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A new implicit high‑order 
iterative scheme for the numerical 
simulation of the two‑dimensional 
time fractional Cable equation
Muhammad Asim Khan 1*, Norma Alias 1, Ilyas Khan 2, Fouad Mohammad Salama 3* & 
Sayed M. Eldin 4

In this article, we developed a new higher-order implicit finite difference iterative scheme (FDIS) for 
the solution of the two dimension (2-D) time fractional Cable equation (FCE). In the new proposed 
FDIS, the time fractional and space derivatives are discretized using the Caputo fractional derivative 
and fourth-order implicit scheme, respectively. Moreover, the proposed scheme theoretical analysis 
(convergence and stability) is also discussed using the Fourier analysis method. Finally, some 
numerical test problems are presented to show the effectiveness of the proposed method.

In the past few years, the popularity of fractional calculus increased due to its application in various branches of 
science and technology1–5. Many physical problems arise from different fields of sciences are mostly mathemati-
cally model using the fractional partial differential equations (FPDEs). These FPDEs are solved either using 
analytical or numerical methods but due to the complexity of FPDEs mostly it is difficult to solve using analytical 
methods6–10. Therefore, different numerical methods are used to solve these FPDEs e.g., finite difference, finite 
element, finite volume methods6,9,11. In these numerical methods, the finite difference method (FDM) is seen 
more in the literature because it is a simple and explicit method as compared to the other methods, especially 
the higher-order FDMs which converge fast as compared to the standard second-order FDMs.

In this article, the 2D-FCE is analyzed for the numerical solution using the higher-order FDM. The 2D-FCE is

where Caputo fractional derivative is represented by C0 D
γ
t w , (0 < γ < 1) and defined as12

where Ŵ(.) is Gamma function.
The FCE is modeled from Nernst–Planck equation or obtained from relating electrical properties in cell mem-

brane and used for the approximation of complex microscopic motions of ions in nerve cells13. Throughout the 
course of recent years research on neuronal dendrites has increased14 because of the revelation that dendrites are 
profoundly dynamic, with complex electrical and bio-compound flagging relying upon both nearby spine structure 
and density15, and on voltage-gated particle channels16. These methods present challenges to the cable equation17. 
But due to the complexity of FCE various researchers solve FCE using different numerical methods, for instance, 
Liu et al.18 used implicit numerical method having second-order spatial accuracy for one dimensional (1-D) FCE. 
Similarly, Chen et al.19 solved 1-D variable-order FCE using the numerical method with higher-order spatial accu-
racy. Zhang et al.20 computed the numerical solution spline collocation methods for the 2-D FCE. They analyze 
the theoretical analysis (convergence and stability) is discussed using the Fourier analysis method. Furthermore, 
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Balasim and Ali21 solved 2-D FCE using the implicit schemes having the spatial accuracy of second-order. Bhrawy 
and Zaky22 used spectral collocation method for both 1-D and 2-D FCE which is based on shifted Jacobi collocation 
method combined with the Jacobi operational matrix for fractional derivative. Ömer23 discussed the numerical 
solution for 2-D FCE using a meshless numerical method which is based on the hybridization of Gaussian and cubic 
kernels. Moreover, the FCE is solved on both regular and irregular domains. Nasrin and Abbas24 used the collocation 
numerical method for the solution of 1-D FCE where the proposed method is based on the combination of Ber-
noulli polynomials and Sinc functions which reduce the time FCE to the set of algebraic equations. Minghui et al.25 
solved the FCE using local discontinuous Galerkin method in which the fractional time and spatial derivatives are 
discretized using the BDF2 with the L2 formula and local discontinuous Galerkin method, respectively. Ying and 
Lizhen26 used finite difference/spectral method for the numerical solution of generalized FCE in which backward 
difference and the Galerkin spectral methods are used for the time and space derivative, respectively. Also, the 
theoretical analysis (stability and convergence analysis) of proposed method is also analyzed which shows that the 
proposed method is unconditional stable and convergent. Xiaolin and Shuling27 proposed a mesh-less finite point 
method for the solution of FCE, in which moving least squares approximation and mesh-less smoothed gradient 
are combined with the proposed method to increase the rate of accuracy and convergence in space. Moreover the 
theoretical analysis of the proposed method are also discussed. However, the higher order numerical computation-
ally efficient methods for the solution of the FCE are still in their early infancy. Therefore, the main objective of 
this article is to propose an unconditional stable and convergent higher order FDIS for the solution of 2-D FCE.

