 0.045 − 0.025 0.016 − 0.246

 Insula 0.178 − 0.126 − 0.081 1.000 0.406 0.394 0.205 0.380 0.523 0.162 − 0.625

 M1 0.158 0.009 − 0.011 0.406 1.000 0.084 0.053 0.750 0.166 0.053 − 0.530

 M2 0.152 − 0.023 0.029 0.394 0.084 1.000 0.389 0.166 0.603 0.344 − 0.641

 M3 0.062 − 0.054 − 0.004 0.205 0.053 0.389 1.000 0.096 0.254 0.735 − 0.552

 M4 0.194 0.024 0.045 0.380 0.750 0.166 0.096 1.000 0.130 0.049 − 0.561

 M5 0.112 − 0.128 − 0.025 0.523 0.166 0.603 0.254 0.130 1.000 0.239 − 0.595

 M6 − 0.005 − 0.126 0.016 0.162 0.053 0.344 0.735 0.049 0.239 1.000 − 0.496

 Total ASPECTS − 0.520 − 0.241 − 0.246 − 0.625 − 0.530 − 0.641 − 0.552 − 0.561 − 0.595 − 0.496 1.000

AFV_Caudate AFV_lentiform AFV_IC AFV_insula AFV_M1 AFV_M2 AFV_M3 AFV_M4 AFV_M5 AFV_M6 Lesion volume

(b) AFV v.s. AFV

 AFV_Caudate 1.000 0.884 0.906 0.531 0.468 0.419 0.245 0.427 0.385 0.166 0.400

 AFV_lentiform 0.884 1.000 0.933 0.662 0.502 0.529 0.351 0.460 0.467 0.261 0.486

 AFV_IC 0.906 0.933 1.000 0.568 0.429 0.470 0.321 0.409 0.425 0.244 0.396

 AFV_insula 0.531 0.662 0.568 1.000 0.744 0.777 0.488 0.638 0.702 0.404 0.769

 AFV_M1 0.468 0.502 0.429 0.744 1.000 0.608 0.352 0.888 0.611 0.305 0.620

 AFV_M2 0.419 0.529 0.470 0.777 0.608 1.000 0.799 0.575 0.821 0.664 0.777

 AFV_M3 0.245 0.351 0.321 0.488 0.352 0.799 1.000 0.371 0.637 0.856 0.667

 AFV_M4 0.427 0.460 0.409 0.638 0.888 0.575 0.371 1.000 0.615 0.339 0.620

 AFV_M5 0.385 0.467 0.425 0.702 0.611 0.821 0.637 0.615 1.000 0.672 0.768

 AFV_M6 0.166 0.261 0.244 0.404 0.305 0.664 0.856 0.339 0.672 1.000 0.631

 Lesion volume 0.400 0.486 0.396 0.769 0.620 0.777 0.667 0.620 0.768 0.631 1.000

AFV_Caudate AFV_lentiform AFV_IC AFV_insula AFV_M1 AFV_M2 AFV_M3 AFV_M4 AFV_M5 AFV_M6 Lesion volume

(c) ASPECTS v.s. AFV

 Caudate 0.830 0.746 0.764 0.441 0.303 0.313 0.168 0.267 0.264 0.086 0.315

 Lentiform 0.597 0.674 0.675 0.207 0.147 0.130 0.060 0.136 0.062 − 0.031 − 0.033

 IC 0.381 0.381 0.482 0.132 0.115 0.121 0.099 0.114 0.117 0.078 − 0.006

 Insula 0.200 0.283 0.205 0.708 0.463 0.498 0.284 0.411 0.506 0.264 0.606

 M1 0.245 0.285 0.198 0.536 0.750 0.320 0.127 0.691 0.357 0.113 0.466

 M2 0.209 0.299 0.256 0.506 0.323 0.744 0.546 0.342 0.634 0.438 0.591

 M3 0.092 0.190 0.142 0.315 0.174 0.565 0.828 0.198 0.418 0.689 0.536

 M4 0.274 0.310 0.251 0.520 0.685 0.342 0.178 0.754 0.391 0.153 0.477

 M5 0.195 0.260 0.198 0.517 0.323 0.589 0.365 0.304 0.721 0.360 0.578

 M6 0.046 0.135 0.086 0.247 0.171 0.492 0.745 0.189 0.440 0.829 0.521

 Total ASPECTS − 0.597 − 0.700 − 0.633 − 0.829 − 0.688 − 0.830 − 0.683 − 0.678 − 0.790 − 0.599 − 0.819
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could depend on more than 2 features to predict the ASPECTS IC, the PDP does not provide any suitable 
interpretation for IC classification in RF models.

