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A deconvolution approach 
to modelling surges in COVID‑19 
cases and deaths
Adam Melnyk *, Lena Kozarov  & Sebastian Wachsmann‑Hogiu *

The COVID‑19 pandemic continues to emphasize the importance of epidemiological modelling in 
guiding timely and systematic responses to public health threats. Nonetheless, the predictive qualities 
of these models remain limited by their underlying assumptions of the factors and determinants 
shaping national and regional disease landscapes. Here, we introduce epidemiological feature 
detection, a novel latent variable mixture modelling approach to extracting and parameterizing 
distinct and localized features of real‑world trends in daily COVID‑19 cases and deaths. In this 
approach, we combine methods of peak deconvolution that are commonly used in spectroscopy with 
the susceptible‑infected‑recovered‑deceased model of disease transmission. We analyze the second 
wave of the COVID‑19 pandemic in Israel, Canada, and Germany and find that the lag time between 
reported cases and deaths, which we term case‑death latency, is closely correlated with adjusted 
case fatality rates across these countries. Our findings illustrate the spatiotemporal variability of 
both these disease metrics within and between different disease landscapes. They also highlight 
the complex relationship between case‑death latency, adjusted case fatality rate, and COVID‑19 
management across various degrees of decentralized governments and administrative structures, 
which provides a retrospective framework for responding to future pandemics and disease outbreaks.

The COVID-19 pandemic has highlighted the importance of epidemiological modelling in responding to public 
health threats and continues to be a critical tool to study and anticipate the spread of disease, even with the intro-
duction of vaccines and antiviral therapies. While there is an abundance of peer-reviewed research which sets 
out to make predictions about the short and long term spread of COVID-19 based on accepted epidemiological 
models, the study of past and emerging waves of the pandemic remains relatively unexplored despite the poten-
tial for understanding the impact of implemented public health responses. Some studies discuss the potential 
short term effects of nonpharmaceutical interventions such as mask mandates or  lockdowns1,2 while others look 
deeper into possible disease futures, speculating about the longer term impacts of emerging variants, vaccination 
efficacies, and imperfect or waning  immunities3. While these efforts broadly contribute to the decision making 
of public health  authorities4, they often place an emphasis on forecasting over retrospective investigations that 
evaluate the accuracy of  predictions5. Models of prediction are an integral part of the epidemiologist’s toolbox and 
serve as a basis for pandemic scenario planning; however, precise quantitative forecasting remains an imperfect 
assessment of future disease landscapes and public health  risks6,7.

Deterministic compartmental models of disease transmission are among the most common modelling tech-
niques in epidemiology. In these models, individuals are labeled and compartmentalized based on their disease 
status (e.g., susceptible, infected, recovered) and set to move between compartments over time according to 
model parameters and dynamics representative of a specified epidemiological landscape. Mean-field compart-
mental models assume that labeled populations are sufficiently large and homogenously mixed, such that varia-
tions in individual behaviours are approximated by a single averaged effect across an entire  population8. Averaged 
analytical solutions of compartmental dynamics are generated from point estimates of model parameters, which 
provide simple approximations of disease progression but limit the ability to quantify model uncertainty, espe-
cially for long term  forecasting8,9. While the simplifying assumptions of these models pose limitations on their 
predicative abilities, they provide a parsimonious framework for measuring and monitoring past and real-time 
trends in disease landscapes based on spatiotemporal  data2.

To complement ongoing scenario planning initiatives for pandemic preparedness, science advisors and poli-
cymakers need to take an empirical approach to modelling disease landscapes. Empirical models are not intended 
to derive projections of disease progression but instead use analytical methods to interpolate and better estimate 
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drivers of disease over time. These approaches to disease spread use epidemiological frameworks, such as com-
partmental models, to quantify and simulate real-world data as opposed to forecasting based on assumptions of 
epidemiological parameters such as reproduction number, contact rate, or critical vaccination threshold. They 
are often used to estimate such  parameters10 and may also be used to assess the validity of projections set forth 
by predictive  models5,11.

While compartmental models serve as a basis for studying disease landscapes, the ability of these models 
to provide spatiotemporal information on disease progression is limited by the granularity of the data being 
studied and by their capacity to extract and relate latent epidemiological features across different data types 
(e.g., cases and deaths). Motivated by the concept of feature detection used in the field of computer  vision12, a 
feature represents a distinct and localized grouping of new cases, deaths, and other epidemiological data (e.g., 
hospitalizations) from a larger disease landscape. Latent (or hidden) features could include city-wide outbreaks 
that become indiscernible at a national scale or local superspreader events smoothed over amidst provincial data, 
and they often manifest asynchronously across cases and deaths to shape disease landscapes. On a broader scale, 
these features are often the result of many confounding real-world events which share the same spatiotemporal 
localizations.

