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Image Turing test and its 
applications on synthetic 
chest radiographs by using 
the progressive growing generative 
adversarial network
Miso Jang 1,2, Hyun‑jin Bae 3, Minjee Kim 3, Seo Young Park 4, A‑yeon Son 5, Se Jin Choi 5, 
Jooae Choe 5, Hye Young Choi 5, Hye Jeon Hwang 5, Han Na Noh 6, Joon Beom Seo 5, 
Sang Min Lee 5* & Namkug Kim 5,7*

The generative adversarial network (GAN) is a promising deep learning method for generating images. 
We evaluated the generation of highly realistic and high‑resolution chest radiographs (CXRs) using 
progressive growing GAN (PGGAN). We trained two PGGAN models using normal and abnormal CXRs, 
solely relying on normal CXRs to demonstrate the quality of synthetic CXRs that were 1000 × 1000 
pixels in size. Image Turing tests were evaluated by six radiologists in a binary fashion using two 
independent validation sets to judge the authenticity of each CXR, with a mean accuracy of 67.42% 
and 69.92% for the first and second trials, respectively. Inter‑reader agreements were poor for the 
first (κ = 0.10) and second (κ = 0.14) Turing tests. Additionally, a convolutional neural network (CNN) 
was used to classify normal or abnormal CXR using only real images and/or synthetic images mixed 
datasets. The accuracy of the CNN model trained using a mixed dataset of synthetic and real data was 
93.3%, compared to 91.0% for the model built using only the real data. PGGAN was able to generate 
CXRs that were identical to real CXRs, and this showed promise to overcome imbalances between 
classes in CNN training.

The recent rapid development of artificial intelligence in medicine can be primarily attributed to advances in 
algorithms, the computing power of graphics processing units (GPUs), and the generation of healthcare  bigdata1. 
The number of  studies2 applying deep learning techniques to medical imaging has increased significantly in 
recent years. Specifically, applications include lesion detection, image segmentation, classification, and image 
 reconstruction3,4. However, there are several limitations, including a strong imbalanced dataset for specific 
diseases, expensive labels, and legal and ethical issues regarding patients’ privacy concerns, in implementing 
deep learning techniques in medical  imaging3,5. Given the rarity of some diseases and high dependency on vast 
amounts of good-quality labelled data, which requires considerable time input from experts and correspondingly 
high expenses, many medical datasets suffer from class imbalance and insufficient  labeling6,7. Moreover, most 
supervised learning models exhibit optimal performance for specific tasks in narrow clinical settings, which in 
turn indicates “weak” artificial intelligence. However, the technique can be ineffective with limited coverage when 
used in real clinical settings, such as emergency departments, because of the diversity of clinical situations and 
imbalanced diseases. A potential approach for overcoming these issues involves applying unsupervised learning 
models for many tasks, including generating synthetic dataset and, anomaly detection.
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Generative adversarial networks (GANs) are effective non-supervised learning  method8,9 that have gained 
popularity for their high performance in creating realistic  images10. The generation of realistic medical images 
can lead to new opportunities for solving the problems involving class imbalance, data augmentation, and 
patients’ privacy  concerns5,8,9,11. GANs have been utilized in various medical imaging tasks to resolve the afore-
mentioned problems with promising  results12–18. Additionally, in some studies, attempts have been made to boost 
the performance of lesion detection by subtracting the most similar and GAN-generated normal image from a 
pathological real  image19,20. Despite these promising results, the generation of synthetic medical images that are 
realistic to the maximum extent is a prerequisite for applying GANs to actual clinical settings. However, there 
is a scarcity of studies in which the evaluation of the perceived “realism” of GAN-generated medical images by 
radiologists is  assessed21–23. Moreover, there have been no such studies focusing on the high-resolution chest 
radiographs (CXRs) using GANs. Recently, a progressive growing GAN (PGGAN)24 was suggested in computer 
 vision12,21,25–29. In some studies, a PGGAN model showed that synthetic body computed tomography images 
512 × 512 pixels in size were highly  realistic21 and the generated cephalogram X-ray images could be helpful for 
training convolutional neural networks (CNN) in imbalanced  dataset12.