In general, the PDP showed that the ASPECTS prediction in large ROIs, such as M1, M2, M3, dominantly 
depends on the ROI AFV. In these regions, the simple "binary threshold method" (BT) resulted in similar per-
formance to those of more complex methods as RF (Table 3). On the other hand, small ROIs with registration 
issue, ambiguous anatomical boundaries, or less incident in our sample (for example, IC, lentiform or caudate), 
need multiple features for classification. In these cases, the BT showed inferior performance to RF and others, 
as BT does not consider the joined conditioning by definition.

While the methods above expose the features implied in the classification at group level, it is important to 
expose the features used for the ASPECTS ranking of each individual. The "SHapley Additive exPlanations" 
(SHAP)15 were adapted in our pipeline along with our complete training set to explain the reasoning behind the 
model’s ASPECTS prediction for any given new sample. Supplementary Fig. 3 illustrates how the pre-trained 
RF model in ADS13 interprets the contribution of each AFV component to predict ASPECTS in a given region.

Discussion
We created a fully automated system to calculate ASPECTS, with accuracy comparable to that inter- evaluator, 
robust to major technical, lesion, and population variations. The agreement of the final ensemble model with 
the consensual visual ASPECTS was virtually perfect for most of the regions. Among BACC of all methods, 
including inter-annotators, the lowest agreement was in the internal capsule (IC). We note that IC offers extra 
challenges for both humans and machine by its anatomical nature: in addition to be a “small strip” with ill-defined 
axial in-plane boundaries in the low-resolution clinical DWI, evaluators tend to disagree on its rostral-caudal 
limits and might inconsistently consider its involvement as an extension of neighboring caudate or lenticular 
infarcts. The second lowest agreement for the automated methods was found in caudate, although the agreement 
with the ground truth ASPECTS was still very acceptable (BACC=0.850 for the RF model, BACC = 0.832 for 
the ensemble model). This can be partially attributed to issues of brain mapping affecting primarily the mesial 
and periventricular regions, which may occur in populations with common midline shift and hydrocephalus. 
To ameliorate this issue, our system offers the option to recalculate ASPECTS using a non-linear mapping. 
As shown in Fig. 4, this recalculation provides a more accurate quantification of the infarct in periventricular 
structures and, consequently, more accurate ASPECTS prediction, at the cost of increasing the time for image 
processing in about 3 minutes.

The bivariate and the feature analyses revealed that, as expected, the main feature determining the ASPECTS 
in a given region is the percentage of the respective region affected by the infarct. However, other additional 
features were used by both humans and machine. The analysis of human visual ASPECTS demonstrated high 
correlation between the scores of areas in which infarcts tend to coalesce, and adjacent ROIs. The feature analysis 
of RF and other ML models revealed that the global lesion pattern, or the infarction of spatially adjacent regions, 

ROI Caudate Lentiform IC Insula M1 M2 M3 M4 M5 M6 ASPECTS

Visual ROI ASPECTS 1 1 0 1 1 1 1 1 1 1 1

Linear Mapping 

ROI components of AFV 0.05 0.30 0.35 0.95 0.60 0.85 0.59 0.14 0.82 0.44 N.A.

RF predict 0 0 0 1 1 1 1 1 1 1 3

RF predict probabilities 0.05 0.38 0.04 0.99 0.89 0.97 0.85 0.97 0.94 0.56 N.A.

Nonlinear Mapping 

ROI components of AFV 0.42 0.41 0.39 0.90 0.58 0.71 0.59 0.25 0.72 0.39 N.A.

RF predict 1 1 0 1 1 1 1 1 1 1 1

RF predict probabilities 0.85 0.76 0.05 1 0.89 0.97 0.9 0.99 0.99 0.66 N.A.