Epidemiologists should have access to other mathematical tools and techniques to extract hidden features 
from disease landscapes and improve existing epidemiological frameworks where richer data inputs may be 
unavailable. Recently, functional principal component analysis was used to model time series COVID-19 data in 
France and quantify the positive effects of vaccine rollouts across the country’s local administrative  regions13. In 
another study, spectral analysis methods were used to identify peaks in the frequency and periodicity of similar 
time series data from seven of the countries affected most by COVID-19 to highlight common weekly patterns 
unique to COVID-19 data  reporting14. These approaches prove to be powerful tools for systematic retrospective 
studies of epidemiological time series data.

Retrospective epidemiological studies could also benefit from more granular analyses of disease progression 
by using tools designed to decompose time series data into temporally localized features. Here, we explore peak 
deconvolution, which describes the process of deconstructing overlapping data features into component peaks 
to extract hidden information about underlying phenomena. For example, in surface-enhanced Raman scatter-
ing (SERS), deconvolution of complex SERS spectra is used for the detection and characterization of molecular 
species based on the position and intensity of extracted  peaks15. In an epidemiological context, similar peak 
deconvolution methodologies could be useful for the extraction of hidden features from disease landscapes to 
provide a previously unexplored perspective into the complex dynamics of the COVID-19 pandemic.

One epidemiological parameter which has remained central to calibrating and fitting pandemic models of 
disease progression is the apparent temporal lag between publicly reported daily COVID-19 cases and deaths, a 
phenomenon which we term “case-death latency” (CDL). CDL is in part determined by the inherent dynamics of 
the SARS-CoV-2  virus16 as well as by the unique physiological responses it imposes on each infected  individual17. 
However, it is also influenced by other factors such as the quality of public health infrastructure, and central-
ized disease reporting and  management18,19. While this latency is reported in the  literature20 and estimated to 
range on average between 13 and 16 days from the onset of COVID-19  symptoms21,22, little has been done to 
quantify variations in CDL over time or consider these variations within a broader epidemiological framework. 
Oversimplification of CDL can misinform calculations of important epidemiological metrics such as case fatality 
rate (CFR), which is currently calculated based on crude estimates of CDL, if  any23. Given that it is influenced by 
many confounding—and often unknown—variables and used to estimate important epidemiological metrics, 
CDL serves as a rich and complex metaparameter which implicitly codes for a variety of factors and determinants 
of disease. Decoding CDL could provide new insights into COVID-19 disease landscapes.

Here, we introduce a peak deconvolution method to deconstruct previous waves of daily case-death trends 
into smaller sub-waves. We use these sub-waves to isolate latent features of disease landscapes as well as track 
distinct and localized changes in disease progression over time. We also present an implementation of the sus-
ceptible-infected-recovered-deceased (SIRD) model to empirically simulate peak fits taken from CDL analyses. 
We show how this parsimonious model can be used to quantify feature parameters of deconvolved sub-waves to 
better understand drivers of disease progression such as rates of infection, death, and recovery. We analyze the 
second waves of the COVID-19 pandemic in Israel, Canada, and Germany, which are well-suited to showcase 
this method of epidemiological modelling as they encompass the only pre-vaccine responses to the pandemic 
in which centralized testing was widely available to these populations.

In this paper, we aim to demonstrate how peak deconvolution can be used in combination with the SIRD 
model to provide a novel method of quantifying key epidemiological feature parameters, such as CDL and 
CFR, with greater temporal resolution. This approach of epidemiological feature detection is intended to help 
to study and understand surges in COVID-19 as non-homogenous events which are the sum of many smaller 
latent contributions. With this approach, each component pair of case-death peaks can be attributed to specific 
biological, behavioural, and social—among other—factors and determinants of disease. Finally, we discuss how 
these findings can inform researchers and policymakers with actionable insights regarding: the outcomes of 
public health policies and pandemic responses being implemented across various governments and administra-
tive structures; the effectiveness of COVID-19 testing programs and intensive care infrastructure; as well as the 
spread of COVID-19 variants, among other epidemiological considerations.