Therefore, we used a PGGAN to generate highly realistic CXRs and performed image Turing tests and down-
stream tasks for classifying normal and abnormal CXRs. The classification was used to augment the realism of 
the synthetic images for evaluating the model. The contributions of our study are as follows:

1. We proposed a training method for producing highly realistic and high-resolution (1000 × 1000) synthetic 
CXR images with GAN.

2. Six thoracic radiologists evaluated these synthetic CXR images by visual Turing test.
3. The synthetic datasets may be used to train a downstream task to classify normal or abnormal CXR images 

without decreasing accuracy, which in turn can be used as an augmentation technique to overcome data 
imbalances.

Results
Results of the visual Turing test. Table  1 summarizes the results of the first Turing test with ABN-
PGGAN by the six readers. The mean accuracy, sensitivity, and specificity of the six readers were 67.4%, 57.3%, 
and 77.5%, respectively. Table 2 summarizes the results of the second Turing test with NOR-PGGAN by the six 
readers. The mean accuracy, sensitivity, and specificity of the six readers were 69.9%, 65.2%, and 74.7%, respec-
tively. Inter-reader agreements of six radiologists were poor for first and second image Turing tests wherein the 
Kappa values (95% CI) were 0.10 (0.07–0.14) and 0.14 (0.10–0.18), respectively.

As shown in Table 3, more experienced readers exhibited a higher probability of guessing the correct answer 
in the first Turing test dataset. However, there was no statistical difference between two groups in the second 
test dataset. As shown in Table 4, the reading time was higher when readers answered correctly in only synthetic 
images irrespective of whether the correction for the reader effect was considered. However, it was observed that 
the reading time was shorter when the reader effect was corrected in only real images.

As shown in Fig. 1, six synthetic images were judged as synthetic by all the readers and one synthetic image 
was judged as real by all the readers.

Table 1.  Performance of the first image Turing test.

Reader Accuracy (%, 95% CI) Sensitivity (%, 95% CI) Specificity (%, 95% CI)

R01 46.00 (38.95, 53.17) 59.00 (48.71, 68.74) 33.00 (23.92, 43.12)

R02 56.50 (49.33, 63.48) 76.00 (66.43, 83.98) 37.00 (27.56, 47.24)

R03 48.00 (40.90, 55.16) 59.00 (48.71, 68.74) 37.00 (27.56, 47.24)

R04 89.50 (84.40, 93.38) 90.00 (82.38, 95.10) 89.00 (81.17, 94.38)

R05 73.50 (66.81, 79.48) 86.00 (77.63, 92.13) 61.00 (50.73, 70.60)

R06 91.00 (86.15, 94.58) 95.00 (88.72, 98.36) 87.00 (78.80, 92.89)

Table 2.  Performance of the second image Turing test.

Reader Accuracy (%, 95% CI) Sensitivity (%, 95% CI) Specificity (%, 95% CI)

R01 52.00 (44.84, 59.10) 63.00 (52.76, 72.44) 41.00 (31.26, 51.29)

R02 52.50 (45.34, 59.59) 59.00 (48.71, 68.74) 46.00 (35.98, 56.26)

R03 90.50 (85.56, 94.18) 96.00 (90.07, 98.90) 85.00 (76.47, 91.35)

R04 83.00 (77.06, 87.93) 67.00 (56.88, 76.08) 99.00 (94.55, 99.97)

R05 50.50 (43.36, 57.63) 67.00 (56.88, 76.08) 34.00 (24.82, 44.15)

R06 91.00 (86.15, 94.58) 96.00 (90.07, 98.90) 86.00 (77.63, 92.13)
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Normal probability scores in real and synthetic images and Grad‑CAM. Figure 2 shows the nor-
mal probability scores of the known CNN classifier with real and synthetic images in the abnormal dataset (a) 
and normal dataset (b). Additionally, the Grad-CAMs of synthetic images that decisions of all readers were “syn-
thesized” are shown in the Fig. 3. The Grad-CAMs highlighted abnormal lung lesions in three synthetic images, 
which were not considered real by all the readers.

