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A selective laser‑based sensor 
for fugitive methane emissions
Mhanna Mhanna , Mohamed Sy  & Aamir Farooq *

A mid-infrared laser-based sensor is reported for the quantification of fugitive methane emissions. The 
sensor is based on a distributed feedback inter-band cascade laser operating near 3.3 μm. Wavelength 
tuning with cepstral analysis is employed to isolate methane absorbance from (1) fluctuations in 
the baseline laser intensity, and (2) interfering species. Cepstral analysis creates a modified form of 
the time-domain molecular free-induction-decay (m-FID) signal to temporally separate optical and 
molecular responses. The developed sensor is insensitive to baseline laser intensity imperfections 
and spectral interference from other species. Accurate measurements of methane in the presence of 
a representative interfering species, benzene, are performed by careful selection of the scan index 
(ratio of laser tuning range to spectral linewidth) and initial and final time of m-FID signal fitting. The 
minimum detection limit of the sensor is ~ 110 ppm which can be enhanced with an optical cavity. The 
proposed sensing strategy can be utilized to measure methane leaks in harsh environments and in the 
presence of interfering species in environment-monitoring applications.

Methane has important astrophysical applications due to its significant presence in many planetary systems1, 
and has been detected in the atmosphere of Saturn, Titan, Jupiter, Uranus, Mars, and Pluto2. Trace quantities of 
methane in human breath can be used as a biomarker for intestinal problems and colonic fermentation3.

Methane is the third most important greenhouse gas in the Earth’s atmosphere after water vapor and carbon 
dioxide4, and its concentration has been increasing steadily due to anthropogenic activities5. Anthropogenic 
methane emissions are almost double than those from natural sources6, so methane is a key target for reduc-
tions of greenhouse-gas inventories. The Intergovernmental Panel on Climate Change (IPCG) has asked policy 
makers to develop methods for measuring and limiting the emissions of global-warming gases7. Methane is a 
major contributor to climate change and its global warming potential is ~ 25 times larger compared to CO2

8. 
Reducing methane emissions is essential as methane contributes to ~ 25% of the current warming9. Pursuing 
mitigation strategies urgently can dwindle the warming rate and help avoid 0.25 °C increase by 2050, and more 
than 0.5 °C by 210010. A myriad of sensing technologies have been developed to mitigate methane emissions11.

Methane is the main constituent ( ∼ 90%) of natural gas (NG). Accidental explosions in NG/air mixtures 
are very costly in terms of lives, materials, and mental health of people12. The Richmond Hill explosion in 2012 
occurred due to massive leaks of methane, which accumulated in a partially enclosed area, which got ignited 
and led to a catastrophe13. Astrophysical explosions have been linked to deflagration-to-detonation transitions 
(DDT), which have been investigated in channels containing methane/air mixtures12.

Absorption spectroscopy provides quantitative, non-intrusive measurements in various systems14,15. Numer-
ous laser absorption sensors have been developed for methane detection in gas sensing applications. These 
sensors have been developed in both the mid- and near infrared regions of the methane absorption spectrum. 
Mid-infrared laser sources are being increasingly employed as absorption strengths of most hydrocarbons are 
orders of magnitude higher in the mid-IR compared to the near IR region16–18. Direct absorption and photoacous-
tic techniques have been employed to develop atmospheric methane sensors using distributed feedback (DFB) 
diode lasers operating in the near IR region around 1.6 μm to access the 2v3 band of methane19–22. In addition, 
mid-IR methane sensors were reported using difference-frequency-generation (DFG) sources which emit near 
3.3–3.4 μm to cover the v3 methane ro-vibrational band23–27. Recently, quantum cascade lasers (QCLs) enabled 
methane sensing near 8 μm targeting the ν4 band of methane28–31.

Difference frequency generation (DFG) systems, based on nonlinear optics, are quite complex and have low 
power. Quantum cascade lasers (QCLs) and interband cascade lasers (ICLs) are more compact, robust, and user-
friendly, and have attracted high popularity for methane detection. However, previous sensing strategies were 
not designed to detect methane in the presence of strong absorption interference from other species.
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Differential absorption (peak-minus-valley) takes advantage of narrow spectral features of target species 
to account for interference from broadly absorbing molecules27. Multidimensional linear regression can be 
applied along with scanned-wavelength absorption to split the absorbance spectrum into contributions from 
absorbing species32. However, these methods are subject to significant errors in the presence of fluctuations/
imperfections in baseline laser intensity (I0) or the transmitted intensity (It) . In harsh environments, instability 
in laser intensity, shifting due to non-ideal transmission, the formation of etalons, and the presence of interfering 
species represent challenges to accurate absorption measurements, and can introduce significant errors when 
quantifying the target species.

