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Symplectic superposition solutions 
for free in‑plane vibration 
of orthotropic rectangular plates 
with general boundary conditions
Zhaoyang Hu 1,2, Jingyu Du 1, Mingfeng Liu 1, Yihao Li 1, Zixuan Wang 1, Xinran Zheng 1, 
Tinh Quoc Bui 3,4 & Rui Li 1*

This work reports new analytic free in-plane vibration solutions for orthotropic non-Lévy-type 
rectangular plates, i.e., those without two opposite edges simply supported, by the symplectic 
superposition method (SSM), which has never been applied to in-plane elasticity problems in any 
existing works. Such analytic solutions are not accessible through conventional analytic methods as 
seeking analytic solutions that meet both the governing partial differential equations and various 
non-Lévy-type boundary conditions is an acknowledged challenge in mechanical analysis of plates. 
The clamped and free plates are considered as two most representative cases of non-Lévy-type plates. 
The SSM is implemented in the Hamiltonian system-based symplectic space, where the separation 
of variables and the symplectic eigen expansion prove to be well-grounded. These two mathematical 
treatments are adopted to first gain the analytic solutions of two elementary problems. The final 
analytic free in-plane vibration solutions are obtained by superposition of the two elementary 
problems. Comprehensive new natural frequencies and vibration modes are studied and validated 
by reference solutions from the finite element method or other approaches. The rigorous solution 
procedure, fast convergence, and highly accurate results render the present framework capable of 
serving as benchmarks for future comparison and applicable to analytic investigation of more plate 
problems.

Plate structures are widely used as fundamental engineering components in broad engineering fields including 
mechanical, aerospace, civil, and acoustical engineering. To realize structural safety designs, it is of significance 
to comprehensively investigate different dynamic behaviors of plates. During the last few decades, free vibration 
problems of plates have attracted considerable attention among researchers, and their efforts mainly focus on 
transverse vibration because transverse vibration corresponds to lower natural frequencies and is thus more 
likely to be excited. However, in-plane vibration does take place in some circumstances such as energy and sound 
transmission in build-up structures1,2, which demands further studies on the topic.

To provide a concise acquaintance of the progress in the field, representative works on free in-plane vibration 
of plates are reviewed. Bardell et al.3 utilized the Rayleigh–Ritz method to analyze free in-plane vibration of 
isotropic rectangular plates with a variety of different boundary conditions, which might be the first systematic 
investigation on the topic and hence provides important benchmarks for subsequent studies. Gorman4,5 employed 
the semi-inverse superposition method for a series of free in-plane vibration analyses, including isotropic and 
orthotropic rectangular plates. Du et al.6 investigated in-plane vibration of isotropic rectangular plates with 
elastically restrained edges via the improved Fourier series method. Using the same method, Zhang et al.7 studied 
in-plane vibration of orthotropic rectangular plates. Xing and Liu8,9 utilized the direct separation of variables 
to derive solutions for free in-plane vibration of isotropic and orthotropic rectangular plates with two opposite 
edges simply supported. Similarly, Wang et al.10 employed the iterative separation of variables to study free 
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in-plane vibration of rectangular plates with homogeneous boundary conditions. With the aid of the separation 
of variables and hyperbolic function expansions, Deutsch and Eisenberger11 proposed analytic solutions on the 
free in-plane vibration of orthotropic square plates. Dozio12 presented a Ritz method with a set of trigonometric 
functions to investigate in-plane vibration of rectangular plates with non-uniform elastically restrained edges. 
Based on the same method, Dozio13 also investigated free in-plane vibration of single-layer and symmetrically 
laminated rectangular composite plates. Liu and Banerjee14 adopted the spectral dynamic stiffness method for 
in-plane vibration problems under plane stress and plane strain conditions, respectively. Liu et al.15 carried out 
free in-plane vibration analyses of plates in curvilinear domains by the differential quadrature hierarchical finite 
element method. Liu et al.16 investigated free in-plane vibration of arbitrarily shaped straight-sided quadrilateral 
and triangular plates based on the improved Fourier series method together with the coordinate transformation.

From the open literature, analytic solutions for free in-plane vibration of orthotropic rectangular plates with 
non-Lévy-type boundary conditions, i.e., those without two opposite edges simply supported, are still quite 
deficient, which motivates the present work. It is noteworthy that a symplectic superposition method (SSM) has 
been developed recently to deal with plate and shell problems involving out-of-plane deformation, including 
bending17,18, buckling19,20, and transverse vibration21–23. Such an analytic method is developed based on an elegant 
integration of the superposition technique and the symplectic approach24,25; it is not conducted in the Euclidean 
space but in the symplectic space where several important mathematical treatments, such as the separation of 
variables and the symplectic eigen expansion, prove to be valid. It is important to stress out that the SSM has 
never been applied to in-plane elasticity problems in any existing works.