Figure 4.   Illustrative example of prediction error related to brain mapping. Note that when the brain is mapped 
to the template by linear transformation, the agreement of internal structures with their atlas definition is 
sub-optimum. This is particularly important for brains with specific characteristics (e.g., hydrocephalus) and 
periventricular structures (e.g., caudate). The imprecision affects the calculus of the proportion of the region 
affected by the stroke and consequently, the prediction of ASPECTS. In this case, the linear brain mapping to the 
template (left panel) grades the caudate as 5% affected by the infarct and it consequently scores "0" (bold cells in 
the table). With non-linear mapping (right panel), the match between the brain and atlas increases; the caudate 
injury is now quantified as 42% and the predicted score is 1 (bold cells in the table), in agreement with the 
human evaluation. The same happened to Lentiform.
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ROI Number of occurrences Metric LDA QDA KNN SVM RF MLP BT Ensemble Inter-evaluators

Caudate 36

BACC​ 0.853 0.839 0.822 0.832 0.850 0.818 0.878 0.832 0.901

F1 0.825 0.789 0.776 0.794 0.812 0.774 0.845 0.794 0.882

Precision 0.963 0.750 0.839 0.926 0.848 0.923 0.857 0.926 0.938

Sensitivity 0.722 0.833 0.722 0.694 0.778 0.667 0.833 0.694 0.833

Kappa 0.747 0.661 0.664 0.702 0.713 0.677 0.760 0.702 0.822

Lentiform 59

BACC​ 0.851 0.885 0.917 0.885 0.942 0.916 0.859 0.938 0.903

F1 0.870 0.919 0.932 0.919 0.948 0.920 0.879 0.949 0.899

Precision 0.893 0.877 0.932 0.877 0.965 0.963 0.895 0.949 0.980

Sensitivity 0.847 0.966 0.932 0.966 0.932 0.881 0.864 0.949 0.831

Kappa 0.693 0.789 0.835 0.789 0.877 0.817 0.713 0.876 0.780

IC 23

BACC​ 0.757 0.792 0.676 0.704 0.770 0.791 0.702 0.798 0.768

F1 0.650 0.654 0.514 0.571 0.684 0.718 0.545 0.737 0.638

Precision 0.765 0.586 0.750 0.833 0.867 0.875 0.571 0.933 0.625

Sensitivity 0.565 0.739 0.391 0.435 0.565 0.609 0.522 0.609 0.652

Kappa 0.565 0.534 0.423 0.491 0.614 0.652 0.418 0.678 0.527

Insula 54

BACC​ 0.972 0.949 0.949 0.961 0.969 0.980 0.885 0.971 0.944

F1 0.971 0.954 0.954 0.962 0.972 0.981 0.903 0.972 0.941

Precision 1.000 0.945 0.945 0.981 0.964 0.981 0.864 0.981 1.000

Sensitivity 0.944 0.963 0.963 0.944 0.981 0.981 0.944 0.963 0.889

Kappa 0.940 0.899 0.899 0.920 0.940 0.960 0.777 0.940 0.880

M1 28

BACC​ 0.929 0.950 0.857 0.922 0.939 0.922 0.979 0.922 0.957

F1 0.923 0.929 0.833 0.906 0.926 0.906 0.949 0.906 0.945

Precision 1.000 0.929 1.000 0.960 0.962 0.960 0.903 0.960 0.963

Sensitivity 0.857 0.929 0.714 0.857 0.893 0.857 1.000 0.857 0.929

Kappa 0.896 0.901 0.783 0.872 0.899 0.872 0.928 0.872 0.925

M2 40

BACC​ 0.867 0.921 0.896 0.892 0.896 0.921 0.929 0.921 0.942

F1 0.845 0.909 0.880 0.877 0.880 0.909 0.914 0.909 0.927

Precision 0.968 0.946 0.943 0.970 0.943 0.946 0.902 0.946 0.905

Sensitivity 0.750 0.875 0.825 0.800 0.825 0.875 0.925 0.875 0.950

Kappa 0.762 0.852 0.809 0.807 0.809 0.852 0.855 0.852 0.876

M3 33

BACC​ 0.894 0.955 0.947 0.955 0.970 0.970 0.970 0.970 0.917

F1 0.881 0.939 0.937 0.939 0.955 0.955 0.955 0.955 0.903

Precision 1.000 0.939 0.968 0.939 0.941 0.941 0.941 0.941 0.966

Sensitivity 0.788 0.939 0.909 0.939 0.970 0.970 0.970 0.970 0.848

Kappa 0.833 0.910 0.908 0.910 0.933 0.933 0.933 0.933 0.860

M4 29

BACC​ 0.855 0.951 0.890 0.924 0.890 0.907 0.944 0.907 0.828

F1 0.824 0.931 0.868 0.909 0.868 0.889 0.915 0.889 0.792