Performances of models using real and synthetic mixed datasets.. Figure 4 shows the confusion 
matrices of the two models. The AUROCs of the same real test set were 0.96 and 0.98 for the models trained 
using the real and synthetic mixed datasets, respectively. For the model trained using the real dataset, the overall 
accuracy was 91.0%, sensitivity was 87.0%, and specificity was 95.0%, while for the model trained using the syn-
thetic mixed dataset, the overall accuracy was 93.3%, sensitivity was 90.5%, and specificity was 95.6%. The results 
of supplemental experiments, which were performed with more than 6000 images of training data, were similar. 
The AUROCs of the same real test set were 0.98 and 0.98 for the models trained using the real and synthetic 
mixed datasets, respectively. The confusion matrices are presented in supplement Fig. S1.

Discussion
In this study, we demonstrated the generation of high-resolution CXRs using PGGAN and two visual Turing 
tests of synthetic and real CXRs of abnormal and normal patients performed by six readers with different expe-
rience levels. The test results indicate that readers, excluding most experienced radiologists exhibited different 
performances in terms of sensitivity and specificity, with extremely low Kappa values in the two Turing  tests30. 
Therefore, the radiologists were not able to distinguish synthetic CXRs from real CXRs. The first step in applying 
GAN to the development of models applicable to medical fields depends on the generation of highly realistic and 
high-resolution images. At the beginning of the study, we questioned whether realistic images 1024 × 1024 pixels 
in size can be generated by ABN-PGGAN and NOR-PGGAN. Although several reports have investigated the 
benefits of GANs in various medical imaging  fields7,9,31,32, evaluation of the realistic nature of GAN-generated 
synthetic images via a comparison of normal and abnormal CXRs has not been reported to the best of the author’s 
knowledge. Therefore, the realistic nature of synthetic images has not been well validated.

There were different points between the two Turing tests. Odds ratios in the first Turing test statistically 
exceeded those in the second Turing test in correcting answers, specifically when only synthetic images were 
used, thereby indicating that synthetic images generated from ABN-PGGAN were less real. Nevertheless, the 
results of beta coefficient on reading time of abnormal images in the first Turing test suggested it was difficult to 
judge synthetic images as synthetic. Furthermore, more time was required to obtain the correct answer in the 
first Turing test when compared to that in the second Turing test.

In this study, radiologists were not able to distinguish normal synthetic CXRs from real CXRs, irrespective of 
their expertise; however, more experienced radiologists were able to differentiate abnormal synthetic chest CXRs 
from abnormal synthetic CXRs, whilst ABN-PGGAN trained more CXRs than NOR-PGGAN. However, the 

Table 3.  Mixed effect logistic regression model for correcting answers in the image Turing test. Regression 
model: logit of correct answer ~ expert or novice + image random effect + reader random effect.

Datasets Applied data Odds ratio of correct answer (95% CI) p-value

First Turing test dataset

All 6.65 (3.29, 13.47)  < 0.001

Only real images 5.30 (2.75, 10.22)  < 0.001

Only synthetic images 7.69 (3.29, 17.98)  < 0.001

Second Turing test dataset

All 1.67 (0.33, 8.42) 0.54

Only real images 1.22 (0.17, 8.90) 0.85

Only synthetic images 3.95 (0.31, 51.34) 0.29

Table 4.  Mixed effect logistic regression model for reading time in the image Turing test. Regression model 
1: log(reading time + 1) ~ correct (y/n) + image random effect + reader random effect. Regression model 2: 
log(reading time + 1) ~ correct (y/n) + image random effect.

Datasets Applied data

Regression model 1 Regression model 2

Beta coefficient of reading time 
(95% CI) p-value

Beta coefficient of reading time 
(95% CI) p-value

First Turing test dataset

All − 0.027 (− 0.088, 0.033) 0.376 0.202 (0.125, 0.278)  < 0.001

Only real images − 0.196 (− 0.283, − 0.109)  < 0.001 0.105 (− 0.017, 0.227) 0.091