Cepstral analysis was initially developed for audio signal processing33. This approach can be used convert the 
measured transmission spectrum to a time-domain modified free induction decay signal (m-FID). Here, much 
of the molecular response is temporally separated and becomes independent of the source intensity. Cepstral 
analysis can avoid errors in baseline laser intensity, which typically varies slowly in the optical domain and thus 
decays rapidly in the time domain. This method was demonstrated by Cole et al. to quantify methane in ethane 
bath gas over a wide tuning range (500 cm−1). Their technique was limited by a 90-min averaging time, and the 
necessity of informing the diagnostic about the presence of non-methane (i.e., ethane) components to calibrate 
the broadening coefficients of methane. Cepstral analysis has shown effectiveness in baseline-free sensing. How-
ever, interference from unknown absorbing species has not been investigated using this method, which is of 
importance in environmental monitoring applications.

Here, we report a novel, laser-based mid-IR sensor for interference-free measurements of methane. Cepstral 
analysis was applied on scanned-wavelength laser signals to design a sensor which is insensitive to baseline 
distortion or broadband interference from typical species in the atmosphere.

The following section reviews some existing baseline correction techniques and introduces the proposed 
m-FID method. We then conclude with an experimental test that demonstrates our approach for baseline-free 
and interference-free methane concentration measurements.

Baseline correction techniques
Researchers have investigated multiple techniques to suppress errors caused by fluctuations in the baseline laser 
intensity, etalon effects, and interfering absorbance. In direct absorption spectroscopy (DAS), intensity variation 
is accounted for by polynomial/spline fitting34. While this approach is effective in a multitude of circumstances, 
it is susceptible to user bias and errors induced through the coupling between fitted polynomials and reference 
absorbance spectra. In the case of broadband absorbance spectra, access to non-absorbing spectral regions is 
minimal and thus artificial baseline generation is tricky.

Wavelength modulation spectroscopy (WMS) can mitigate the effect of broadband intensity variations35,36. 
This method has been effective in scanning the laser wavelength across absorption transitions while being modu-
lated at a much higher frequency37. However, non-linear laser intensity response and/or etalon effects bewilder 
the ability of this method to account for variations in the background signal.

Cavity ring-down spectroscopy (CRDS) circumvents the need for baseline intensity38. Instead of measuring 
the attenuation of light, CRDS measures the decay time of transmitted signal rather than its magnitude39. CRDS 
provides highly sensitive measurements for trace detection of target species via an optical cavity formed with 
highly reflective mirrors. However, the optical alignment process is tedious and highly sensitive to mechanical 
fluctuations / vibrations.

Time-domain spectroscopy is a possible alternative to absorption spectroscopy, where it measures the free 
induction decay (FID) of molecules excited by pulsed radiation40,41. This technique shows promise as a baseline-
free method since much of the molecular response is temporally separated from the laser excitation. However, gas 
property extraction using this approach requires exhaustive fitting to account for the intensity of the excitation 
pulse as it affects the magnitude of the FID signal42.

Bayesian statistics was recently employed to directly estimate the absorbance spectrum from the transmit-
ted intensity data43. While this approach shows promising results, it was only validated using a limited set of 
water vapor simulated spectra. Additionally, Bayesian statistics inference is non-trivial and its algorithm adds 
significant processing complexity. Here, prior information of the shape of the baseline intensity is essential for 
absorbance estimation.

Cepstral analysis was first used with traditional absorbance spectrometers by Cole et al. in 2019 to analyze 
the transmitted signal independently of the baseline intensity by creating a modified form of the time-domain 
molecular free-induction decay (m-FID) signal44. Much of the m-FID signal is temporally separated from the 
laser source intensity, and gas properties can be retrieved by fitting this portion to a reference model. This elimi-
nates the need to account/correct for the laser source intensity. Later, Goldenstein et al. developed an improved 
model by predicting the baseline intensity45. Validation of this technique was carried out by scanning the laser 
across two CO absorption transitions. Makowiecki et al. used this approach to scale reference absorption cross-
sections to different pressures46. This was done by computationally adjusting the decay rate of the FID signal to 
account for collisional broadening of cross-sections. Recently, Li et al. optimized this method by careful selec-
tion of scan index and initial and final time of the fitting47. This method was demonstrated by targeting a CO2 
transition near 4.2 µm. Cepstral analysis proved to be insensitive to errors in the baseline intensity which varies 
slowly in the optical domain and, therefore, decays rapidly in the time domain.