Precision 0.955 0.931 0.958 0.962 0.958 0.960 0.900 0.960 1.000

Sensitivity 0.724 0.931 0.793 0.862 0.793 0.828 0.931 0.828 0.655

Kappa 0.765 0.903 0.821 0.875 0.821 0.848 0.880 0.848 0.730

M5 41

BACC​ 0.882 0.896 0.876 0.906 0.905 0.893 0.866 0.893 0.888

F1 0.865 0.874 0.854 0.895 0.889 0.875 0.841 0.875 0.867

Precision 0.970 0.826 0.854 0.971 0.900 0.897 0.787 0.897 0.857

Sensitivity 0.780 0.927 0.854 0.829 0.878 0.854 0.902 0.854 0.878

Kappa 0.787 0.777 0.752 0.831 0.813 0.792 0.717 0.792 0.773

M6 32

BACC​ 0.915 0.954 0.938 0.954 0.954 0.946 0.923 0.938 0.953

F1 0.900 0.938 0.921 0.938 0.938 0.935 0.903 0.921 0.951

Precision 0.964 0.938 0.935 0.938 0.938 0.967 0.933 0.935 1.000

Sensitivity 0.844 0.938 0.906 0.938 0.938 0.906 0.875 0.906 0.906

Kappa 0.857 0.908 0.884 0.908 0.908 0.907 0.860 0.884 0.929

Total ASPECTS 100

BACC​ 0.389 0.400 0.409 0.416 0.504 0.481 0.386 0.513 0.480

F1 0.491 0.428 0.495 0.568 0.574 0.543 0.423 0.598 0.594

Precision 0.523 0.522 0.572 0.603 0.612 0.597 0.507 0.626 0.659

Sensitivity 0.490 0.420 0.490 0.570 0.570 0.530 0.390 0.600 0.580

Kappa 0.400 0.339 0.397 0.490 0.495 0.454 0.315 0.528 0.510

Kappa weighted 0.730 0.747 0.770 0.799 0.811 0.790 0.747 0.820 0.796

Continued
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influences the automated classification in a very similar way as it affects the human classification. For example, 
Fig. 6 and Table 2 show that the computational models and the humans tend to score lentiform as injured if 
they find that the neighbors IC and caudate are also injured. Inversely, they tend to minimize injuries in large 
cortical areas (M1-M3) when a neighboring large cortical area is severely damaged, apparently attributing the 
supposed injury to a "spread" of the infarct rather than a primary infarct on that specific area. Finally, in regions 
of more challenging visual analysis, the agreement with human evaluation depends on the combination of injury 
in different areas. Aligned with this fact, the performance of the simple binary threshold method in these areas 
(e.g., lentiform, IC, insula) is inferior to that of other more complex models. Interestingly, these areas are those 

ROI Number of occurrences Metric LDA QDA KNN SVM RF MLP BT Ensemble Inter-evaluators

Total ASPECTS with tolerance 100

BACC​ 0.748 0.869 0.863 0.842 0.862 0.848 0.839 0.878 0.849

F1 0.821 0.868 0.906 0.899 0.899 0.903 0.863 0.920 0.887

Precision 0.835 0.896 0.918 0.912 0.902 0.919 0.892 0.926 0.919

Sensitivity 0.830 0.860 0.910 0.900 0.900 0.900 0.850 0.920 0.880

Kappa 0.797 0.836 0.893 0.881 0.882 0.882 0.824 0.905 0.859

Kappa weighted 0.845 0.890 0.917 0.916 0.921 0.916 0.876 0.931 0.899

Table 3.   Comparison of performance of ML models and inter-annotators in the external testing set (n = 100). 
For the total aspects "whit tolerance", predicted ASPECTS within ± 1 difference from the ground true 
ASPECTS were considered true positives.

Figure 5.   Confusion matrices of ML models in the external testing set (n = 100). A potential perfect model 
would result in zeros outside the diagonal (i.e., no prediction errors). The cells adjacent to the diagonal represent 
"acceptable" errors (predicted ASPECTS within ± 1 difference from the ground true ASPECTS).
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mostly inter-correlated in the visual analysis, supporting the idea that machine and humans are considering 
similar features.