The content of the article is organized as follows; the proposed implicit numerical scheme development 
is discussed in “Formulation of the FDIS”, similarly, in “Stability” and “Convergence”, the theoretical analysis 
(stability and convergence) of the FDIS. The numerical examples are presented in “Numerical experiements”. 
Finally, the summary of the article is discussed in “Conclusion”.

Formulation of the FDIS
To formulate the FDIS, the time and space dimensions are discretized as

where time and space steps are represented by τ and h respectively. Let δ2xw = wk
i+1,j − 2wk

i,j + wk
i−1,j , then from 

Taylor series expansion

From (2) and (3)

The fractional discretization is28
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After simplification, the FDIS is

where

Figure 1 shows nine points on the grid, while In Fig. 2, the computational molecule of FDIS (7) is presented 
, where n0 = 25

18b2g0 , n1 =
5
36b2g0 , n2 =

1
72b2g0 , n3 =

25
18bkg0 , n4 =

5
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Stability
Let the approximate and exact solutions are presented by wk

i,j and Wk
i,j for the FDIS (7), respectively, and 
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The error function ϑk
i,j in terms of Fourier series29

where
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Figure 1.   Grid points for the proposed scheme (8).

Figure 2.   Computational molecule for the proposed scheme (7).
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The l2-norm definition for ϑk
i,j is

The relationship between Parseval equality and l2-norm is
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where m0 = cos(ϕ1h)+ cos(ϕ2h) and m1 = cos(ϕ1h) cos(ϕ2h).

Proposition 1  Suppose ρk+1 satisfies (19), then 
∣
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∣
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Convergence
Suppose ℜk+1 represents the truncation error at w(xi , yi , tk+1) , then

where f1 is a constant. Let ϑk
i,j = Wk

i,j − wk
i,j , where W and w represent the exact and approximate respectively, 

then from Eq. (7)

with initial and boundary conditions

i, j = 1, 2, . . . ,m− 1, k = 1, 2, . . . , n− 1.
Define the truncation error function Rk(x, y) as,

Express ϑk and ℜk functions as Fourier series

ℜk+1 =
τ−γ

Ŵ(2− γ )

k
∑

r=0

br(w
k+1−r
i,j − wk−r

i,j )−
(

1+
1

12
δ2x

)−1
δ2X

h2
wk+1
i,j

−
(

1+
1

12
δ2y

)−1 δ2y

h2
wk+1
i,j − U0w

k+1
i,j − gk+1

i,j

=
τ−γ

Ŵ(2− γ )

k
∑

r=0

br(w
k+1−r
i,j − wk−r

i,j )−
∂γw

∂tγ
|k+1
i,j +

∂2w

∂x2
|k+1
i,j

−
(

1+
1

12
δ2x

)−1
δ2X

h2
wk+1
i,j +

∂2w

∂y2
|k+1
i,j

−
(

1+
1

12
δ2y

)−1 δ2y

h2
wk+1
i,j

=
τ−γ

Ŵ(2− γ )

k
∑

r=0

br(w
k+1−r
i,j − wk−r

i,j )−
∂γw

∂tγ
|k+1
i,j +

[

∂2w

∂x2
|k+1
i,j −

(

1+
1

12
δ2x

)−1
δ2X

h2
wk+1
i,j

]

+

[

∂2w

∂y2
|k+1
i,j −

(

1+
1

12
δ2y

)−1 δ2y

h2
wk+1
i,j

]

,

= O(τ 2−γ )−
(

h4

360

∂6u

∂x6
+ · · ·

)

−
(

h4

360

∂6u

∂y6
+ · · ·

)

= O(τ 2−γ + h4)

(24)
∣

∣

∣
ℜk+1

∣

∣

∣
≤ f1(τ

2−γ + h4),

(25)

a0ϑ
k+1
i,j = a1

(

ϑk+1
i+1,j + ϑk+1

i−1,j + ϑk+1
i,j+1 + ϑk+1

i,j−1

)

+ a2

(

ϑk+1
i+1,j+1 + ϑk+1

i−1,j+1 + ϑk+1
i+1,j−1 + ϑk+1

i−1,j−1

)

+ h2
(

25

36
ϑk
i,j +

5

72

(

ϑk
i+1,j + ϑk

i−1,j + ϑk
i,j+1 + ϑk

i,j−1

)