This work aims at extending the SSM to study free in-plane vibration of non-Lévy-type rectangular plates, 
filling the gap in the aforementioned research field. The main novelty lies on yielding new analytic free in-plane 
vibration solutions by a rational and rigorous solution procedure of the SSM, without any assumption of solu-
tion forms, which distinguishes it from the conventional semi-inverse analytic methods and makes it possible 
to find analytic solutions that can satisfy both the governing partial differential equations and non-Lévy-type 
boundary conditions. In particular, two representative cases are considered, i.e., clamped plates and free plates. 
Comprehensive new analytic vibration results are presented including natural frequencies and vibration modes. 
Without loss of generality, both isotropic and orthotropic cases are taken into account. The new analytic results 
presented in this paper are well validated by reference solutions derived from the finite element method (FEM) 
through ABAQUS26 or other methods available in the open literature. This work not only provides benchmarks 
for free in-plane vibration studies but also extends the applicability of the SSM.

Methods
Governing equation for free in‑plane vibration in the Hamiltonian system.  The equilibrium 
equations for free in-plane vibration in the rectangular coordinate system oxy can be written as

where u and v are the in-plane modal displacements in x and y directions, respectively; σx and σy are the in-
plane normal stresses in x and y directions, respectively; τxy is the shear stress; ρ is the mass density; and ω is 
the natural frequency.

Without loss of generality, we first focus on orthotropic plates, and thus the in-plane normal and shear stresses 
in Eq. (1) are expressed as

where A11 = Ex
/(

1− νxνy
)

 ,  A12 = νxEx
/(

1− νxνy
)

 ,  A21 = νyEy
/(

1− νxνy
)

 ,  A22 = Ey
/(

1− νxνy
)

 , 
A66 = Gxy ; Ex and Ey are Young’s moduli in x and y directions, respectively; νx and νy are Poisson’s ratios; and Gxy 
is the shear modulus as expressed by Gxy =

√

ExEy
/[

2
(

1+√
νxνy

)]

 . Note that the Betti principle νxEx = νyEy 
gives A12 = A21.

From the last two equations of Eq. (2), we respectively have

and

From the first equation of Eq. (1), we have
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From the second equation of Eq. (1), together with the first equation of Eq. (2), yield

From Eqs. (3)–(6), the following matrix equation is obtained:

where Z =
[

v, u, σy , τxy
]T , H =

[

F G

Q −FT

]

 , with F =
[

0 −
(

A21

/

A22

)

∂
/

∂x
−∂

/

∂x 0

]

,G =
[

1
/

A22 0

0 1
/

A66

]

 , and 

Q =
[

−ρω2 0

0 −ρω2 +
(

A12A21

/

A22 − A11

)

∂2
/

∂x2

]

 . The Hamiltonian operator matrix H meets HT = JHJ , 

with J =
[

0 I2
−I2 0

]

 , where I2 is the 2× 2 unit matrix24. Thus, Eq. (7) serves as the governing equation for free 

in-plane vibration in the Hamiltonian system.

New analytic free in‑plane vibration solutions of rectangular plates.  For convenience, “clamped” 
and “free” boundary conditions are denoted by their abbreviations “C” and “F”, respectively. Two kinds of “simply 
supported” boundary conditions mentioned in Refs.8,9 are also adopted, which are denoted by “SS1” and “SS2”, 
respectively. In particular, at x = 0 and x = a , we have u = 0 and v = 0 for C edges, σx = 0 and τxy = 0 for F 
edges, v = 0 and σx = 0 for SS1 edges, and u = 0 and τxy = 0 for SS2 edges; at y = 0 and y = b , we have u = 0 
and v = 0 for C edges, σy = 0 and τxy = 0 for F edges, u = 0 and σy = 0 for SS1 edges, and v = 0 and τxy = 0 
for SS2 edges.

With the Hamiltonian system-based governing equation, i.e., Eq. (7), we implement the SSM herein to obtain 
new analytic free in-plane vibration solutions of C–C–C–C and F–F–F–F rectangular plates. In Section "Basic 
symplectic analytic solutions of two kinds of elementary problems", the basic analytic solutions of the elementary 
problems are first gained based on the mathematical techniques in the symplectic space. Then, by superposi-
tion of the elementary problems’ solutions, the final analytic free in-plane vibration solutions of C–C–C–C and 
F–F–F–F plates are given in Sections "Symplectic superposition solutions of C–C–C–C plates" and "Symplectic 
superposition solutions of F–F–F–F plates", respectively.