Theoretical background
The fundamentals of absorption spectroscopy and modified free-induction-decay (m-FID) are briefly explained 
in “Absorption spectroscopy” and “Modified free-induction-decay (m-FID)” sections, respectively.
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Absorption spectroscopy.  In absorption spectroscopy, a laser source emits a beam at frequency, ν , and 
incident intensity, I0 , and the transmitted intensity, It , are collected after passing through an absorbing medium. 
The incident and transmitted laser intensities are related to the molecular absorbance, α , through Beer–Lambert 
law48:

where Sj(T) is the temperature-dependent line-strength of the spectral transition j , P is the total pressure of the 
gaseous mixture, χ is the mole fraction of the absorbing species, φj(ν) is the frequency-dependent line-shape 
function of the transition j , and L is the laser path-length through the absorbing medium. For a given absorp-
tion transition at known experimental conditions (ν, T , P, L) , the mole fraction χ can be inferred by fitting the 
measured absorbance to a simulated absorbance, as shown in “Fitting algorithm of the m-FID signal” section.

Modified free‑induction‑decay (m‑FID).  Free induction decay (FID) has been used in the processing 
of audio signals, and is determined by the inverse Fourier transform of the target signal. m-FID was introduced 
by Cole et al. in 201944, where they derived the traditional time domain free induction decay of It(ν) through 
cepstral analysis. Forming the FID signal of the transmitted laser intensity, obtained from Eq. (1), results in a 
convolution of the incident intensity with the molecular response, as shown in Eq. (3):

If we modify Eq. (1) by taking its negative natural logarithm before applying the inverse Fourier transform, 
the additive relation formed in Eq. (4) will be conserved, as shown in Eq. (5):

The LHS of Eq. (5) is the m-FID, which corresponds to the cepstrum of the time domain transmitted intensity 
signal. In the case of narrow absorbance features, the laser intensity will vary slower than the molecular response 
in the optical frequency domain, and the laser intensity will thus decay faster in the time domain. In contrast, the 
term corresponding to the molecular absorption response in the time domain of Eq. (5) periodically oscillates 
before decaying to zero after a relatively long time. This happens because all absorbing molecules are initially 
excited at nearly the same time, so they rotate in phase and emit radiation into the same mode as the laser source, 
causing the m-FID signal. Due to the differences in the rotational energy/speed of the excited molecules, they 
will soon rotate out of phase and no longer emit into the laser mode. However, additional bursts will be emit-
ted after periodically re-phasing the molecules due to the quantized rotational rates, causing additional m-FID 
signals. This pattern will fade after some time due to the collisions49.

After the baseline intensity term in Eq. (5) decays, the unaffected portion of the m-FID signal can be least-
squares fitted to a simulated absorbance signal of the target species to determine its properties. This is achieved 
through a Levenberg–Marquardt algorithm50 with careful selection of the initial and final time of the fitting.

Sensor description
Methane has strong absorption with dense transition lines in the 3–3.5 μm region51. Sensors operating near 
3.3 μm that cover the ν3 band of methane have been reported to achieve higher sensitivity compared to sensors 
operating away from 3.3 μm26. Figure 1 shows the absorbance spectra of methane, benzene, toluene, ethylbenzene, 
m-xylene, o-xylene, p-xylene, ethane, ethylene, propane, butane, pentane, water vapor, and carbon dioxide in the 
range of 3037 – 3039.5 cm-1 at T = 298 K, P = 1 atm, L = 10 cm51,52. These spectra were calculated for 1000 ppm 
concentration of all species except water vapor (2%). These species were chosen as the major constituents of the 
atmospheric gases and VOC emissions. It is obvious that ethylene, propane, butane, pentane, water vapor, and 
carbon dioxide have negligible absorbance in our target spectral range. While ethane spectrum appears to have 
some features, these ethane features are broad compared to methane features. In fact, the frequency domain 
gradient of the methane line is ~ 20 times larger than that of ethane, which means that the m-FID signal of 
ethane will decay much faster than that of methane in the time domain for the selected wavelength region. Also, 
the amount of ethane in air is typically much lower than that of methane, so its m-FID signal will be weaker. 
Therefore, for environmental monitoring applications, the main interfering species to methane at 3.3 μm are 
BTEX species (benzene, toluene, ethylbenzene, and xylenes). Due to the similar absorbance spectra of BTEX 
species53, benzene is chosen as a representative molecule for simplicity. In the case of methane and benzene 
absorption, Eq. (5) becomes:

Given the broad and slowly varying absorbance of benzene (see Fig. 1), its m-FID signal decays rapidly in 
the time domain, similar to the I0 signal. Thus, selecting an initial fitting time large enough for the decay enables 
interference-free measurements of methane.