Methods
Data selection and processing. The COVID-19 case and death data used in this paper was downloaded 
from the Johns Hopkins Coronavirus Resource Center’s open access  database24 and subsequently analyzed using 
our novel approach to epidemiological feature detection, which is outlined in Fig. 1. Prior to analysis, all data 
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was smoothed in MATLAB using a gaussian-weighted moving average filter with a window length of 25 days to 
obtain quasi-continuous trends, as shown in Fig. 1A, which were more suitable for peak deconvolution than the 
noisy raw data. Pairs of corresponding case-death trends for each region of interest were min–max normalized 
between 0 and 1 to maintain consistency in our analyses across these regions.

The regions and waves of interest we analyzed were mainly selected for the purposes of demonstrating this 
novel approach and follow a set of general selection criteria. Regions of interest with consistent, daily report-
ing of cases and deaths, which also showed distinct surges, were chosen as they facilitated data smoothing and 
peak deconvolution. Higher income countries reporting peak surges upwards of 5000 cases per day generally fit 
these criteria often due to the greater capacities of their healthcare networks to document disease progression.

While Israel, Canada, and Germany all meet the general selection criteria, they were also selected based on 
their unique administrative structures and public health responses during their respective second waves of the 
pandemic. These three countries exhibit a broad spectrum of administrative centralization and decision-making 
agility at national and subnational levels. Israel has a unified centralized administration whereas Canada’s admin-
istration is more decentralized with voluntary collaboration at a national level, and that of Germany is the most 
decentralized yet abided by consensus-based decision making at the federal level during their second wave of 
COVID-19. These three distinct scenarios provided a basis for exploring how the presented methods could be 

Figure 1.  Epidemiological feature detection methodology: (A) reported daily cases and deaths data for a 
region of interest are cleaned and smoothed, (B) case and death trends are deconvolved into component peaks, 
(C) peak pairs are isolated for SIRD modelling, (D) a SIRD model is defined for each peak pair, (E) analytical 
solutions of the SIRD model are generated based on initial parameter inputs, (F) time derivatives of the model 
solutions are isolated to model peak pairs, (G) SIRD model parameters are optimized to fit each peak pair, (H) 
case and death trends are reconstructed using modelled peak pairs.
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used to study the effects of COVID-19 management on CDL and aCFR during similar periods of COVID-19 
progression.

The second wave of the pandemic in each region of interest was selected for analysis based on the assump-
tion that COVID-19 cases and deaths were more accurately reported following the first wave due to constant 
improvements in testing and reporting infrastructure through the early stages of the pandemic. Additionally, 
the second wave was chosen instead of later waves to investigate COVID-19 disease landscapes prior to wide-
spread vaccine rollouts. Although these selection criteria were used to guide the present analysis, this approach 
to epidemiological feature detection is broadly applicable to the study of disease landscapes beyond nationally 
reported surges in COVID-19 cases and deaths, including regions with sparser disease reporting.

Peak deconvolution. Peak deconvolution was used to deconstruct national time series trends from the 
second wave of the COVID-19 pandemic into their component peaks, or sub-waves, as shown in Fig. 1B. Follow-
ing data selection and processing in MATLAB, peak deconvolution was performed using Fityk, an open source 
curve fitting and data analysis  software25. The quality of the fit for each of the deconvolved time series trends 
was assessed based on their coefficient of determination,  R2, where an  R2 value greater than 0.99 was considered 
acceptable for this analysis.

To fit corresponding case-death surges within a region of interest, time windows of the same length for each 
data type were offset to account for the average CDL between trends. The offset between case and death time 
windows was defined by maximizing the cross-correlation function between case-death surges. Although time 
windows were constrained to be the same length for the case and death trends within each region of interest, 
they were allowed to vary between regions as the duration of the second wave was unique to each region studied.

For the purposes of peak deconvolution, the time window ultimately defined the distance between the center 
of the first and last deconvolved peaks flanking case-death surges, which, for example, is indicated in Fig. 1B 
as twindow for the trend in daily deaths. Each trend can be fit with at least 3 peaks (i.e., two flanking peaks and 1 
unconstrained peak), and the number of peaks can be increased to enhance the resolution of feature extraction. 
Corresponding case-death trends within a region of interest must be fit with the same number of peaks to ensure 
correspondence between individual features extracted from the case and death landscapes. For instance, Fig. 1B 
shows a pair of case-death trends fit with 6 peaks each, of which the 4 central peaks from each trend are shown 
as isolated peak pairs in Fig. 1C.

Each of the trends in this paper were deconvolved into 6 peaks, which proved to be the minimum number 
of peaks that accurately fit all these trends (i.e., the number of peaks was limited by the most feature-rich land-
scapes). While it is possible to fit these trends with greater numbers of peaks representative of increasingly finite 
contributions to these disease landscapes, the minimum number of peaks was chosen to simplify the present 
analysis, reduce the likelihood of overfitting, and study the broadest population-level insights that may have 
tangible meaning at a national level. Moreover, consistent peak fitting across each region of interest provided 
uniformity of model outputs, which facilitated comparisons of interregional disease progression.