The feature analysis enriches the AI models, increasing their interpretability and their potential usefulness. 
Therefore, our system ADS13 is suited to output not only the predicted ASPECTS but also the feature vector (AFV) 
showing the proportion of each brain region affected by the infarct (as in Figs. 3 and 4), the graphic representation 
of how the pre-trained model interprets the AFV components to predict scores in each region (Supplementary 
Fig. 3), as well as the probabilities of such ASPECTS predictions (as in Figs. 3 and 4). This information can be 
used as an indirect validation of the automated scores, or a metric of certainty about them, as well as for other 
quantitative proposes. Another particularity is that our system is flexible to different brain parcellation schemes. 
Therefore, different ROIs can be easily adopted, either to test their clinical significance, or to provide better 
metrics when their relevance is established16. Finally, our system is completely automated, including the lesion 
segmentation17. We note that because the automated and manual lesion segmentation do not perfectly agree17, the 
models currently available in ADS were retrained with the automated segmented lesions (accuracy summarized 
in Supplementary Tables 6, 7 and 8). The accuracy of the models trained with manual lesion segmentation or 
with automated lesion segmentation by ADS were virtually the same, indicating that these latter are suited for a 
complete automated pipeline for stroke imaging processing, that includes infarct segmentation.

In summary, using the original DWI as input, we created a fully automated system that outputs ASPECTS, in 
addition to the previously reported17 3D digital stroke mask, volume, and the feature vector of anatomical regions 
affected by the acute stroke. This system is publicly available, runs in real time, in local computers, with minimal 
computational requirements, and it is readily useful for non-expert users. The addition of an efficient ASPECTS 
calculation indicates that ADS is able to extract personalized information of potential clinical relevance from 
clinical MRIs of patients with acute strokes.

Methods
Image processing.  This study included Magnetic Resonance Images (MRIs) of patients admitted to the 
Johns Hopkins Stroke Center with the clinical diagnosis of acute stroke, between 2009 and 2019. This data-
set is public18. All methods of this study were carried out in accordance with relevant guidelines and regula-
tions (IRB00290649, IRB00228775). We included baseline MRIs adequate for clinical analysis with evidence 
of ischemic stroke in the diffusion weighted images (DWI), as in our previous study on automated lesion 
segmentation17. Herein, we included infarcts affecting exclusively the territory of the middle cerebral artery 
(MCA) with non-ten ASPECTS score (n = 400).

MRIs were obtained on eleven scanners from four different vendors, two magnetic fields (1.5 T and 3 T), 
with dozens of different protocols. The DWIs had high in plane (axial) resolution (1.2 × 1.2 mm2, or less), and 
typical clinical large slice thickness (ranging from 3 to 6 mm). The delineation of the ischemic core was defined 
in the DWI by two experienced evaluators and revised by a neuroradiologist until reaching a final decision by 
consensus (details in19). The human segmentation is here considered the “ground true". The “automated” lesion 
segmentation was performed with ADS, according to17. The DWIs were mapped to a common template in MNI 

Figure 6.   Feature importance, as revealed by the Mean Decrease in Impurity (MDI) of the Random Forest (RF) 
models. The MDI is proportional to the importance of the features (the AFVs and lesion volume, in the x-axis) 
to predict the injury of the region in question (title of each graph). The AFVs represent the proportion of each 
ROI affected by the infarct. Note that the dominant AFV component agrees with the prediction of injury in the 
corresponding region and is followed by the AFV component of its spatially neighboring regions.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3784  | https://doi.org/10.1038/s41598-023-30242-6

www.nature.com/scientificreports/

Figure 7.   Partial dependent plots (PDPs) showing the top 3 features of Random Forest (RF) models for each 
ROI. The PDPs indicate the average marginal effect of the AFV on classifying each ROI (title of each graph) in 
infarcted (1) or not infarcted (0). As the three most important features are shown, each region is represented 
by a pair of graphics in which the x-axis shows the most important classification feature and the y-axis shows 
the second and third, respectively. The colors show the topology of the probabilistic classification. For example, 
top left graphic shows that caudate usually scores "1" (i.e., infarcted) if above 25% of its volume is occupied by 
the infarct mask (red dots in the yellow area). However, even if caudate injury is below this level, a case may 
score "1" if the neighboring lentiform is highly affected (> 80%; red dots in the green area). This indicates that, 
similarly to humans, AI uses a more complex classification approach than the single binary threshold of injury 
for the region in question to determine injury.
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space (JHU_MNI20) by 12-parameter linear transformation; the transformation matrix was then applied to 
the binary stroke masks. Details about the mapping, including used parameters and quality control, are in our 
publications describing the dataset19 and the lesion segmentation algorithm17.