(1)It(ν) = I0(ν) exp [−α(ν)]

(2)α =
∑

j

Sj(T)Pχφj(ν)L

(3)F
−1[It(ν)] = F

−1[I0(ν)] ∗F−1
{

exp [−α(ν)]
}

(4)− ln [It(ν)] = α(ν)− ln [I0(ν)]

(5)F
−1{− ln [It(ν)]} = F

−1[α(ν)]−F
−1{− ln [I0(ν)]}

(6)F
−1{− ln [It]} = F

−1[αMethane]+F
−1[αBenzene]−F

−1{− ln [I0]}
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The sensor uses a distributed feedback interband cascade laser (3290 nm DFB-ICL, Nanoplus) emitting near 
3.3 µm with an output power ~ 1 mW54. Two ZnSe windows (Thorlabs, WG71050-E4) were mounted on a 10-cm 
gas sampling cell. The transmitted signal was collected with a DC-coupled, TE-cooled photodetector (1.5 MHz 
bandwidth, Vigo Systems, PVI-4TE-3.4–2 × 2). The laser wavelength was tuned over 3037–3039.5 cm−1 by a 
linear ramp of the laser injection current at 1 kHz scan rate, and a 7.62-cm germanium Fabry–Pérot etalon was 
used to convert the scan time to frequency (wavenumbers). Figure 2 shows the schematic of the sensor setup. 
All measurements were carried out at a static pressure of 1 atm.

Li et al. observed that for a small scan index (ratio of laser tuning range to spectral linewidth), most of the 
m-FID signal is concentrated in the early time period, i.e., it decays rapidly, which makes it difficult to separate 
the molecular response from the baseline intensity47. This means that higher scan index leads to longer decay 
time of the m-FID signal, which is desirable to minimize interference effects of the fast-decaying signals. Here, 
the tuning range of our laser was maximized to 2.5 cm-1 by scanning the laser injection current, within the laser’s 
allowable temperature and current limits, while the FWHM of the targeted methane line is ~ 0.25 cm-1, which 
resulted in a scan index of ~ 10.

Figure 1.   Absorbance spectra for methane, benzene, toluene, ethylbenzene, m-xylene, o-xylene, p-xylene, 
ethane, ethylene, propane, butane, pentane, water vapor, and carbon dioxide over 3037–3039.5 cm-1 at T = 298 K, 
P = 1 atm, L = 10 cm51,52.

Figure 2.   Optical schematic of the methane sensor.
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Fitting algorithm of the m‑FID signal
This section describes our technique to retrieve methane concentration from the measured transmitted laser 
intensity using the m-FID signal. In cepstral analysis, the majority of molecular response is deconvolved from 
the influence of the baseline intensity. The uninfluenced portion of the m-FID signal can be least-squares-fit to 
a known model to obtain gas concentration. The fitting routine is illustrated in Fig. 3, where the inverse Fourier 
transform is calculated for the negative natural logarithm of the measured transmitted intensity and the simu-
lated absorbance model at experimental conditions (ν, T , P, L, χ) . The resulting cepstra are fed into the Leven-
berg–Marquardt fitting algorithm50. The fitting parameter is initially assumed to be 1, meaning that the target gas 
concentration in the mixture is equal to the reference concentration in the model, and the model keeps updating 
its fitting parameter until convergence. The final converged model yields the measured concentration of methane.

Experimental results
Reference validation.  Our m-FID approach was assessed by measuring the composition of methane/ben-
zene mixtures in air. To validate our technique, a mixture containing 6200 ppm methane and 8900 ppm benzene 
in air was prepared manometrically. Mixture composition was verified by a traditional absorption experiment 
where etalon effects were removed through careful optical alignment and laser fluctuations were minimized by 
time averaging. Here, both the baseline and transmitted laser intensities were measured to calculate the compos-
ite absorbance shown in Fig. 4. Good agreement between measured and simulated absorbance confirms mixture 
composition and paves the way towards testing our approach in imperfect/realistic experimental conditions 
where etalon effects and intensity fluctuations are not mitigated.