Each isolated peak pair comprises a case and death peak of identical widths and represents a unique epi-
demiological feature. Peak widths may vary across isolated peak pairs but are kept constant between the case 
and death peaks of each individual pair to consolidate the temporal parameterization of each feature. CDL is 
defined as the center-to-center distance between the case peak and death peak of each isolated peak pair, which 
is indicated as ∆ in each of the subplots in Fig. 1C. The peak deconvolution process yields a sequence of distinct 
and localized features from real-world data that can be further parameterized with compartmental models of 
disease transmission.

SIRD modelling. The SIRD model, shown in Fig. 1D, is a variation of the susceptible-infected-recovered 
(SIR) model which explicitly accounts for disease-induced deaths among infected populations. In the SIRD 
model, infected individuals either recover from disease with natural immunity or die due to infection. The 
progression of the disease landscape is represented by a set of four ordinary differential equations which each 
describe the dynamics of a different SIRD compartment, as follows:

here β is the transmission rate constant, γ is the recovery rate constant, and μ is the mortality rate constant. Unlike 
the SIR model, the SIRD model includes an explicit analytical solution for the deceased population, D, which 
enables simultaneous modelling of death data in addition to case data. Cases and deaths are among the most 
commonly reported epidemiological data worldwide and serve as the basis for our CDL analyses.

The SIRD model does not explicitly consider many of the complexities surrounding disease progression, such 
as incubation periods, asymptomatic transmission rates, and restrictive public health measures. Additional model 
compartments, such as an exposed (E) compartment used in SEIRD models of COVID-19 dynamics, are omitted 
from this analysis for simplicity. In many cases, simpler models have been shown to be sufficient for modelling 
of COVID-19 trends on timescales of several days to a couple  months26 and observationally equivalent to their 
more complex counterparts in these  situations2,27.

Vital dynamics, which include births and natural deaths, are not considered in the SIRD model. These pro-
cesses are generally used for modelling endemic diseases, which persist in populations over longer periods of 
time upwards of a  decade28. Here, we assume that natural deaths are negligible compared to those caused by 
disease and similarly assume that birth processes are insignificant to overall population dynamics at the time-
scales presented.

(1)
dS

dt
= −βIS,

dI

dt
= BIS − γ I − µI ,

dR

dt
= γ I ,

dD

dt
= µI
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We also assume that natural immunity is conferred to recovered individuals at least temporarily such that 
they are not reintroduced into the susceptible population following recovery. Immune memory has been shown 
to persist for upwards of 3 months in most individuals following COVID-19  infection29,30 with little evidence 
of reinfection within similar  timeframes31. In our analysis, each pair of case-death peak fits are simulated with 
a unique SIRD model and typically span between 10 and 15 days of the 105–120 days over which most second 
waves are observed. Given these considerations, the simplifying assumptions of the SIRD model without vital 
dynamics are reasonable for the timescales being studied.

While the case and death data for peak deconvolution are shown as the change in daily counts (i.e., new cases 
and deaths), the explicit analytical solutions of the SIRD model are expressed as total daily counts as shown in 
Figs. 1E1 and 2. To convert the population dynamics of the model to daily changes in the SIRD populations, we 
take the numeric derivative of the model’s analytical solutions using the forward difference formula, which are 
shown in Figs. 1F1 and 2. New daily cases are approximated using the negative time derivative of the susceptible 
population, S, given that changes in S are governed by a single term as shown in Eq. (1), which describes the rate 
of irreversible transition between susceptible and infected populations. Analogously, the time derivative of the 
deceased population, D, is used to approximate new daily deaths.

Modelled cases and deaths are fit to pairs of deconvolved case-death peaks using non-linear least squares 
regression, which is illustrated in Fig. 1G. The optimization process works to minimize the sum of squares error 
between the model and reported data over the time interval spanning the case-death peak pair of interest. In 
Fig. 1G, the error is considered minimized and model parameters optimized when the parameterized modelled 
peaks (yellow and red dashed lines) and their respective deconvolved peaks (in blue) are practically superim-
posed. Minimization of the model error is defined by the objective function, f(x), as follows:

where C and D represent case and death peaks, respectively, and are denoted with a d for deconvolved peaks or 
m for SIRD-modelled peaks. Using mathematical notation, Eq. (2) describes how model error is calculated dur-
ing each iteration of the parameter optimization process. In the objective function, f(x), x is a vector variable of 
the parameters and initial conditions used in the SIRD model and λ is a scaling factor intended to compensate 
for the general disparity in the magnitude of cases compared to deaths. Model parameters include the transmis-
sion, recovery, and mortality rate constants while initial conditions include the initial susceptible, infected, and 
recovered populations.