Basic symplectic analytic solutions of two kinds of elementary problems.  The separation of variables, which has 
been proven to be valid in the symplectic space24, is utilized to solve Eq. (7), leading to

where µ is the eigenvalue and X(x)=
[

v(x), u(x), σy(x), τxy(x)
]T is the corresponding eigenvector. Equating the 

characteristic equation of Eq. (8) to zero gives the eigensolution of X(x)27:

where �1 and �2 are expressed as

with γ1 = (1+ η1)R
2 +

(

1+ η1η2 − η23
)

µ2 , γ2 = 4η1
(

R2 + µ2
)(

R2 + η2µ
2
)

 , η1 = A11

/

A66 , η2 = A22

/

A66 , 
η3 = (A12 + A66)

/

A66 , and R = ω

√

ρ
/

A66 . Substituting Eq. (10) into Eq. (8) yields the relationships among 
the constant coefficients A1∼4 , B1∼4 , C1∼4 , and D1∼4 : A2 = −k1C1 , B2 = −k2D1 , C2 = −k1A1 , D2 = −k2B1 , 
A3 = k3A1 , B3 = k4B1 , C3 = k3C1 , D3 = k4D1 , A4 = −k5C1 , B4 = −k6D1 , C4 = −k5A1 , and D4 = −k6B1 , such 
that only A1 , B1 , C1 , and D1 are independent, which are to be determined by the boundary conditions at x = 0 
and x = a . Detailed expressions of k1∼6 are shown in Appendix 1.
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To obtain the analytic free in-plane vibration solutions of C–C–C–C and F–F–F–F plates, two kinds of 
elementary problems shall be analytically solved, as elaborated in the following.

Plate with two opposite SS1 edges.  The boundary conditions of a plate with the pair of parallel SS1 edges at 
x = 0 and x = a are written as

Substituting Eq.  (10) and the first equation of Eq.  (2) into Eq.  (12), for a non-trivial solution, we have 
sinh (�1a) sinh (�2a) = 0 , which gives �1 = �2 = ±αnI , with αn = nπ /a ( n = 1, 2, 3, . . . ) and I being the imagi-
nary unit. Under Eq. (11), the eigenvalues are obtained as

where γ3 = (1+ η2)R
2 −

(

1+ η1η2 − η23
)

α2
n and γ4 = 4η2

(

α2
n − R2

)(

η1α
2
n − R2

)

 , and their corresponding 
eigenvectors are

There also exists a special case when n = 0 , which corresponds to the constant eigenvalues µ′
1 = IR 

and µ′
2 = −IR ,  and the constant eigenvectors X′

1(x) =
[

0, 1, 0, k5
(

µ′
1

)/

k1
(

µ′
1

)]T
cos (αnx) and 

X′
2(x) =

[

0, 1, 0, k5
(

µ′
2

)/

k1
(

µ′
2

)]T
cos (αnx) . Based on the symplectic eigen expansion24, the state vector Z 

is expressed as

where f ′1 , f ′2 , f1n , f2n , f3n , and f4n are the constant coefficients to be determined by the boundary conditions 
imposed at y = 0 and y = b.

Plate with two opposite SS2 edges.  The boundary conditions of a plate with the pair of parallel SS2 edges at 
x = 0 and x = a are written as

Substituting Eq. (10) into Eq. (16), for a nontrivial solution, we have sinh (�1a) sinh (�2a) = 0 , which gives 
�1 = �2 = ±αnI . The eigenvalues are the same as those in Eq. (13) while the corresponding eigenvectors are

Based on the symplectic eigen expansion, the state vector Z is expressed as

It should be noted that Eqs. (15) and (18) serve as the analytic solutions for the free in-plane vibration of 
Lévy-type plates, based on which the frequency results of some representative Lévy-type plates are tabulated in 
Appendix 2.
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Symplectic superposition solutions of C–C–C–C plates.  For a C–C-C–C plate shown in Fig. 1(a), the problem is 
divided into two elementary problems shown in Fig. 1b,c, respectively. In the first elementary problem, the plate 
is treated as an SS2–SS2–SS2–SS2 plate with imposed nonzero shear stresses at y = 0 and y = b , expressed by 
τxy