+
1

144

(

ϑk
i+1,j+1 + ϑk

i−1,j+1 + ϑk
i+1,j−1 + ϑk

i−1,j−1

)

)

− h2
k

∑

r=1

br

(

25

36
ϑk+1−r
i,j +

5

72

(

ϑk+1−r
i+1,j + ϑk+1−r

i−1,j + ϑk+1−r
i,j+1 + ϑk+1−r

i,j−1

)

+
1

144

(

ϑk+1−r
i+1,j+1 + ϑk+1−r

i−1,j+1 + ϑk+1−r
i−1,j+1 + ϑk+1−r

i−1,j−1

)

−
(

25

36
ϑk−r
i,j +

5

72

(

ϑk−r
i+1,j + ϑk−r

i−1,j + ϑk−r
i,j+1 + ϑk−r

i,j−1

)

+
1

144

(

ϑk−r
i+1,j+1 + ϑk−r

i−1,j+1 + ϑk−r
i−1,j+1 + ϑk−r

i−1,j−1

)

))

+ℜk+1
,

(26)
ϑ0
i,j = ϑk

m,0 = ϑk
0,m = 0,

ϑk
i,m = ϑk

m,j = 0,

ℜk(x, y) =











ℜk
i,j when x ∈ (xi− h

2
, xi+ h

2
], x ∈ (yi− h

2
, yi+ h

2
],

0 when x ∈ [0, h2 ], x ∈ [L− h
2 , L],

0 when y ∈ [0, h2 ], y ∈ [L− h
2 , L].

(27)ϑk
i,j =ρkeI(ϕ1ih+ϕ2jh), I =

√
−1,

(28)ℜk
i,j =µkeI(ϕ1ih+ϕ2jh), I =

√
−1,
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where ϕ1 = 2π l1
L  , ϕ2 = 2π l2

L .
Substituting (27) and (28) into (25), we have

Substituting (17) into (29), we get

Simplifying (30) for ρk+1 , we obtain

Proposition 2  Let ρk+1 satisfies (31), then 
∣

∣ρk+1
∣

∣ ≤
∣

∣µk+1
∣

∣ where k = 0, 1, 2, . . . , n− 1.

Proof  We know from (9) and (11)

From (24)

When k = 0 in (31)

(29)

a0ρ
k+1 = a1

(

ρk+1
e
I(ϕ1h) + ρk+1

e
−I(ϕ1h) + ρk+1

e
I(ϕ2h)

+ ρk+1
e
−I(ϕ2h)

)

+ a2

(

ρk+1
e
I(ϕ1+ϕ2)h + ρk+1

e
I(ϕ2−ϕ1)h + ρk+1

e
I(ϕ1−ϕ2)h

+ ρk+1
e
I(−ϕ1−ϕ2)h

)

+
25h2

36
ρk +

5h2

72

(

ρk
e
I(ϕ1h)

+ ρk
e
I(−ϕ1h) + ρk

e
I(ϕ2h) + ρk

e
I(−ϕ2h)

)

+
h
2

144
(ρk

e
I(ϕ1+ϕ2)h + ρk

e
(I(ϕ2−ϕ1)h

+ ρk
e
I(ϕ1−ϕ2)h + ρk

e
I(−ϕ1−ϕ2)h

)

− h
2

k
∑

r=1

br

(

25

36
ρk+1−r +

5

72

(

ρk+1−r
e
I(ϕ1h)

+ρk+1−r
e
I(−ϕ1h) + ρk+1−r

e
I(ϕ2h) + ρk+1−r

e
I(−ϕ2(h)

)

+
1

144
(ρr+1

e
I(ϕ1+ϕ2)h

+ρk+1−r
e
I(ϕ2−ϕ1)h + ρk+1−r

e
I(ϕ1−ϕ2)h + ρk+1−r

e
I(−ϕ1−ϕ2)h

)

−
(

25

36
ρk−r +

5

72
(ρk−r

e
I(ϕ1h)

+ρk−r
e
I(−ϕ1h) + ρk−r

e
I(ϕ2h) + ρk−r

e
I(−ϕ2(h)

)

+
1

144

(

ρk−r
e
I(ϕ1+ϕ2)h

+ρk−r
e
I(ϕ2−ϕ1)h + ρk−r

e
I(ϕ1−ϕ2)h + ρk−r

e
I(−ϕ1−ϕ2)h

)

))

+ µk+1
.