Only fake images 0.090 (0.003, 0.177) 0.044 0.277 (0.175, 0.379)  < 0.001

Second Turing test dataset

All − 0.052 (− 0.131, 0.027) 0.195 0.074 (− 0.002, 0.150) 0.058

Only real images − 0.003 (− 0.116, 0.111) 0.962 0.127 (0.015, 0.238) 0.027

Only fake images − 0.024 (− 0.137, 0.089) 0.674 0.020 (− 0.084, 0.124) 0.706
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range of abnormal CXRs is suspected to vary significantly when trained by GAN. Therefore, more experienced 
readers can detect artificial findings with abnormal lesions in synthetic images. In the analysis of reading time, 
when considering reader effect, reading time was short when readers determined real images as real in the first 
Turing test dataset. Conversely, NOR-PGGAN trained normal CXRs features relatively well. In the present study, 
inter-reader agreement was poor for the entire image set consisting of synthetic and real images, which indicates 
that it is difficult to distinguish between synthetic and real images (i.e., identifying realistic synthetic images).

Figure 1.  Several cases of the Turing test. (a) Synthetic images wherein the decisions of all the readers are 
synthetic in the first Turing test. (b) Synthetic images wherein the decisions of all the readers are synthetic in the 
second Turing test. (c) Synthetic images wherein the decisions of all the readers are real in the first Turing test.
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In CXRs, several lines and stripes are observed from the anatomic structures in the chest. Radiologists are 
trained to recognize their normal and abnormal appearances of lines and stripes on CXRs. In certain synthetic 
images, some discontinuities are present in the lines and stripes including interface of lung, vessels, and ribs, this 
tends to be more pronounced in abnormal synthetic images. By competing for the generator and discriminator, 
the GAN converges to an appropriate local minimum, and the generator produces a realistic image with a given 
latent  vector33. The latent space of GANs is the result of learning the mapping from a latent distribution to the 
real images via adversarial  training34. The latent spaces of ABN-PGGAN included pathologic features and less 
normal features when compared with those of NOR-PGGAN.

From the CNN viewpoint, the CNN was unable to distinguish between synthetic and real images, with the 
synthetic images considered more appropriate for training based on the purpose. All normal synthetic images 
generally exhibited normal probability scores of close to 1. The borderline of normal and abnormal CXRs was not 
evident, and thus the ABN-PGGAN trained dataset included normal CXRs. Furthermore, the visual Turing test 
of the abnormal dataset included normal real CXRs. The probability scores in the visual Turing test of abnormal 
dataset varied. However, the Grad-CAMs of abnormal synthetic images, which all readers determined as fake, 
highlighted pathologic lesions as opposed to artificial regions.

Furthermore, synthetic images were used to develop the classification task. The effects of class imbalance on 
the performance of CNNs were examined, where it was determined to decrease the performance of  CNN35,36. The 
CNN model was trained on two datasets, namely only real and mixed synthetic datasets. There is always a short-
age of disease data in clinical situation, meaning that the mixed synthetic dataset included abnormal synthetic 
CXRs. The classification performance of two models were comparable and synthetic images improved the perfor-
mance of CNN classifiers. In general, 1000 images were used as a rough criterion for training a model per class. 
In a recent study, approximately 50,000 images per class was deemed necessary for acceptable  performance37. In 
our current study, enough images were generated for further studies. Additionally, disentangling the latent space 
of GAN leads to controllable abnormal CXR  features38, indicating that synthetic images generated by GAN can 
lead to a solution for training CNN in rare diseases. Since a method for evaluating the quality of the generated 
data has not yet been established, when synthetic data alone are used, performance may be lower than when 
using real data.

The potential clinical applicability of useful GANs can be image reconstruction and  denoising16,39, translation 
between different radiologic  modalities14,40,41, and anomaly  detection19,29. Detecting abnormalities is predicated 
on learning the probability distribution of normal training data, unlike other GAN-based tasks. Any image data 

Figure 2.  Probability scores of the CNN classifier in Turing test datasets. (a) First image Turing test dataset. (b) 
Second image Turing test dataset.
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that deviate from this distribution are regarded as abnormal. In daily clinical situations, diagnostic images are 
clinically acquired for patients with a variety of diseases. If GAN models can filter out normal chest x-rays well, 
doctors can focus more on chest images with abnormal findings. However, since the normal range may vary 
depending on the clinical situation and the age of the patient, many additional studies are needed to actually 
utilize it.