∣

∣

y=0
=

∑∞
n=1,2,3,··· En sin (αnx) and τxy

∣

∣

y=b
=

∑∞
n=1,2,3,··· Fn sin (αnx) , respectively. In the second elementary 

problem, the plate is also treated as an SS2–SS2–SS2–SS2 plate with imposed nonzero shear stresses at x = 0 and 
x = a , expressed by τxy

∣

∣

x=0
=

∑∞
n=1,2,3,··· Gn sin

(

βny
)

 and τxy
∣

∣

x=a
=

∑∞
n=1,2,3,··· Hn sin

(

βny
)

 , respectively. 
Here, βn = nπ

/

b ; En , Fn , Gn , and Hn are the expansion coefficients. The analytic solutions of the two elementary 
problems are obtained by substituting Eq. (18) into the boundary conditions at y = 0 and y = b of the first ele-
mentary problem and the boundary conditions at x = 0 and x = a of the second elementary problem by aid of 
coordinate exchange, respectively.

For the first elementary problem, the dimensionless modal displacements v1
(

x, y
)

 and u1
(

x, y
)

 are obtained as

and

where x = x/a ,  y = y
/

b ,  φ = b
/

a ,  ε1n = aµ1n ,  ε2n = aµ3n ,  χn = R2a2 + η1n
2π2 ,  ξ1n = χn + ε21n , 

ξ2n = χn + ε22n , En = En
/

A66 , and Fn = Fn
/

A66.
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Figure 1.   Symplectic superposition for free in-plane vibration. C–C–C–C plates: (a) the original problem, (b) 
the first elementary problem, and (c) the second elementary problem. F–F–F–F plates: (d) the original problem, 
(e) the first elementary problem, and (f) the second elementary problem.
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Due to the similarity of two elementary problems for a C–C–C–C plate, using coordinate exchange, i.e., 
exchanging x and y , a and b , and replacing En with Gn , and Fn with Hn , the dimensionless modal displacements 
u2
(

x, y
)

 and v2
(

x, y
)

 can be readily obtained from v1
(

x, y
)

 and u1
(

x, y
)

 , respectively.
For a C–C–C–C plate, zero in-plane modal displacement constraints must be ensured at x = 0 , x = a , y = 0 , 

and y = b , i.e.,

Under Eq. (21), four sets of linear equations are generated. Equating the determinant of the coefficient matrix 
with respect to En , Fn , Gn , and Hn to zero yields nontrivial natural frequencies of a C–C–C–C plate under in-plane 
vibration. Taking a natural frequency back into Eq. (21), En , Fn , Gn , and Hn are given. The corresponding vibration 
modes are obtained by substituting such coefficients into the summation of the in-plane modal displacement 
solutions of the elementary problems.

Symplectic superposition solutions of F–F–F–F plates.  For an F-F-F-F plate shown in Fig. 1d, the problem is 
divided into two elementary problems shown in Fig. 1e,f, respectively. In the first elementary problem, the plate is 
treated as an SS1–SS1–SS1–SS1 plate with imposed nonzero in-plane modal displacements in x direction at y = 0 
and y = b , expressed by u|y=0 =

∑∞
n=0,1,2,··· En cos (αnx) and u|y=b =

∑∞
n=0,1,2,··· Fn cos (αnx) , respectively. In 

the second elementary problem, the plate is also treated as an SS1–SS1–SS1–SS1 plate with imposed nonzero 
in-plane modal displacements in y direction at x = 0 and x = a , expressed by v|x=0 =

∑∞
n=0,1,2,··· Gn cos

(

βny
)

 
and v|x=a =

∑∞
n=0,1,2,··· Hn cos

(

βny
)

 , respectively. The analytic solutions of the two elementary problems 
are obtained by substituting Eq. (15) into the boundary conditions at y = 0 and y = b of the first elementary 
problem and the boundary conditions at x = 0 and x = a of the second elementary problem by aid of coordinate 
exchange, respectively.

For the first elementary problem, the dimensionless modal displacements v1
(

x, y
)

 and u1
(

x, y
)

 are obtained as

and

where ε0 = aµ′
1 , Ẽ0 = E0

/

a , F̃0 = F0
/

a , Ẽn = En
/

a , and F̃n = Fn
/

a.
Due to the similarity of two elementary problems for an F-F-F-F plate, using coordinate exchange, according 

to the same rules as presented in Section "Symplectic superposition solutions of C–C–C–C plates", the dimen-
sionless modal displacements u2

(

x, y
)

 and v2
(

x, y
)

 can be readily obtained from v1
(

x, y
)

 and u1
(

x, y
)

 , respectively.
For an F-F-F-F plate, zero in-plane shear stress constraints must be ensured at x = 0 , x = a , y = 0 , and 

y = b , i.e.,

Under Eq. (24), based on the same procedure as presented in Section "Symplectic superposition solutions of 
C–C–C–C plates", the natural frequencies and the corresponding vibration modes of the F–F–F–F plate under 
in-plane vibration are obtained.