(2)min�f (x)�2 = min
[

(Cd − Cm(x))
2
+ �(Dd − Dm(x))

2
]

Figure 2.  Peak fits for national daily cases and deaths reported from the second wave of the COVID-19 
pandemic: (A) Israel daily cases, (B) Israel daily deaths, (C) Canada daily cases, (D) Canada daily deaths, (E) 
Germany daily cases, and (F) Germany daily deaths.
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For simplicity, we constrained initial recovered populations to zero and kept initial infected populations 
arbitrarily low compared to their corresponding initial susceptible populations (i.e., a ratio of approximately 
1:100,000 infected to susceptible individuals). The initial susceptible population of each peak pair model was 
scaled proportionally to the relative area occupied by its death peak as mortality was assumed to be a more 
reliable indicator of disease prevalence than cases due to variability in testing rates within and across regions of 
interest throughout the  pandemic32.

Each pair of modelled case-death peaks represents a unique SIRD simulation generated from a single set of 
optimized parameter values (i.e., β, γ, and μ), which ensures that corresponding case-death data for each isolated 
peak pair is satisfied under the same epidemiological conditions. Model parameter values of different peak pairs 
are independent of one another. During the simulation process, modelled peaks are also temporally shifted to be 
aligned with the time series data and ultimately result in a purely mathematical recreation of the original time 
series trends as illustrated in Fig. 1H.

Results
Peak analysis. Nationally reported data from the second waves of the COVID-19 pandemic in Israel, Can-
ada, and Germany were analyzed using the presented peak deconvolution and SIRD modelling methodology 
to investigate the relationship between CDL and other epidemiological parameters shaping these disease land-
scapes. Daily case and death trends for each country were fit with 6 peaks as shown in Fig. 2. While the scale of 
the x-axes is the same for each of the subplots, Israel’s second wave started approximately 100 days before those 
of Canada and Germany.

The durations of the second waves of cases and deaths, which were calculated as the number of days between 
the centers of the two peaks flanking each fit (i.e., peaks 1 and 6), were between 110 and 115 days for all three 
countries. The consistency of the second wave durations across these countries is suggestive of an epidemiologi-
cally invariant phenomenon underlying these transient surges in the spread of COVID-19. Despite this similarity, 
the deconvolved case and death trends shown in Fig. 2 depict a unique disease landscape for each country within 
each of their second waves. The surge in Israel’s daily cases shown in Fig. 2A has a backloaded bimodal distribu-
tion, whereas Canada’s cases (Fig. 2C) increase steadily; both of which are distinct from Germany’s sudden and 
relatively sustained spike in daily cases (Fig. 2E). As expected, surges in daily deaths shown in Fig. 2B,D,F lag 
behind their respective surges in daily cases and also bare shaped-based resemblances to them.

The similarity between the respective trends in second wave cases and deaths was confirmed and compared 
by calculating the Pearson correlation coefficients and dynamic time warping (DTW) minimum distances for 
each of the pairs of case-death time series shown in Table 1. These similarity measures were calculated using inde-
pendently normalized case and death trends, which were temporally shifted to maximize their cross-correlation 
functions. The Pearson correlation coefficients for each country are greater than 0.95, which indicates a strongly 
positive correlation between the national case and death trends of each country. The similarity between respec-
tive trends confirms a level of consistency between the reporting of case and death data within each of these 
countries required to fit and model the same number of analogous case-death peaks in the analyses presented. 
Additionally, the Pearson correlation coefficients and DTW minimum distances both show that Canada’s case-
death trends are most similar, followed by those of Israel and then Germany.