Although several evaluation metrics were used to measure the quality of generated images using GAN models, 
such as Inception Score (IS)42 or Fréchet Inception Distance (FID)43, the metrics did not fully explain the extent 
of failure or success of the generated synthetic images in medical images. This is because the IS and FID metrics 
solely focus on the distributions of synthetic images using a CNN network (Inception V3), as well as ignore the 
semantics of the images. Therefore, it was concluded that, to date, a visual Turing test by human experts is the 
only viable solution to fairly evaluate the quality of generated synthetic medical images.

This study included several limitations. First, for ABN-GAN training, the ratio of abnormal and normal CXRs 
was approximately 8:2, which was emphatically determined. However, it is necessary to further train the model 
to generate more realistic abnormal images. Second, there are various types of GAN architectures including 
 StyleGAN244, StyleGAN2-Adaptive Discriminator Augmentation (ADA)45, and score-based generative  model46, 
which can be evaluated in this manner. We have used StyleGAN2-ADA  model45 for training with the learning 
rate of 0.002 and r1_gamma of 26.2144 without mirror augmentation. The details of generated CXRs seem to 
fall off in minute parts such as ribs and pulmonary blood vessels until now. Further experiments and research 
are currently ongoing. Third, given the need to further examine the latent space of GAN proceeds, additional 
research must focus on determining the amount of and range of training data. Finally, the number of readers 
of the visual Turing test was relatively low, meaning that it is not possible to generalize factors related to the 
experience of readers. Hence, this should be examined further.

In conclusion, ABN- and NOR-PGGAN models were able to generate highly realistic and high-resolution 
CXRs that were validated by radiologists with different levels of expertise and a previously trained CNN classifier. 

Figure 3.  Grad-CAMs of synthetic images in the first Turing test dataset wherein the decisions of all readers are 
synthetic.
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The generation power of NOR-PGGAN was considered to exceed that of ABN-PGGAN, indicating that GAN 
generated abnormal images require more data. Nevertheless, the proposed models imply significant value for the 
development of CNN models using GAN-based data augmentation. Further research will also be able to show the 
utilization of GAN-generated data for developing anomaly detection for avoiding expensive labels, overcoming 
strong imbalanced datasets for rare diseases, and avoiding legal and ethical issues related to privacy concerns.

Materials and methods
Ethical approval. This retrospective study was conducted according to the principles of the Declaration of 
Helsinki and in accordance with current scientific guidelines. The study protocol was approved by the Institu-
tional Review Board Committee of Asan Medical Center (AMC), Seoul, Korea (No. 2019-0321). The require-
ment for informed patient consent was waived by the Institutional Review Board Committee of Asan Medical 
Center because of the retrospective nature of this study.

Data collection. A large number of chest X-ray images were collected in the department of radiology of 
AMC between January 2011 and December 2018. The original dataset was cleaned as illustrated in Fig. 5. Nor-
mal and abnormal chest x-ray images were classified using diagnostic codes. This study was conducted on chest 
x-rays of adults aged 19 years and older, and the images were included solely from fixed radiography systems 
of GE Healthcare. The age range generally agreed upon as an adult was selected because body parts included 
in chest X-ray images may vary due to differences in body size according to age, and differences in prevalent 
diseases also exist in children and adolescents. This ensured the control of domain shift due to various types 
of x-ray equipment. Furthermore, CXR posteroanterior (PA) images were acquired by removing other chest 
images because the original dataset contained various types of chest images, such as chest lateral images and 
chest decubitus images, which can be only differentiated by using DICOM fields. For selecting a normal CXR 
PA image, classified normal CXRs with many devices or wires, such as central venous catheters and ECG lines, 
were excluded from the normal group via the simple convolutional neural network (CNN) classifier. This was 
further confirmed by an expert radiologist. Finally, the number of normal group chest images was 72,958 and 
abnormal group chest images was 91,163. The DICOM files of CXRs were converted into 1024 × 1024 pixel-sized 
8-bit PNG format with normal or abnormal labels.

