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Active visual search in naturalistic 
environments reflects individual 
differences in classic visual search 
performance
Thomas L. Botch 1*, Brenda D. Garcia 1, Yeo Bi Choi 1, Nicholas Feffer 2,3 & 
Caroline E. Robertson 1

Visual search is a ubiquitous activity in real-world environments. Yet, traditionally, visual search is 
investigated in tightly controlled paradigms, where head-restricted participants locate a minimalistic 
target in a cluttered array that is presented on a computer screen. Do traditional visual search tasks 
predict performance in naturalistic settings, where participants actively explore complex, real-
world scenes? Here, we leverage advances in virtual reality technology to test the degree to which 
classic and naturalistic search are limited by a common factor, set size, and the degree to which 
individual differences in classic search behavior predict naturalistic search behavior in a large sample 
of individuals (N = 75). In a naturalistic search task, participants looked for an object within their 
environment via a combination of head-turns and eye-movements using a head-mounted display. 
Then, in a classic search task, participants searched for a target within a simple array of colored 
letters using only eye-movements. In each task, we found that participants’ search performance was 
impacted by increases in set size—the number of items in the visual display. Critically, we observed 
that participants’ efficiency in classic search tasks—the degree to which set size slowed performance—
indeed predicted efficiency in real-world scenes. These results demonstrate that classic, computer-
based visual search tasks are excellent models of active, real-world search behavior.

Locating an object in a cluttered environment is a ubiquitous visual behavior. The mechanisms by which humans 
accomplish visual search have been comprehensively studied in traditional computer-based settings using both 
artificial  arrays1 and complex scene  images2. Yet, little is known about whether the principles of visual search 
revealed by these studies extend to active, self-directed exploration in real-world environments, and whether 
individual performance in both traditional and naturalistic contexts is limited by common factors.

Classic, computer-based studies have identified numerous factors that govern visual search  performance3. For 
example, search is limited by the similarity between the visual features of a target (e.g., color, shape, size) and the 
array of distractors in which it is  embedded4. A key component of these studies is the use of minimalistic, simpli-
fied stimulus arrays, which allow experimenters to systematically manipulate one factor of interest (e.g., color), 
while controlling for others (e.g., shape, size), and to measure the impact of this isolated factor on performance. 
This approach has provided insights into the mechanisms underlying visual search and inspired multiple formal 
and conceptual models of the  behavior1,5,6. Further, these models underpin frameworks for understanding diverse 
cognitive processes including  attention4,6–9,  reward10,11, and decision-making12.

However, the computer-based approach contains two key drawbacks that limit generalization to real-world 
search  behavior13–15. First, artificial stimuli lack the complex visual statistics and structural cues present within 
real-world  scenes14. Recent computer-based studies investigating search in complex scene images demonstrate 
that the structure of the visual environment supplements attentional guidance beyond basic factors probed 
in paradigms with minimalistic  stimuli16,17 by engaging episodic and semantic  memory18,19 and guiding eye-
movements to visual  targets20,21. Second, computer-based approaches engage working memory differently from 
active, immersive  contexts22. During active exploration, working memory operates across multiple spatial refer-
ence frames to guide  attention23. Thus, naturalistic paradigms present a valuable opportunity to validate models 
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of human behavior derived in traditional laboratory settings and extend these models to the conditions and 
demands of everyday  life24,25.

Indeed, decades of research have established many connections between visual search in laboratory settings 
and in real-world  environments26–31. In particular, researchers have characterized visual search performance in 
multiple professional contexts including  radiology32–34, airport  security35,36, and  driving30. These studies have 
revealed numerous features of computer-based visual search that translate to everyday settings. For example, 
these studies have shown that experienced radiologists are both faster and more accurate at detecting abnor-
malities in medical images than naïve  observers37–39. In the context of airport security, individual differences 
in search speed and accuracy measured on a computer-based app have been shown to predict target detection 
at TSA  checkpoints40. Interestingly, not all aspects of the laboratory are paralleled in real-world environments. 
For example, because radiologists and airport security officers encounter targets at lower rates in occupational 
settings, as compared with laboratory paradigms, error rates (misses) are relatively higher and false alarm rates 
lower in these occupational settings, regardless of  expertise28,38. Together, these studies show important parallels 
of visual search performance across computer-based and real-world contexts.