Model validation. To validate the SIRD model, we first calculated and compared the adjusted case fatality 
rate (aCFR) for each of the deconvolved and modelled peak pairs. CFR is defined as the ratio of deaths to cases 
over a specified period of time while aCFR accounts for CDL and is defined as the ratio of deaths to cases where 
the deaths are temporally offset by their respective latency. This epidemiological measure is generally reported as 
a percentage, where larger percentages are indicative of more severe disease outcomes. The majority of nationally 
reported CFRs for COVID-19 based on aggregate data range between 0.5–5.0%: Israel reporting 0.6%, Canada 
1.7%, and Germany 2.2%, as of October 2021. For the deconvolved peak pairs, aCFRs were calculated by divid-
ing the area under each death peak by that of its corresponding case peak. The corresponding rates for each 
modelled peak pair were similarly calculated using their respective SIRD model parameters as follows:

here in addition to the rate constants, β, I, and μ, introduced in Eq. (1), S0 is the initial susceptible population 
for each modelled peak pair. Figure 3 provides a comparison of the reported and modelled aCFRs within and 
between each country. As expected, the plot shows a strong linear correlation  (R2 greater than 0.99) with an 
equal proportionality (slope of 1.0), which demonstrates that the aCFRs calculated for each of the isolated peak 

(3)Modelled aCFR =
µI

βIS
≈

µ

βS0
where I ≪ S

Table 1.  Correlation between the deconvoluted trends in daily cases and deaths in Israel, Canada, and 
Germany during the second wave of the COVID-19 pandemic.

Country Pearson correlation coefficient DTW minimum distance

Israel 0.977 1.332

Canada 0.991 1.173

Germany 0.961 1.946
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pairs are closely and consistently approximated by their respective SIRD model parameters. Figure 3 also shows 
a clear separation between the reported second wave disease landscapes of each of these countries, where Israel 
has the lowest aCFRs on average, followed by Canada, and then Germany. Moreover, the variation in aCFRs 
between peak pairs from the same country highlights the potential for peak deconvolution methodologies to 
identify increasingly granular features of these disease landscapes.

Case‑death latency. While aCFRs provide an overview of these disease landscapes, studying their under-
lying infection and death rates enables a deeper understanding of the epidemiological parameters most heavily 
influencing each country’s pandemic response. Figure 4 shows the modeled infection, death, and aCFRs versus 
CDLs for each of the isolated peak pairs for Israel, Canada, and Germany. The plot of the recovery rates versus 
latencies is not shown as it closely resembled that of the infection rates shown in Fig. 4A, given that more than 
95% of reported cases led to non-fatal disease outcomes across all three countries. In Fig. 4, peak pairs—each 
represented by an individual data point—are uniquely defined within each plot and clustered by country, which 
illustrates the dynamic variability of these disease landscapes even within a single wave of the COVID-19 pan-
demic. In Germany, such time dependent variations in aCFRs during the second wave outbreak have been linked 
to changes in the age distribution of confirmed  cases33.

Figure 3.  Reported peak-by-peak aCFRs compared to aCFRs calculated from SIRD model parameters in Israel, 
Canada, and Germany during the second wave of the COVID-19 pandemic.

Figure 4.  CDL compared to modelled infection rates (A), death rates (B), and aCFRs (C), in Israel, Canada, 
and Germany during the second wave of the COVID-19 pandemic.
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Between countries, death rates (Fig. 4B) varied significantly more than infection rates (Fig. 4A). Based on the 
weighted average rates for each country reported in Table 2, national death rates showed a 76% relative standard 
deviation (RSD), whereas infection rates, which showed an 18% RSD, were relatively constant. These observa-
tions indicate that death rates disproportionately impacted the magnitude of aCFRs compared to infection rates 
during the second wave of the COVID-19 pandemic in Israel, Canada, and Germany. They also suggest that the 
risk of COVID-19 infection was relatively independent of country and time considering that all three countries 
reported similar testing rates per capita during their respective second waves with an average of 2.8 ± 0.6 daily 
new tests per 1000  people34.

Studying case death latency provided further segmentation of these epidemiological parameters by country. 
For the three countries presented, we observed that the average death rates and aCFRs were directly proportional 
to CDL. In particular, the average aCFRs showed a strong linear correlation  (R2 = 0.91) to the latencies reported 
in Table 2, which is also illustrated in Fig. 4C. Overall, this trend is suggestive of a more complex relationship 
between disease severity and the temporal dynamics of disease progression and reporting both at an individual 
and societal level, which needs to be considered when comparing aCFRs across multiple countries.

Discussion
To further investigate the strongly positive correlation between CDL and aCFR across Israel, Canada, and Ger-
many during the second wave of the COVID-19 pandemic, multiple underlying factors must be considered. 
One of the main factors governing the trends in the disease landscapes across these three countries are the gov-
ernments  themselves35. The governments of Israel, Canada, and Germany each embody unique administrative 
structures, which influence the unity of their pandemic responses at local, state, and federal levels. Based on our 
analyses of CDL and aCFR, we consider how governments with increasingly decentralized and codependent 
administrative structures may be more likely to experience worse disease outcomes due to a lack of decisive 
policy making and timely access to systematic healthcare data.