Training PGGAN models. PGGAN is a GAN variant and consists of two networks including a genera-
tor and discriminator. The PGGAN model was selected to generate high resolution CXRs because this model 
exhibits better performance in reconstructing a global structure and fine details with high resolution when 
compared with other GAN variant  models47–49. Furthermore, PGGAN learns to generate images starting from a 
low resolution of 4 × 4 pixels to a high resolution of 1024 × 1024 pixels, by progressively growing generator and 
discriminator  networks24. The general characteristics of the training images are trained through progressive 
learning and detail-oriented characteristics are trained in addition to layer growth. The output of the lower reso-
lution layer has an impact on the high-resolution output due to the fade-in type used while raising resolution. 
PGGAN gradually creates a high-resolution image from a large-scale low-resolution image while considering 
the learning outcome of a previous layer. A publicly available official website of PGGAN was implemented using 
TensorFlow in Python (Tensorflow-gpu 1.6.0, Python 3.4.0). GAN training is defined by a game theory in which 

Figure 4.  Confusion matrices of the two models. (a) Performance of the trained model using only the real 
dataset. (b) Performance of the trained model using the synthetic mixed dataset.
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two players compete against each other. The generator network learns to map a noise to the input space, and the 
discriminator network learns to distinguish between the generated and true samples. Formally, the loss function 
is defined by minimax objective:

where Pr is the data distribution of images (real), Pg is the model distribution implicitly defined by x̃ = G(z) , 
z ∼ p(z) ( P(z) is Gaussian distribution), and Px̂ is defined by uniformly sampled along straight lines between 
point pairs sampled from Pr and Pg .

PGGAN use the improved Wasserstein GAN  loss50 (WGAN-GP loss), which perform better than Wasserstein 
GAN (WGAN)51 by virtue of gradient penalty.

In this study, we selected PGGAN with the improved Wasserstein GAN (WGAN-GP) loss, as it stabilizes 
the training sufficiently to synthesize high-resolution images. The equation of WGAN-GP loss is defined as:

A value of � = 10.0  was used in the experiments.
In this study, the PGGAN model was trained with 91,163 abnormal CXRs and randomly sampled 20,000 

normal CXRs as abnormal-PGGAN (ABN-PGGAN) for training spectrum from normal to abnormal CXRs. 
Because there is a region in which the boundary between normal and abnormal cannot be clearly divided. Fur-
thermore, the PGGAN model was trained solely with 72,958 normal CXRs as normal-PGGAN (NOR-PGGAN) 
as a control study for generating normal CXRs. The variations in normal CXRs were regarded as smaller than 
those of abnormal CXRs. ABN-PGGAN was trained for 130 epochs and required approximately 12.2 days with 
two Nvidia Titan RTX GPUs, and NOR-PGGAN was trained for 160 epochs, which required approximately 
12.5 days with two Nvidia P40 GPUs. Additionally, two distinct sets of 50,000 synthetic CXR images were gener-
ated by using the trained generators of ABN-PGGAN and NOR-PGGAN.

Image Turing test. The image Turing test was conducted twice to assess the realistic nature of synthetic 
CXRs, specifically, 400 CXRs were selected for the test. Fifty percent of these CXRs were randomly selected 
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Figure 5.  Overview of collection of normal and abnormal datasets collection.
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from the two sets of 50,000 synthesized images while the other fifty percent of the images were real images that 
were randomly selected from the training set. The first set of Turing test images consisted of 100 real normal 
and abnormal chest images, randomly sampled from ABN-PAGGAN trained set, and 100 synthetic images ran-
domly sampled from 50,000 images generated by ABN-PGGAN. The second set of Turing test images consisted 
of 100 real normal chest images, randomly sampled from NOR-PAGGAN trained set, and 100 synthetic images 
randomly sampled from 50,000 images generated by NOR-PGGAN.