Laser intensity imperfections.  Here, optical alignment was intentionally distorted to introduce imper-
fections to the laser intensity. Figure 5 shows the incident and transmitted laser intensities through the mixture 
of 6200  ppm methane and 8900  ppm benzene in air. Due to the broadband absorption of benzene and the 
absence of non-absorbing regions, as shown in Fig. 1, it becomes challenging to separate any laser fluctuations 
from the measured absorbance. In addition, etalon effects due to planar optics (e.g., windows and/or plane mir-
rors) add more complexity to the retrieval of gas concentration, so etalons were intentionally preserved here, as 
shown in Fig. 5, to test the power of m-FID method. Thus, the intensity attenuation can be due to a combination 
of molecular absorbance, baseline fluctuations, and etalons.

m‑FID signal fitting.  Inverse Fourier transform was applied to the incident and transmitted intensity sig-
nals, shown in Fig. 5, and to the simulated absorbance of methane and benzene shown in Fig. 1. The result-
ing time-domain m-FID signals are shown in Fig. 6, which constitute the components of Eq.  (6). The terms 
corresponding to smooth signals in the frequency domain, i.e., I0 and αBenzene , decay rapidly with time. After 
decay, the Levenberg–Marquardt algorithm was employed to least-squares fit the remaining m-FID signals cor-
responding to It and αMethane to infer methane concentration.

The fitting is done over a time window between initial time, t1 , and final time, t2 , according to the step 
function:

Figure 3.   Flow chart illustrating the least-squares fitting of the m-FID signal to retrieve methane concentration.
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The initial time controls how much of the early-time part of the m-FID signal of It is ignored by the fitting 
algorithm. A small t1 value retains the influence of the rapidly decaying signals, which introduces errors to the 
fitting. However, using a too large t1 value results in the elimination of a significant part of the target (methane) 
absorbance response, which also adds errors to the fitting algorithm. Hence, t1 was chosen so that the signals 
corresponding to I0 and αBenzene decay to within 0.1% of their initial values. On the other hand, t2 should be 
sufficiently large to retain most of the m-FID signal, but should not exceed the value when the signal intensity 
becomes less than 0.1% of its initial value. The inset in Fig. 6 is zoomed in to the vertical axis to show the signals’ 
decay. Here, t1 and t2 were selected to be 10 ps and 70 ps, respectively.

Sensor validation and minimum detection limit.  Measurements were performed on various mixtures 
of methane and benzene in air. Methane concentration was varied over 216–6200 ppm, while that of benzene 
spanned 0–10,000 ppm. The results, based on m-FID approach (red circles), are plotted in Fig. 7 which shows 
remarkable agreement between the measured (via m-FID method) and manometric methane concentrations 
at T = 298 K and P = 1 atm. Figure 7 also shows the results obtained from a traditional least squares fitting of 
the measured absorbance to the reference methane absorbance (blue squares). The large discrepancy between 
the measured (via traditional method) and manometric mole fractions is due to the presence of benzene in 

(7)F(T) =
{

0 ∀ t ∈ [0, t1[ ∪ ]t2, +∞]
1 ∀ t ∈ [t1, t2]

Figure 4.   Composite measured and simulated absorbance spectra51,52 over 3037–3039.5 cm−1 at T = 298 K, 
P = 1 atm, L = 10 cm, χMethane = 6200 ppm, χBenzene = 8900 ppm.

Figure 5.   Intensities of the incident and transmitted signals through a mixture of 6200 ppm methane and 
8900 ppm benzene in air.
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the measured samples, which significantly contributes to the composite absorbance. Benzene interference is 
alleviated in the m-FID approach due to its rapid decay in the time domain. The bottom panel of Fig. 7 shows 
the residuals between the measured and manometric mole fractions of methane using m-FID and traditional 
approaches, with the former giving significantly superior results.

To quantify the minimum detection limit of the proposed sensor, an uncertainty analysis is carried out to 
estimate standard deviation of the fitting parameter by following the method of Adler et al.55. The reference 
absorbance spectrum is simulated at N discrete frequencies, αR(νi) , for given conditions (T , P, χ) , and its cor-
responding m-FID signal is denoted by AR(ti) at times ti in time domain. The measured transmitted intensity 
IT (νi) , is assumed to have a uniform noise of standard deviation σI over the frequency domain. The corresponding 
m-FID signal in time domain is denoted by MT (ti) , and has a uniform time domain standard deviation σM . The 

Figure 6.   Time domain m-FID signals of −ln(I0), −ln(It), αBenzene and αMethane. The inset is a zoom-in view of the 
vertical axis to show the decay of the signals.