The role of government in pandemic preparedness and responsiveness has been shown to impact disease 
landscapes; for example, with government effectiveness being negatively associated with COVID-19  mortality36. 
Although government effectiveness is quantified as a Worldwide Governance Indicator (WGI)37, it considers the 
quality of government services beyond those related to public health and is based on aggregate data reported on 
a yearly basis. These limitations make it difficult to evaluate the impact of government interventions and coun-
termeasures at critical transient moments throughout the COVID-19 pandemic (e.g., surges in cases and deaths).

While the true degree of government effectiveness in each of these countries is difficult to quantify, broad 
comparisons of their different administrative structures and subsequent pandemic responses—informed by 
factors including population size, distribution, and segmentation—provide insights into the correlation across 
countries between CDLs and aCFRs. For example, Israel has a population of 9 million people living across 6 
districts within a unitary state of centralized federal governance. Under this government, laws and public health 
policies are exclusively implemented at the federal level (e.g., countrywide lockdowns). During the second wave 
of the pandemic, Israel opted to decentralize the management of COVID-19 to the country’s four universal 
health plans, which oversee the administration of primary care services such as testing and patient  education38, 
and municipalities had the option to implement additional health measures based on a classification system of 
local disease severity set forth by Israel’s Ministry of  Health39. However, these health plans ultimately belong to 
a system of direct oversight by the State, which resulted in a nationally homogeneous second wave pandemic 
response and lower CDLs as well as aCFRs in Israel compared to those of Canada and Germany.

Canada and Germany are both governed as federations, which operate on a spectrum of shared power dis-
tributed between state and federal levels. In Canada, which has a population of 38 million people living across 10 
provinces and 3 territories, neither provincial governance nor federal jurisdiction are subordinate to the other. 
Instead, Canada’s provincial and federal governments act autonomously to exercise their respective constitu-
tional responsibilities and only coordinate policies through voluntary negotiations where there is mutual inter-
est in intergovernmental  collaboration40. Based on this system of governance, the early stages of the pandemic 
in Canada saw mask mandates and regional lockdowns implemented at the provincial level while the federal 
government maintained national border closures as well as international travel restrictions including manda-
tory quarantining for return  travellers41,42. Canada’s heterogeneous second wave pandemic response, which was 
highlighted by provincial autonomy and cooperative national decision making, led to moderate aCFRs with the 
largest variation in CDLs compared to Israel and Germany.

Germany, which has a population of 83 million people living across 16 states (known as Länder), responded in 
much the same way as Canada with the main differences arising from Germany’s consensus-based federal system. 
With lawmaking abilities predominantly resting in the states’ hands and requiring unanimity from state  leaders40, 
Germany’s second wave pandemic response was guided by fragmented governance and fractious federal-state 

Table 2.  Weighted averages of CDLs, infection rates, death rates, and aCFRs calculated from peak fits and 
SIRD model parameters in Israel, Canada, and Germany during the second wave of the COVID-19 pandemic.

Country CDL (days) Infection rate Death rate aCFR (%)

Israel 14.631 1.791 0.013 0.661

Canada 21.997 1.404 0.026 1.776

Germany 23.827 2.024 0.062 2.801
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relations. Despite the implementation of delayed and compromising nationwide lockdowns, rules around local 
social restrictions, face masks, and other public health policies varied across each Länder43. The decentralized 
healthcare systems of Germany’s states have presented a heterogeneous response throughout the pandemic, which 
has ultimately resulted in substantial differences in disease landscapes across the country, especially during the 
second wave of the  pandemic44. Of the three countries presented, Germany showed the largest CDLs and aCFRs 
during their second wave. However, the range of CDLs in Germany’s second wave (21.6–25.4 days) was smaller 
than that of Canada’s (17.4–25.9 days), which may reflect Germany’s more unified response across Länder.

Decentralized governments, such as the federal systems in Canada and Germany, tend to exhibit patchwork 
responses to large scale public health  outbreaks45. Non-standardized disease reporting across these heterogeneous 
policy and data collection landscapes often leads to a lack of timely and systematic healthcare data, which can 
hamper pandemic  responsiveness43. In Germany, for example, delays in registered COVID-19 deaths (i.e., from 
the date of death to date of publication) of one to three weeks were common throughout the second wave of the 
 pandemic19. Overall, the decentralization of COVID-19 management may be a contributing factor to the higher 
CDLs and aCFRs observed during the second waves of the pandemic in Canada and Germany compared to Israel.