(30)

a0ρ
k+1 = 2a1ρ

k+1(cos(ϕ1h)+ cos(ϕ2h))+ 4a2ρ
k+1 cos(ϕ1h) cos(ϕ2h)

+
25h2

36
ρk +

5h2

36
ρk(cos(ϕ1h)+ cos(ϕ2h))+

h2

36
ρk cos(ϕ1h) cos(ϕ2h)

−
k−1
∑

r=1

(ak−r+1 − ak−r)

(

25h2

36
(ρk+1−r − ρk−r)+

5h2

36
(ρk+1−r − ρk−r)(cos(ϕ1h)+ cos(ϕ2h))

+
h2

36
(ρk+1−r − ρk−r) cos(ϕ1h) cos(ϕ2h

)

+ µk+1.

(31)

ρk+1 =
h2

36

(

25+ 5m0 +m1

a0 − 2a1m0 − 4a2m1

)

ρk

−
h2

36

k
∑

r=1

br

((

25+ 5m0 +m1

a0 − 2a1m0 − 4a2m1

)

ρk+1−r −
25+ 5m0 +m1

a0 − 2a1m0 − 4a2m1

)

ρk−r

)

+
µk+1

a0 − 2a1m0 − 4a2m1
.

(32)ρ0 = ρ0(l1, l2) = 0.

(33)|µs+1| ≤ |µ|, ∀ s = {0, 2, . . . k − 1}.

(34)ρ =
µ

a0 − 2a1m0 − 4a2m1
,

(35)|ρ| =
1

|a0 − 2a1m0 − 4a2m1|
|µ|, ∵ taking absolute

(36)|ρ| =
1

h2(1+ g0)
|µ|,
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but h2(1+ g0) > 0 , so

Suppose

From (30)

By using (37) and (33)

If g0 ≥ 2(k + 1)1−γ + 36/h2 − 1 then 0 <
2((k+1)1−β−1)+36/h2

1+g0
≤ 1 , hence

Hence proof. 	�  �

Now from (24) and (14), we have

Using Proposition 2, and (14)

hence, we get

where T = f1L.
Hence, the FDIS (7) is conditionally convergent with convergence order O(τ 2−γ + h4).

Numerical experiements
In current section, two examples are discussed to confirm the effectiveness of the FDIS for 2D FCE. In the 
proposed iterative method combined method is executed over the different time and mesh sizes. The numerical 
simulation is done using the PC with 4GB RAM, core i3, Windows 7, 3.40 GHz, and Mathematica software. The 
numerical examples are performed with the tolerance ( ω ) for the maximum error (l∞) . The proposed method 
convergence orders are found using the following formula30.

Example 1  Consider the model problem31

having analytical solution

Example 2  Consider the model problem22

|ρ| ≤ |µ|.

(37)
∣

∣ρs
∣

∣ ≤
∣

∣µs
∣

∣, ∀ s = {1, 2, . . . , k}.

|ρk+1| =
∣

∣

∣

∣

h2

36

(

25+ 5m0 +m1

a0 − 2a1m0 − 4a2m1

)

ρk

−
h2

36

k
∑

r=1

br

((

25+ 5m0 +m1

a0 − 2a1m0 − 4a2m1

)

ρk+1−r −
25+ 5m0 +m1

a0 − 2a1m0 − 4a2m1
)ρk−r

)

+
µk+1

a0 − 2a1m0 − 4a2m1

∣

∣

∣

∣

.

|ρk+1| ≤
2((k + 1)1−β − 1)+ 36/h2

1+ g0
|µk+1|.

∣

∣

∣
ρk+1

∣

∣

∣
≤

∣

∣

∣
µk+1

∣

∣

∣
.

(38)
∥

∥

∥
ℜk+ 1

2

∥

∥

∥
≤ Mhf1(τ

2−γ + h4) = Lf1(τ
2−γ + h4).

� ϑk+1 �≤� ℜk+ 1
2 �≤ Lf1(τ

2−γ + h4),

� ϑk+1 �≤ f1L(τ
2−γ + h4),

(39)� ϑk+1 �≤ T(τ 2−γ + h4),

ℑ1-order =log2

(

� L∞(2τ , h) �
� L∞(τ , h) �

)

,

ℑ2-order =Log2

(

||l∞(16τ , 2h)||
||l∞(τ , h)||

)

.