Figure 7.   Comparison of measured and manometric methane mole fraction values. Minimum detection limit 
is 110 ppm at the experimental conditions.
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fitting parameter ζ is used to retrieve the actual gas concentration 
(

χmeasured = ζ · χreference
)

 , and it is found by 
minimizing the differences between ζ · AR(ti) and MT (ti) . The Levenberg–Marquardt optimization function in 
the time fitting window is given as:

Simplifying Eq. (9) gives:

Thus, an explicit form of the standard deviation of the fitting parameter is given as:

Here, the step function is chosen to be unity in Eq. (7). Therefore, Eq. (12) reduces to:

Knowing the standard deviation of the fitting parameter 
(

σζ
)

 and the simulated concentration ( χ = 1000 ppm), 
the theoretical minimum detection limit (MDL) of the sensor ( T = 23 °C, P = 1 atm, L = 10 cm) is estimated to be 
MDL = σζ · χ ≈ 50 ppm. The input noise power of the photodetector, Pin , is calculated by dividing the input noise 
current by the detector responsivity56. The noise equivalent power, NEP , is then calculated by:

where BW is the bandwidth of the photodetector (20 MHZ in this case). The specific detectivity of the photo-
detector, D*, is derived by relating the active area, A , to NEP , as follows:

The specific detectivity was calculated to be 7× 1011cm
√
Hz/W . This controls the noise level in the measured 

laser intensity signal ( It ), which translates into a noise equivalent concentration, NEC , of 110 ppm. Experimen-
tal detection limit is determined from the noise level of the m-FID signals of I0 and It given in Fig. 6. This was 
scaled with respect to the simulated concentration ( χ = 1000 ppm) to result in an experimental detection limit 
of 90 ppm. Considering these estimates of the MDL, we take the largest of the three values (110 ppm) to be the 
conservative MDL of our sensor.

Concluding remarks
A laser sensor based on absorption spectroscopy has been developed for interference-free and baseline-free 
measurements of methane concentration. The technique generates an m-FID signal using cepstral analysis, which 
enables the separation of methane absorbance from benzene absorbance and baseline laser intensity. The laser 
was tuned over 2.5 cm−1 range at a scan index of ~ 10, and the transmitted laser intensity was least-squares fitted 
to a simulated methane absorbance signal in the time domain to infer methane concentration. The fitting window 
was restricted between 10 and 70 ps to avoid the influence of interference and baseline intensity. The sensor has 
a minimum detection limit of ~ 110 ppm at T = 23 °C and P = 1 atm, and can be utilized to measure methane 
concentration at ambient conditions. Laser path-length can be increased using a longer optical cell, multi-pass 
cell, or an optical cavity to decrease MDL by orders of magnitude. For example, replacing the optical windows 
with 99.97% reflectivity mirrors would result in a cavity gain of 3332, and thus would reduce MDL to ~ 50 ppb. 
In harsh environments, the technique greatly reduces the need for baseline intensity correction which can 
introduce significant error, and the technique also adequately accounts for broadband absorption interference.

(8)L(ζ ) =
N
∑

i

F(ti) · [ζ · AR(ti)−MT (ti)]
2 = min

(9)
dL(ζ )

dζ
=

N
∑

i

2F(ti) · [ζ · AR(ti)−MT (ti)] · [AR(ti)] = 0

(10)ζ =
∑N

i F(ti)·AR(ti) ·MT (ti)
∑N

i F(ti)·A2
R(ti)

(11)σ 2
ζ =

N
∑

i

[

∂ζ

∂MT (ti)

]2

· σ 2
M =

N
∑

i

[

F(ti) · AR(ti)
∑N

i F(ti)·A2
R(ti)

]2

· σ 2
M

(12)σζ =

[

∑N
i F2(ti)·A2

R(ti)
]

1
2

∑N
i F(ti)·A2

R(ti)
· σM

(13)σζ =

[

N
∑

i

A2
R(ti)

]− 1
2

· σM

(14)NEP =
Pin√
BW

(15)D∗ =
√
A

NEP
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Data availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained 
from the authors upon reasonable request.
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