To avoid selection bias, not all the synthetic images were individually selected by the researchers. The image 
Turing test was conducted with six readers (radiology residents and four thoracic radiologists) by displaying 
images one-by-one via a web-based interface (supplement Fig. S5). The readers comprised of one-year and three-
year radiology residents and one-year, three-year, ten-year, and twenty-year radiology specialists. To reduce 
environmental variability during the Turing test, the images were displayed in the same order, and any previous 
answers could not to be modified. All readers successfully performed the test and decided whether each image 
was real or synthetic without any time limit and no prior information on the number of real or synthetic images. 
Additionally, sensitivity, specificity, accuracy and reading time were derived after the image Turing tests were 
completed.

Comparison of the CNN classifier on real and synthetic images. We measured the normal prob-
ability score of the 200 synthetic and 200 real images by using our previously trained classifier with an accuracy 
of 94.7 to differentiate between normal and abnormal  CXRs52. As the probability score tends to 1, the probabil-
ity of a normal CXR increases. To determine the decision-making process of the model and identify the most 
important regions of the model for classifying abnormal CXRs in the abnormal dataset, the gradient-weighted 
class activation mapping technique (Grad-CAM)53 was used by overlaying the most significant regions of abnor-
mal lesions in the images with red color.

Efficacy of synthetic images by comparing the performance of models trained solely on real 
and/or synthetic mixed datasets. To verify the utility of the synthetic images, a CNN-based classifica-
tion was performed as a downstream task. The task involved classifying normal or abnormal images in only the 
real chest radiographs dataset and adding synthetic images generated by ABN–PGGAN. The synthetic images 
were added, because normal images significantly exceeded abnormal chest radiographs in the real world.

Therefore, the real dataset consisted of 1000 normal and 1000 abnormal chest radiographs, wherein the latter 
included 200, 200, 200, 200, and 200 images with nodules, consolidation interstitial opacity, pleural effusion, and 
pneumothorax,  respectively52. Normal and abnormal datasets with nodule[s], including mass/consolidation or 
interstitial opacities, were confirmed via chest CT and pleural effusion. Furthermore, pneumothorax on CXRs 
were determined via consensus of two thoracic radiologists with corresponding chest CT images. The real dataset 
was randomly split into 80% for training and 20% for testing. The test set was fixed, and half of the abnormal 
chest radiographs from the training dataset were randomly sampled for use in the synthetic mixed dataset.

The synthetic mixed dataset was composed of 800 normal and 800 abnormal chest radiographs. Specifically, 
800 normal chest radiographs were from the training dataset of the real dataset, 400 abnormal chest radiographs 
were from the training dataset of the real dataset, and 400 abnormal chest images were ABN-PGGAN-generated 
images with high abnormal probability score according to the known CNN  classifier52.

In addition, supplemental experiments were conducted with the more training dataset than the previous 
training dataset using 3269 normal and 3269 patients with including 904, 510, 240, 1324, and 291 CXRs with 
nodules, consolidation, interstitial opacity, pleural effusion, and pneumothorax,  respectively44. The synthetic 
mixed dataset was constructed by including only 1635 synthetic abnormal images from the abnormal data and 
subtracting the same number of real data. The 1635 synthetic images were randomly extracted from 50,000 
images generated by ABN-PGGAN.

The training using real and synthetic mixed datasets was performed via vanilla ResNet-5054, which was cho-
sen as a baseline for training classification models and its performance was excellent. To compare performance, 
two models were tested on the fixed real test set, and an area under the receiver operating characteristic curve 
(AUROC) was drawn.

Statistical analysis. The sensitivity, specificity, accuracy, and reading time of the six readers were calcu-
lated for the image Turing test. Inter-reader agreement was evaluated using Fleiss Kappa. The 95% confidence 
intervals (CI) of accuracy, sensitivity, and specificity were computed using binomial  distribution55. To investigate 
how experience influences the probability of the correct answer, readers were classified into two groups based 
on their work experience. Specifically, R04, R05, and R06 were part of a more-experienced group and R01, R02, 
and R03 were part of a less-experienced group. Given that the results of the image Turing test were in a binary 
format for each image and the data were correlated with each individual and each image, mixed effect logistic 
regression, which models each reader and each image as random effects, was used to test whether the more-
experienced group exhibited higher probability for correct answers than the less-experienced group. To evaluate 
the effect of experience on reading time, linear mixed models were used with each image and with/without each 
reader as random  effects56.
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