For Germany, the codependency of state governments to enact policies at a national level may have also 
contributed to the country having the highest CDLs and aCFRs of the three countries analyzed. However, timely 
pandemic responses are important to smaller unified governments. For example, Israel’s more severe second 
wave has been attributed to delayed government action during the early weeks of the country’s second wave 
 outbreak46. Ultimately, unified governments and healthcare networks are more likely to effectively respond to 
emerging outbreaks and report on them in a way that reflects their true disease landscapes, whereas decentralized 
networks experience greater latencies, which are more prone to underestimates in disease severity and costly 
delays in implementing public health interventions and countermeasures.

While administration and governance are overarching factors which have undoubtedly contributed to the 
progression of the pandemic, CDLs and aCFRs are also influenced by other confounding factors, especially at 
subnational levels. Such factors may include the emergence of different variants of concern throughout the second 
wave of the pandemic, which are associated with a higher risk of mortality compared to earlier variants for cases 
running longer clinical courses (i.e., more than 2 weeks since diagnosis)47. Population level factors such as age 
demographics are also important to consider, as higher case fatality rates are disproportionately observed among 
older  populations48 while the relationship between age and CDL is relatively  unexplored49. Other socioeconomic 
factors such as access to healthcare resources and GDP per capita also play a significant role in shaping these 
disease  landscapes50. These additional factors and determinants of disease are areas of interest for future work, 
especially as relevant stratified data for each of these considerations continues to become more available.

As the pandemic progresses, new types of data also become available, allowing for further analyses of 
emerging waves. The methodologies introduced in this paper could be adapted to analyze subsequent waves of 
COVID-19 by updating the SIRD model to account for new types of data representative of additional model 
compartments. As an example, analyses of third wave data could provide unique insights on the early impacts 
of vaccinations, which could be studied alongside cases and deaths by adding model compartments that account 
for vaccinal and waning  immunities3. Apart from updating the SIRD model to reflect relevant data and disease 
dynamics, the presented approach of epidemiological feature detection is broadly applicable to any disease 
landscape for which there is sufficient time series data to deconstruct into constituent peaks.

Furthermore, analyzing additional regions at various scales would allow for more conclusive findings to be 
drawn regarding the methodology presented here. Analyzing and comparing smaller regions, such as cities, 
provinces, or states, could provide more detailed insights into the spatiotemporal characteristics of disease pro-
gression, such as when individuals travel from one homogenous region to another. These analyses could addi-
tionally be used to explore temporal features of disease landscapes previously studied using mobility networks 
and metapopulation  approaches51,52. Ultimately, the versatility of the epidemiological feature detection method 
presented here makes it applicable to a wide variety of applications within epidemiology.

Conclusions
In this paper, we introduced and applied a novel latent mixture approach, which we coin epidemiological feature 
detection, to analyze the second wave of the COVID-19 pandemic in Israel, Canada, and Germany. Applying this 
approach, we used peak deconvolution methods to extract and relate distinct and localized features from trends 
in daily cases and deaths, and we further characterized these features using a SIRD model of disease transmission 
to quantify spatiotemporal variations in epidemiological parameters including infection, death, and recovery 
rates. We found that the average death rate across all three countries varied more than 4 times as much compared 
to the average infection rate, which suggests that higher death rates, as opposed to lower infection rates, are the 
main drivers of increases in adjusted case fatality rates. Additionally, we found a strongly positive correlation 
 (R2 = 0.91) between average adjusted case fatality rate and the lag time between reported cases and deaths of 
isolated features, which we term case-death latency. Of the three countries presented, Israel showed the lowest 
average case-death latency and adjusted case fatality rate (14.6 days and 0.7%), followed by Canada (22.0 days and 
1.8%), and Germany (23.8 days and 2.8%). We further discuss this trend in the context of increasingly decentral-
ized governments and administrative structures in these respective countries. We highlight the importance of 
cooperative decision making and timely access to systematic healthcare data for effective responses to emerging 
public health outbreaks. Overall, this work emphasizes the need for new empirical approaches to complement 
ongoing pandemic scenario planning initiatives and illustrates the potential for epidemiological feature detection 
to improve health security and pandemics preparedness for COVID-19 and beyond.
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Data availability
The COVID-19 case and death data used in this paper can be downloaded from the John Hopkins Coronavi-
rus Resource Center’s (CRC) open access database. The code and data used to execute our novel approach to 
epidemiological feature detection, which is outlined in Fig. 1 and shown in Figs. 3 and 4, will be available for 
download from GitHub. Peak fits shown in Fig. 2 were generated using Fityk, an open-source curve fitting and 
data analysis software and will be available for download from GitHub.
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