(21)

2
∑

i=1

vi|x=0,a = 0

2
∑

i=1

ui|y=0,b = 0

(22)

v1
(

x, y
)

a
=

∞
∑

n=1,2,3,···

sin (nπx)

nπη2η3ε1nε2n(ξ1n − ξ2n)

×
{

Ẽn
{

ε1nξ2n
[

η2ξ1n −
(

η23 − η3
)

n2π2
]

csch(φε2n) cosh
[

φε2n
(

y − 1
)]

−ε2nξ1n
[

η2ξ2n −
(

η23 − η3
)

n2π2
]

csch(φε1n) cosh
[

φε1n
(

y − 1
)]}

+F̃n
{

ε2nξ1n
[

η2ξ2n −
(

η23 − η3
)

n2π2
]

csch(φε1n) cosh
(

φε1ny
)

−ε1nξ2n
[

η2ξ1n −
(

η23 − η3
)

n2π2
]

csch(φε2n) cosh
(

φε2ny
)}}

(23)

u1
(

x, y
)

a
= F̃0csch(φε0) sinh

(

φε0y
)

− Ẽ0csch(φε0) sinh
[

φε0
(

y − 1
)]

+
∞
∑

n=1,2,3,...

cos (nπx)

η2(ξ1n − ξ2n)

×
{

Ẽn
{[

η2ξ1n −
(

η23 − η3
)

n2π2
]

csch(φε2n) sinh
[

φε2n
(

y − 1
)]

−
[

η2ξ2n −
(

η23 − η3
)

n2π2
]

csch(φε1n) sinh
[

φε1n
(

y − 1
)]}

+F̃n
{

ε1nξ2n
[

η2ξ1n −
(

η23 − η3
)

n2π2
]

csch(φε2n) sinh
(

φε2ny
)

−ε2nξ1n
[

η2ξ2n −
(

η23 − η3
)

n2π2
]

csch(φε1n) sinh
(

φε1ny
)}}

(24)

2
∑

i=1

τ ixy

∣

∣

∣

x=0,a
= 0

2
∑

i=1

τ ixy

∣

∣

∣

y=0,b
= 0
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Results
Comprehensive new natural frequencies and vibration modes.  In this section, comprehensive new 
natural frequencies and vibration modes of isotropic/orthotropic C–C–C–C and F–F–F–F plates are presented 
so as to provide benchmarks for future comparison. For orthotropic cases, Ey

/

Ex = 2.5 and νxνy = (0.3)2 , and 
the dimensionless frequency parameter is defined as �ort = ωa

√

ρ
(

1− νxνy
)/

Ex  ; for the isotropic cases, 
ν = 0.3 and the dimensionless frequency parameter is defined as �iso = ωb

√

ρ
(

1− ν2
)/

E.
Convergence studies for orthotropic C–C–C–C and F–F–F–F square plates are presented in Table 1. Through 

verification, 25 series terms ensure the convergence to the last digit of five significant figures of all the results 
tabulated in this work. In Table 2, the first ten �ort of orthotropic C–C–C–C and F–F–F–F plates are respectively 
provided, each with b

/

a =0.5 , 1, 1.5, and 2. The solutions of orthotropic C–C–C–C plates are validated by the 
FEM through ABAQUS26 with the mesh size being 

(

1
/

400
)

a , the improved Fourier series method in Ref.7, 
and the Ritz method in Ref.13, while the solutions of orthotropic F–F–F–F plates are validated by the FEM and 
the Ritz method in Ref.13. In addition, in Table 3, the first ten �iso of isotropic C–C–C–C and F–F–F–F plates 
are respectively provided, each with a

/

b =0.5 , 1, 1.5, and 2. Such solutions are validated by the FEM, the 
Rayleigh–Ritz method in Ref.3, the improved Fourier series method in Ref.6, the iterative separation of variables 
in Ref.10, and the function expansion-based method in Ref.11. The first ten vibration modes of orthotropic 
C–C–C–C and F–F–F–F square plates are plotted in Fig. 2, and those of isotropic C–C–C–C and F–F–F–F square 
plates are plotted in Fig. 3. Such vibration modes have been validated by those obtained by the Rayleigh–Ritz 
method in Ref.3 and the iterative separation of variables in Ref.10.