Visual ASPECTS.  An ASPECTS atlas (Fig. 2) was created using the JHU_SS_MNI template20, by select-
ing regions of interest (ROIs) from our previously published atlas21–23. The ASPECTS atlas defines the 10 areas 
considered in the ASPECTS system: the caudate, the lentiform, the internal capsule (IC), the insula, and the 
cortical / subcortical regions from M1-M624. This proposed ASPECTS deformable 3D atlas is publicly avail-
able in ADS13. The visual ASPECTS rating was done by two evaluators, and finally defined by consensus with 
a neuroradiologist. The evaluation was done on the DWI and ADC images in MNI space, having access to the 
overlapped ASPECTS map. Raters used the typical clinical scoring system (1 if the given region is considered 
affected by the infarct, 0 if not. For the total ASPECTS, each point was subtracted from 10, which is the normal). 
The consensus visual ASPECTS are considered as "ground truth" scores in this study. The frequency of ASPECTS 
per score classes and per region is summarized in Supplementary Table 1.

ASPECTS feature vectors (AFV).  We used the percentages of ASPECTS ROIs affected by the infarct as 
the feature vector of our classification models. In each ROI, this percentage is the number of ROI voxels where 
the stroke mask = 1 divided by the total number of bilateral ROI voxels (Fig. 3). Left and right sides are com-
bined by summation. Infarct volume (in log10 ml) was also included into the feature vector as it correlates to 
infarct location. In total, AFV has 11 features: the percentage of infarct in each of the 10 ASPECTS ROIs plus the 
infarct volume. In this study, ML prediction models used AFVs derived from the manual segmentation of the 
infarcts and their results are shown in the main manuscript. The results of models trained with the AFV derived 
from automated segmentation of the infarcts17 are summarized in the supplementary material. The models and 
parameters are public in ADS13.

Machine learning (ML) classification models to predict ASPECTS.  We developed, validated, and 
tested seven models (described below) to predict the consensus visual classification (injured = 1, not-injured = 0) 
in each of the 10 ASPECTS ROIs, using the AFVs. All ML models were 5-fold cross validated over the training 
set (300 subjects, 75%) for searching hyperparameters and tested in external 100 subjects (flowchart in Fig. 1). 
The models’ hyperparameters with the top performances (BACC and F1 score) from the first-run 5-fold cross 
validation were further selected via 100 repeat 5-fold cross validation. The parameter searching sets, final opti-
mal parameters, and cross validation results are in Supplementary Tables 2 and 3.

The simplest model, the Binary Threshold (BT), was built to classify visual ASPECTS via thresholding its 
corresponding ROI component in the AFV for each subject. The threshold can be interpreted as the minimum 
percentage of the ROI that has to be affected by the infarct to lead its classification as injured ROI. The threshold 
for each ROI was the minimal level to achieve the highest sum of BACC and F1 score, found by cross-validation 
in the training set. The optimal thresholds for each ROI are summarized in Supplementary Table 2.

The remaining six models, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), 
Random Forest (RF), K-nearest Neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron 
(MLP), were implemented via scikit-learning module25. Two ensemble models were also tested, one using all 
the models and the other with the best three models (SVM, RF, and MLP). The ensembles used majority voting 
policy. The top models were chosen according to the average performance (BACC, F1) of 100 repeated 5-fold 
cross validation among 300 training samples. Because the ensemble model that combined all the models had 
performance slightly inferior to that of the ensemble of the three best models, only the results of the latter are 
shown in Table 3.

Feature analysis.  We explored how ASPECTS attributed to different ROIs relate to each other, as well as 
the relationship between visual ASPECTS and AFV for each ROI, and between different AFV components, using 
correlation coefficients (Table 2). We used different methods to identify the important features selected in suc-
cessful ML models to predict ASPECTS, and implemented a system to expose these features, comprehensively, 
in a given new sample.