C
0D

γ
t w(x, y, t) =

∂2w

∂x2
+

∂2w

∂y2
− u+

(

2

Ŵ(3− γ )
t2−γ + t2(1+ 2π2)

)

sin(πx) sin(πy),

w(x, y, t) = t2 sin(πx) sin(πy).

c
0D

γ
t u =

∂2u

∂x2
+

∂2u

∂y2
− u+ ex+y

(

2t2−γ

Ŵ(3− γ )
− t2

)

,
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having analytical solution

Tables 1, 2, 3 and 4 numerical results shows that the errors (maximum error ”M_E”, average error ”A_E”) are 
reduced with decreasing mesh size. Also, Tables 5 and 6 show that the proposed method gives better results as 
compared to the32 and20, which shows the effectiveness of the proposed method. Furthermore, in Tables 7 and 
8, the spatial variable order of convergence is presented for different values of γ which depict the spatial variable 
order of convergence in agreement with the theoretical spatial accuracy of the proposed scheme for examples 
1 and 2. Similarly, Tables 9 and 10 consist of the temporal variable order of convergence for the different values 
of γ which show that the theoretical and experimental temporal variable convergence accuracy is also in agree-
ment. Moreover, the graphical representation in 3-D graphs of the proposed scheme is presented in Figs. 2, 3, 4, 
5 and 6, which affirms FDIS effectiveness.

u(x, y, t) = t2ex+y .

Table 1.   Numerical results for the Example 1, where γ = 0.1.

τ h Iteration M_E A_E
1
5

1
5

44 6.9757× 10−4 4.5350× 10−4

1
10

1
10

40 8.9688× 10−5 4.3799× 10−5

1
15

1
15

40 3.2365× 10−5 1.5531× 10−6

1
20

1
20

42 1.6872× 10−5 8.2234× 10−6

1
30

1
30

40 4.3668× 10−5 9.0917× 10−6

Table 2.   Numerical results for the Example 1, where γ = 0.5.

τ h Iteration M_E A_E
1
5

1
5

45 2.1487× 10−3 7.2797× 10−5

1
10

1
10

30 6.8921× 10−3 1.4044× 10−3

1
15

1
15

40 3.5734× 10−4 3.3747× 10−4

1
20

1
20

44 1.0562× 10−4 2.3659× 10−4

1
30

1
30

40 9.3649× 10−5 6.0262× 10−5

Table 3.   Numerical results for the Example 2, where γ = 0.1.

τ h Iteration M_E A_E
1
5

1
5

52 7.0901× 10−4 4.6764× 10−5

1
10

1
10

52 2.1412× 10−4 1.1986× 10−4

1
15

1
15

48 1.0695× 10−4 5.4370× 10−5

1
20

1
20

54 6.3901× 10−5 3.2475× 10−5

1
30

1
30

65 3.0330× 10−5 1.5141× 10−5

Table 4.   Numerical results for the Example 2, where γ = 0.5.

τ h Iteration M_E A_E
1
5

1
5

53 7.5742× 10−3 5.0433× 10−3

1
10

1
10

53 2.7558× 10−3 1.5618× 10−3

1
15

1
15

48 1.5230× 10−3 8.1342× 10−4

1
20

1
20

55 9.9445× 10−4 5.1590× 10−4

1
30

1
30

65 5.4703× 10−4 2.7411× 10−4
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Table 5.   Comparison of the proposed scheme Eq. (7) with32 and20 for the Example 1, where γ = 0.5.

τ h M_E 32 20

1
5

1
5

    2.1487× 10−3      
8.8496× 10−3      3.8921× 10−2

1
10

1
10

     
6.8921× 10−4

     
2.2508× 10−3     1.4625× 10−2

1
20

1
20

    2.3659× 10−4      
5.8320× 10−4     5.3241× 10−3

1
30

1
30

    1.3649× 10−4      
2.6199× 10−4      2.9349× 10−3

Table 6.   Comparison of the proposed scheme Eq. (7) with32 and20 for the Example 1, where γ = 0.6.