With the accurate analytic solutions at hand, quantitative parametric analyses are readily conducted. 
Figure 4a,b plot the fundamental �ort versus b

/

a , ranging from 0.5 to 2, for orthotropic C–C–C–C and F–F–F–F 
plates, respectively, with scattered FEM results, indicated by the circles, added for comparison. The fundamental 
�ort of orthotropic C–C–C–C plates decrease with the increase of b

/

a . For orthotropic F–F–F–F plates, however, 
it is found that the fundamental �ort increase with the increase of b

/

a at first and then decrease, with the 
maximum achieved at b

/

a = 1.2 as indicated by the red dot. Moreover, Fig. 5a, b illustrate the fundamental 
�ort versus Ey

/

Ex , ranging from 0.5 to 2.5, for orthotropic C–C–C–C and F–F–F–F square plates, respectively, 
where the FEM results are also added for comparison. For orthotropic C–C–C–C square plates, it is observed 
that the fundamental �ort increase when Ey

/

Ex becomes larger, but the growth rate has a sudden change after 
Ey
/

Ex = 1 , i.e., the isotropic case. For orthotropic F–F–F–F square plates, the fundamental �ort also increase 
with the increase of Ey

/

Ex ; nevertheless, the growth rate does not vary rapidly at Ey
/

Ex = 1 . Besides the 
present parametric analyses, the effects of any other parameters of interest on in-plane vibration of plates can be 
investigated with the obtained analytic solutions.

Concluding remarks
In this paper, we have presented new analytic free in-plane vibration solutions for isotropic/orthotropic 
C–C–C–C and F–F–F–F plates by extending the SSM that has never been applied to in-plane elasticity problems 
in any existing works. The main solution procedure of the SSM can be summarized as: (1) establishing the 
governing equation in the Hamiltonian system; (2) utilizing the separation of variables and the symplectic 
eigen expansion to yield the analytic solutions of two elementary problems; (3) superposition of the elementary 
problems’ solutions giving the final analytic free in-plane vibration solutions. Such a solution procedure yields the 
analytic solutions that can satisfy both the governing partial differential equations and non-Lévy-type boundary 
conditions for in-plane vibration. Rational and rigorous solution procedure, fast convergence, and high accuracy 

Table 1.   Convergence study of the first ten frequency parameters ( �ort ) of orthotropic square plates with 
Ey
/

Ex = 2.5 and νxνy = (0.3)2. Convergent results are in bold.

Series terms

Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

C–C–C–C

5 3.8310 5.2263 5.2846 6.4378 6.7751 7.0871 7.3748 8.4130 8.7117 8.9167

10 3.8312 5.2264 5.2850 6.4384 6.7759 7.0875 7.3752 8.4147 8.7150 8.9172

15 3.8312 5.2264 5.2850 6.4385 6.7760 7.0875 7.3752 8.4147 8.7151 8.9172

20 3.8312 5.2264 5.2850 6.4385 6.7760 7.0875 7.3752 8.4147 8.7152 8.9173

25 3.8312 5.2264 5.2850 6.4385 6.7761 7.0875 7.3752 8.4147 8.7152 8.9173

30 3.8312 5.2264 5.2850 6.4385 6.7761 7.0875 7.3752 8.4147 8.7152 8.9173

F–F–F–F

5 2.5812 2.9059 2.9250 3.5619 3.7316 4.5985 4.7733 4.9840 5.2318 6.0248

10 2.5811 2.9059 2.9250 3.5618 3.7316 4.5984 4.7733 4.9840 5.2317 6.0234

15 2.5811 2.9059 2.9250 3.5618 3.7316 4.5983 4.7733 4.9840 5.2317 6.0234

20 2.5811 2.9059 2.9250 3.5618 3.7316 4.5983 4.7733 4.9840 5.2317 6.0234

25 2.5811 2.9059 2.9250 3.5618 3.7316 4.5983 4.7733 4.9840 5.2317 6.0234

30 2.5811 2.9059 2.9250 3.5618 3.7316 4.5983 4.7733 4.9840 5.2317 6.0234
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Table 2.   The first ten frequency parameters ( �ort ) of orthotropic plates with Ey
/

Ex = 2.5 and νxνy = (0.3)2.