The analysis of feature importance aims to inspect how annotators and ML models use the AFVs to attrib-
ute ASPECTS. The analyses presented here are based on RF models, which had the best average performance 
(BACC, F1) among all ML models. The impurity-based feature importance analysis26,27 was conducted using 
the RF models 100 times simulated on the training set. The Mean Decrease in Impurity (MDI), shown in Fig. 6, 
indicates the feature importance (high MDIs correspond to the most important features). MDI describes the 
weighted mean of RF’s improvement in Gini-gain splitting criterion produced by each feature variable. We also 
conducted a permutation RF feature importance test28 (100 interactions) via BACC, using the training and testing 
set separately (Supplementary Figs. 1 and 2), to illustrate the consistency in feature learning and their potential 
generalization, respectively.

The Partial Dependence Plots (PDP)29,30 were used to provide an intuitive global interpretation of how selected 
features affect the models’ prediction. The PDP, shown in Fig. 7, capture the average marginal effect on predic-
tions for selected features via marginalizing out all other features. PDP gives global model explanations over the 
testing set. The SHapley Additive exPlanations (SHAP)15 was included in the ADS pipeline, to generate intuitively 
comprehensible graphical explanations of predicted ASPECTS in a new given sample. SHAP computes the Shap-
ley values31 of features via coalitional game theory to indicate how to fairly distribute prediction of an instance 
among features. Because Shapley feature value is linearly additive, this value can be directly added or subtracted 
from the probability of predicts, making the models’ interpretation straightforward.
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Measures of model performance.  Denote True Positives, False Positives, True Negatives, and False Neg-
atives, as TP, FP, TN, and FN, respectively. We evaluated:

1.	 Balanced accuracy (BACC)32: to avoid performance inflation resulted from imbalanced classes, BACC is 
used instead of accuracy.

2.	 Precision: a metric to evaluate how accurate a model’s positive predict is true.

3.	 Sensitivity: a metric to evaluate how the model’s ability to detect the positive cases among dataset.

4.	 F1 score: the harmonic mean of the precision and sensitivity.

5.	 Cohen’s Kappa coefficient33, κ: a statistic to measure the agreement between annotators. Besides evaluating 
our inter-annotator performance, we also like to consider ML models as extra annotators and evaluate their 
performance in the test set, completely hold-out from training.

where po is the empirical probability of agreement among raters, and pe is the expected agreement between 
random raters. pe is estimated via the empirical prior probability of each class of raters.

The metrics to evaluate binary classification defined as above apply to each ASPECTS ROI (which can be 
either 0 or 1). For the total ASPECTS (ten minus the summation of ASPECTS from each ROI in an indi-
vidual), we calculated the metrics for each of the 10 classes and the weighted average of all classes. The weights 
are supported by the number of samples of each class. In addition, Cohen’s Kappa score was calculated by 
"no weighted", or linear weighted average across multi-classes. As for practical applications, a predicted total 
ASPECTS within ± 1 difference from the ground true ASPECTS is acceptable, we additionally computed all 
the above metrics using this tolerance margin. Therefore, the denoted "tolerance" indices consider a predicted 
ASPECTS within ± 1 difference from the ground true ASPECTS as a true positive.

System implementation.  The statistical significance testing was performed by ANOVA test in module 
"bioinfokit" for continuous data, and by Chi-square test via chi2_contingency module in scipy for categorical 
data. The metrics of model performance were implemented by scikit-learning module. All the evaluated meth-
ods and models were built with TensorFlow34 (tensorflow-gpu version is 2.0.0) and Keras35 (2.3.1) framework 
on Python 3.6 Imaging processing and analysis were built with Nibabel36, Scipy37, Dipy38 and Scikit-learning25, 
Scikit-image25,39, SHAP15. The experiments run on a machine with an Intel Core (Intel(R) Xeon(R) CPU E5-2620 
v4 @ 2.10GHz) with 2 NVIDIA TITAN XP GPUs (with CUDA 10.1).

Data availability
The tool developed here for automated calculation of ASPECTS is available at NITRC​13. The dataset that used 
for the development is available at ICPSR18and can be freely downloaded after registration and signing of Data 
Use Agreement.
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