Virtual reality (VR) offers complementary opportunities to investigate visual behavior in naturalistic contexts. 
Similar to real-world settings, head-mounted VR displays allow researchers to study search in active condi-
tions, where working memory can guide search across spatiotopic reference  frames23,41. However, in contrast 
to real-world settings, VR enables researchers to present diverse sets of stimuli with ease, manipulate specific 
environmental features of these stimuli, and explore the contributions of these factors to visual search perfor-
mance. Recent studies have investigated active visual search behavior using head-mounted  VR42–44. These stud-
ies again highlight the importance of environmental structure (e.g., scene layout, semantics) in shaping active 
visual search  strategies45–48. However, these studies have largely employed minimalistic, computer-rendered 
virtual environments as stimuli, where the experimenter can manipulate scene content and structure to identify 
regularities that facilitate attentional guidance in active settings. Because such rendered stimuli do not contain 
real-world visual content, these studies are subject to the first limitation of the classic paradigms described above: 
they cannot address the degree to which the statistical regularities of real-world scenes impact search in active, 
naturalistic settings.

Here, we leverage advances in VR technology to study the common factors limiting visual search in classic, 
computer-based paradigms and immersive scenes with real-world visual content. We specifically focused on one 
key factor that limits search performance in classic studies, set size: the number of items within a visual array. 
Increasing set size impairs search performance in both artificial  arrays49,50 and images of complex  scenes21,51,52. 
However, it remains unclear whether set size effects analogously limit behavioral performance during active 
exploration of real-world environments, where environmental structure and memory are available to aid atten-
tional  guidance53,54. Further, to our knowledge, whether individual differences in search efficiency in artificial 
displays predict naturalistic search performance in real-world environments has never been explored.

Thus, our study aimed to answer two questions: (1) does set size limit both classic and naturalistic search, 
and (2) is search efficiency on classic, computer-based search tasks predictive of active search performance in 
real-world scenes? Participants (N = 75) completed two tasks: (1) a classic, computer-based conjunctive search 
paradigm with arrays varying in set size and (2) a naturalistic, VR-based search paradigm with immersive, real-
world environments varying in levels of visual  clutter55. In both tasks, we characterized the impact of set size 
on visual search performance. We also tested whether participants’ search efficiency was related across the two 
paradigms (classic and naturalistic).

Methods
Participants. 75 adults participated in two experiments (N = 49 females; mean age 21.55 + /− 3.31 STD 
years). Participants were recruited based on (1) having normal or corrected-to-normal vision and no colorblind-
ness, (2) having no neurological or psychiatric conditions, and (3) having no history of epilepsy. We selected 
our sample size based on comparable  studies46,47, and no participants were excluded from the analysis. Written 
consent was obtained in accordance with the Declaration of Helsinki via a protocol approved by the Dartmouth 
College Ethics Committee for the Protection of Human Subjects (CPHS).

Remote data collection. Participants received a standalone head-mounted display (Oculus Quest 2, www. 
oculus. com, single fast-switch LCD, 1832 × 1920px per eye; ~ 90° field of view; 72 Hz refresh rate) preconfigured 
with the ManageXR (www. manag exr. com) device management software. Experiments were built in Unity ver-
sion 2018.4.12f1 (www. unity. com) with custom scripts written in C#. Experimental data was collected through a 
custom data transfer pipeline written in C# and PHP to transmit data from the HMD to lab servers.

Experiment 1: Naturalistic visual search. Exp. 1—Stimuli and set size manipulation.  In the natural-
istic search experiment, stimuli consisted of 360° “photospheres” of real-world scenes, sourced from an online 
photo sharing website (www. flickr. com). We curated 54 photospheres with four criteria to minimize the compli-
cations of defining set size in real  scenes52. First, we selected photospheres of indoor scenes, as outdoor scenes 
contain few segmented regions which may not be representative of the true set size. Second, we ensured the 
photospheres did not contain humans to avoid the possibility that humans are a unique object category. Third, 
we confirmed that each photosphere contained a “singleton” target object: an object that appeared only once 
inside a given photosphere. Fourth, given the importance of depth to scene processing in early visual areas on 
the  brain56, we ensured that all photospheres had comparable depth. To this end, we estimated the depth of each 
photosphere using the big-to-small (BTS)  algorithm57.

http://www.oculus.com
http://www.oculus.com
http://www.managexr.com
http://www.unity.com
http://www.flickr.com
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We adopted the concept of visual clutter as a proxy for set size in real-world  scenes49,55 and approximated the 
visual clutter of each photosphere using the proto-object segmentation  algorithm58. Subsequently, we divided the 
photospheres into three bins (18 photospheres each) based on the estimated clutter measurements (low, medium, 
and high clutter) and ensured that the average clutter of each bin significantly differed from the others (Fig. 1A). 
The average depth of photospheres in each bin did not significantly differ between bins (Fig. 1B).