b
/

a References

Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

C–C–C–C

0.5

SSM 5.5661 7.6283 9.3270 9.5563 10.137 10.497 10.531 11.936 12.071 12.754

FEM 5.5683 7.6328 9.3420 9.5666 10.148 10.510 10.541 11.952 12.090 12.780

Ref.7 5.5660 7.6304 9.3294 9.5574 10.141 10.499 10.532 11.941 12.078 12.769

Ref.13 5.5660 7.6284 9.3270 9.5564 10.137 10.497 10.531 11.936 12.071 12.754

1

SSM 3.8312 5.2264 5.2850 6.4385 6.7761 7.0875 7.3752 8.4147 8.7152 8.9173

FEM 3.8326 5.2322 5.2875 6.4470 6.7834 7.0996 7.3946 8.4343 8.7351 8.9428

Ref.7 3.8314 5.2280 5.2852 6.4408 6.7772 7.0898 7.3786 8.4190 8.7198 8.9222

Ref.13 3.8312 5.2264 5.2850 6.4384

1.5

SSM 3.4239 3.9382 4.1144 5.2986 5.7013 5.9833 6.3903 6.7086 6.7582 7.4814

FEM 3.4257 3.9400 4.1181 5.3078 5.7106 5.9948 6.4062 6.7298 6.7704 7.4956

Ref.7 3.4240 3.9384 4.1154 5.3010 5.7028 5.9856 6.3928 6.7164 6.7610 7.4846

2

SSM 3.2771 3.3344 3.6674 4.3852 5.1319 5.1520 5.4524 6.0679 6.2422 6.3512

FEM 3.2787 3.3357 3.6700 4.3896 5.1368 5.1609 5.4617 6.0817 6.2584 6.3639

Ref.7 3.2772 3.3346 3.6682 4.3868 5.1338 5.1554 5.4562 6.0704 6.2496 6.3536

Ref.13 3.2770 3.3344 3.6674 4.3852 5.1320 5.1520 5.4524 6.0678 6.2422 6.3512

F–F–F–F

0.5

SSM 2.0293 2.9846 3.7660 5.5983 5.6513 5.8503 7.2524 7.2927 7.7188 7.8381

FEM 2.0298 2.9850 3.7688 5.6041 5.6560 5.8531 7.2614 7.3013 7.7325 7.8487

Ref.13 2.0294 2.9846 3.766 5.5982

1

SSM 2.5811 2.9059 2.9250 3.5618 3.7316 4.5983 4.7733 4.9840 5.2317 6.0234

FEM 2.5829 2.9076 2.9260 3.5652 3.7334 4.6042 4.7777 4.9859 5.2435 6.0334

Ref.13 2.5812 2.9058 2.925 3.5618

1.5
SSM 2.1502 2.4499 2.6934 2.7690 3.0338 3.5638 3.7315 3.8868 4.0018 5.0016

FEM 2.1517 2.4516 2.6944 2.7712 3.0351 3.5652 3.7357 3.8907 4.0100 5.0117

2

SSM 1.4516 2.1543 2.2554 2.8392 2.8482 3.0867 3.1875 3.2193 3.2253 4.0238

FEM 1.4521 2.1557 2.2559 2.8412 2.8498 3.0904 3.1896 3.2210 3.2279 4.0284

Ref.13 1.4516 2.1544 2.2554 2.8392
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Table 3.   The first ten frequency parameters ( �iso ) of isotropic plates with ν = 0.3.