τ h M_E 32 20

1
5

1
5

    2.8893× 10−3      
9.2673× 10−3      9.7966× 10−3

1
10

1
10

     
1.0360× 10−3

     
2.3281× 10−3     3.2412× 10−3

1
20

1
20

    3.8988× 10−4      
5.9869× 10−4     1.0054× 10−3

1
30

1
30

    2.2034× 10−4      
2.6804× 10−4      5.0562× 10−4

Table 7.   Space variable convergence order for the Example 1.

h/τ

γ = 0.1 γ = 0.25

M_E ℑ2-order M_E ℑ2-order

h = τ = 1
2

2.6172× 10−2 – 2.7699× 10−2 –

h = 1
4
, τ = 1

32
1.4687× 10−3 4.38 1.4820× 10−3 4.25

h = τ = 1
4

1.7141× 10−3 – 2.2530× 10−3 –

h = 1
8
, τ = 1

64
8.7578× 10−5 4.70 9.0833× 10−4 4.33

γ = 0.5 γ = 0.75

h/τ M_E ℑ2-order M_E ℑ2-order

h = τ = 1
2

3.1809 ×10−2 – 3.8695× 10−2 –

h = 1
4
, τ = 1

32
1.5616 ×10−3 4.34 3.9160 ×10−3 4.43

h = τ = 1
4

1.8538× 10−3 – 1.0527× 10−2 –

h = 1
8
, τ = 1

64
1. 2965 ×10−4 4.91 2.7630× 10−4 4.38

Table 8.   Space variable convergence order for the Example 2.

h/τ

γ = 0.25 γ = 0.5

M_E ℑ2-order M_E ℑ2-order

h = τ = 1
2

1.00571× 10−2 – 2.7664× 10−2 –

h = 1
4
, τ = 1

32
6.0059× 10−4 4.06 8.7258× 10−4 4.98

h = τ = 1
4

3.2472× 10−3 – 1.0060× 10−2 –

h = 1
8
, τ = 1

64
9.3560× 10−5 5.11 1.7833× 10−4 5.81

γ = 0.75 γ = 0.9

h/τ M_E ℑ2-order M_E ℑ2-order

h = τ = 1
2

5.6346 ×10−2 – 8.0570 ×10−2 –

h = 1
4
, τ = 1

32
1.7955 ×10−3 4.97 3.8020 ×10−3 4.40

h = τ = 1
4

2.3634 ×10−2 – 3.7141 ×10−2 –

h = 1
8
, τ = 1

64
7. 727 ×10−4 4.93 1.8113 ×10−3 4.35
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Table 9.   Temporal variable convergence order for the Example 1, when h =
1
8
.

τ

γ = 0.75 γ = 0.9

L∞ ℑ1-Order L∞ ℑ1-Order

τ = 1
10

1.9523× 10−3     – 3.4198× 10−3     –

τ = 1
20

8.7950 ×10−4     1.15 1.6413 ×10−3     1.05

τ = 1
40

4.2234 ×10−4     1.05 8.1259 ×10−4     1.01

τ = 1
80

2.3416× 10−4     0.85 4.1987× 10−4     0.95

Table 10.   Temporal variable convergence order for the Example 2, when h =
1
8
Temporal variable convergence 

order for the Example 2, when h =
1
8
.

τ

γ = 0.5 γ = 0.9

L∞ ℑ1-Order L∞ ℑ1-Order

τ = 1
10

2.7254× 10−3     – 1.3956× 10−2     –

τ = 1
20

9.879 ×10−4     1.46 6.5285 ×10−3     1.09

τ = 1
40

3.5286 ×10−4     1.48 3.0520 ×10−3     1.09

τ = 1
80

1.3016× 10−4     1.43 1.4177× 10−3     1.10

Figure 3.   The Example 1 absolute error, when h = τ =
1
25

 and γ = 0.1.

Figure 4.   The Example 2 absolute error when h = τ =
1
25

 and γ = 0.1.



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1549  | https://doi.org/10.1038/s41598-023-28741-7

www.nature.com/scientificreports/

Conclusion
The higher-order FDIS is established and analyzed for the 2-D FCE. The theoretical analysis of the proposed 
method shows that the proposed method is unconditionally stable and convergent with the fourth-order of 
convergence. Moreover, the proposed method is reliable and effective for the numerical solutions of 2-D FCE. 
Furthermore, The proposed method’s theoretical convergence order is O(τ 2−γ + h4) , and C2-order shows that 
the theoretical and numerical spatial order of convergence is in agreement.

Data availability
The data presented in this work is available from the corresponding author on reasonable request.
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