a
/

b References

Modes

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

C–C–C–C

1

SSM 3.5552 3.5552 4.2350 5.1857 5.8586 5.8944 5.8944 6.7077 7.1132 7.1132

FEM 3.5566 3.5566 4.2394 5.1912 5.8676 5.9081 5.9081 6.7168 7.1282 7.1282

Ref.3 3.555 3.555 4.235 5.186 5.859 5.895

Ref.6 3.554 3.554 4.236 5.185 5.859 5.896

Ref.10 3.5588 3.5588 4.2376 5.2293 5.8657 5.9233 5.9233

Ref.11 3.5552 3.5552 4.2350 5.1857 5.8586 5.8944 5.8944 6.7077

1.5

SSM 4.1127 4.9252 5.4025 6.5644 6.6164 6.6164 8.1996 8.3581 8.4290 8.9437

FEM 4.1144 4.9278 5.4085 6.5714 6.6123 6.6269 8.2236 8.3869 8.4451 8.9316

Ref.6 4.112 4.923 5.402 6.564 6.602 6.617

2

SSM 4.7890 6.3786 6.7121 7.0487 7.6083 8.1402 8.9980 9.5156 9.7165 10.601

FEM 4.7908 6.3823 6.7182 7.0532 7.6163 8.1536 9.0122 9.5290 9.7337 10.626

Ref.3 4.789 6.379 6.712 7.049 7.608 8.140

Ref.6 4.788 6.374 6.710 7.048 7.608 8.140

Ref.10 4.7903 6.3872 6.7184 7.0535 7.6310 8.2172 9.0716

F–F–F–F

1

SSM 2.3194 2.4722 2.4722 2.6271 2.9859 3.4505 3.7214 3.7214 4.3009 4.9666

FEM 2.3219 2.4736 2.4736 2.6293 2.9884 3.4537 3.7272 3.7272 4.3133 4.9795

Ref.3 2.321 2.472 2.472 2.628 2.987 3.452

Ref.6 2.321 2.472 2.472 2.629 2.988 3.452

1.5

SSM 2.1964 2.8809 2.9148 3.9375 3.9708 4.3804 4.5286 4.5935 4.7360 6.1404

FEM 2.1976 2.8829 2.9155 3.9403 3.9750 4.3851 4.5325 4.6023 4.7387 5.8893

Ref.6 2.197 2.881 2.915 3.938 3.971 4.380

2

SSM 1.9537 2.9608 3.2671 4.7263 4.7841 5.2045 5.2045 5.3651 6.1466 6.4475

FEM 1.9542 2.9611 3.2694 4.7313 4.7885 5.2090 5.2596 5.3703 6.1506 6.4605

Ref.3 1.954 2.961 3.267 4.726 4.784 5.205

Ref.6 1.954 2.961 3.268 4.725 4.785 5.205

C-C-C-C

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

F-F-F-F

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Figure 2.   The first ten vibration modes of orthotropic square plates with Ey
/

Ex = 2.5 and νxνy = (0.3)2.
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C-C-C-C

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

F-F-F-F

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Figure 3.   The first ten vibration modes of isotropic square plates with ν = 0.3.

Figure 4.   Fundamental frequency parameters ( �ort ) versus b
/

a for (a) orthotropic C–C–C–C plates and (b) 
orthotropic F–F–F–F plates, with Ey

/

Ex = 2.5 and νxνy = (0.3)2.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2601  | https://doi.org/10.1038/s41598-023-29044-7

www.nature.com/scientificreports/

of the proposed SSM-based framework are well validated, indicating the capability of all tabulated results to serve 
as benchmarks for related studies. In the light of the advantages of the SSM-based framework, more analytic 
results of complicated in-plane elasticity analysis can be explored in our future studies.

Data availability
All data generated or analyzed during this study are included in this published article.

Appendix 1: Detailed expressions of k
1∼6

Appendix 2: Frequency results of some representative Lévy‑type plates
In this Appendix, natural frequencies (Table 4) and vibration modes (Figs. 6 and 7) of some representative Lévy-
type plates are presented. By directly adopting the analytic solutions in Eqs. (15) and (18), such frequency results 
are obtained. An interesting phenomenon is also observed in Table 4. The frequency parameters of the second, 
fourth, and fifth vibration modes of the plate with two SS1 opposite edges at x = 0 and x = a and the other two 
edges clamped (SS1–C–SS1–C) are the same as those of the second, third, and fourth vibration modes of the plate 
with two SS2 opposite edges at x = 0 and x = a and the other two edges clamped (SS2–C–SS2–C); those of the 
first, third, and fifth vibration modes of the plate with two SS1 opposite edges at x = 0 and x = a and the other 
two edges free (SS1–F–SS1–F) are the same as those of the first, second, and fourth vibration modes of the plate 
with two SS2 opposite edges at x = 0 and x = a and the other two edges free (SS2–F–SS2–F); those of the first 
and third vibration modes of the SS1–C–SS1–C plate are the same as those of the second and fourth vibration 
modes of the SS1–F–SS1–F plate; the frequency parameter of the first vibration mode of the SS2–C–SS2–C plate 
is the same as that of the third vibration mode of the SS2–F–SS2–F plate.

k1(µ) =
η3�1µ

η1�
2
1 + µ2 + R2

k2(µ) =
η3�2µ

η1�
2
2 + µ2 + R2

k3(µ) = A66[k1�1(1− η3)+ µη2]

k4(µ) = A66[k2�2(1− η3)+ µη2]

k5(µ) = A66(k1µ− �1)

k6(µ) = A66(k2µ− �2)

Figure 5.   Fundamental frequency parameters ( �ort ) versus Ey
/

E
x
 for (a) orthotropic C–C–C–C square plates 

and (b) orthotropic F–F–F–F square plates, with νxνy = (0.3)2.
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