Target object locations were balanced across photospheres within each clutter bin. For each scene, the yaw of 
each photosphere was randomly rotated such that the target object was located in one of three quadrants of the 
immersive environment relative to the participant’s initial facing direction: (1) to the left of the participant, (2) 
in front of the participant, or (3) to the right of the participant. This resulted in an equal distribution of target 
object locations relative to the participant across the three possible quadrants (6 photospheres per quadrant), 
and across the clutter bins (18 photospheres per quadrant).

Exp. 1—Paradigm.  On each trial of the naturalistic visual search experiment (54 trials), participants were pre-
sented with a photosphere via the head-mounted display (HMD) for a maximum of 30 s, or until the controller 
trigger was pressed indicating detection of the target object (Fig. 2A; Supplemental Video S1). In all scenes, an 
occluding wall obstructed the 90° immediately behind the participant such that the 270° in front of the partici-
pant was visible. Accordingly, participants were informed that the area behind them would not be visible and 
instructed to explore the forward, left, and right portions of the photosphere. To mitigate confusion during the 
real-world visual search task, we informed participants that the target object would always be present inside the 
virtual environment.

Before each trial, participants were presented with a pre-trial fixation target at screen-center to ensure partici-
pants entered each photosphere facing the same direction. Participants were required to align their head-center 
with the target for 3 s. Subsequently, participants were presented with a conjunctive word cue (e.g., green bot-
tle) describing the target object in the following photosphere. Participants were instructed to “find the target as 
quickly as possible”. To report the target, participants centered their head on the target (specifically, they centered 
a light gray circle, which was locked to screen-center, on the target) and pressed the controller trigger. A response 
was considered correct if the participant’s head coordinate was within a 7.5° visual angle radius from target center 
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Figure 1.  Visual clutter and depth estimation in real-world scene stimuli. (A) Example visualizations of visual 
clutter estimated by the proto-object segmentation algorithm. Photospheres were divided into three bins, 
and average clutter of each bin significantly differed from the others (F(2,51) = 144.7, p < 0.001). (B) Example 
visualizations of scene depth estimated by the big-to-small algorithm. The average depth of each clutter bin 
did not significantly differ (F(2,51) = 1.20, p = 0.331). In all plots, error bars represent 1 SEM. *p < 0.05, **p < 0.01, 
***p < 0.001, n.s. p > 0.05.
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when the trigger was pressed, and reaction time was calculated as the time of the trigger press relative to trial 
start. After pressing the trigger, participants were given feedback on the accuracy of their response. The gray, 
head-locked circle would turn green if the participant selected the correct object and would turn red if the par-
ticipant selected an incorrect object. After each trial, participants were returned to a virtual home environment 
where they were informed of their reaction time and instructed to take a break. A mandatory break occurred 
after each quarter of the experiment (14 trials) to allow participants to rest their eyes.

At the start of the study, participants were shown a set of instructions orienting them to the task. Following 
the instructions, participants completed two practice trials to ensure familiarity with the task. Participants were 
highly accurate during practice trials (mean accuracy: 84%), indicating comprehension of the task.

Experiment 2: Classic visual search. Exp 2—Stimuli and set size manipulation.  In the classic visual 
search experiment, stimuli consisted of letter arrays, which were presented on a gray background around a 
central fixation point (Fig. 2B). The letters in the array had two feature dimensions: form (Ts and Ls) and color 
(red and black). Arrays spanned 25° × 25° visual angle, and letters within the array were randomly distributed 
around a central fixation point and spaced from others by 2° visual angle. Displays had three potential set size 
conditions: 5, 15, or 25 letters.

Exp 2—Paradigm.  On each trial of the classic conjunctive search task (180 trials), participants were instructed 
to report the presence/absence of a target letter (a red T) using a keypad. Note, the target letter shared a feature 
dimension with each type of distractor (black Ts and red Ls). There were two trial types, target present or target 
absent, which each occurred 50% of the time. On trials without a conjunction target, an additional distractor 
was added at random.

Each trial lasted for a maximum of 10 s or until a keypress. Before each trial, participants were shown a black 
fixation cross and required to press a button to start the trial. Participants were instructed to fixate on the cross 
until trial start, after which point they were free to move their eyes. Participants were instructed to “find the 
target as quickly as possible” and to “press 4 if the target is present or 6 if the target is absent”. Participant reaction 
time was calculated as the time of the button press relative to trial start. Following each trial, participants were 
given feedback on the accuracy of their response (a green check for correct responses and a red X for incorrect 
responses). A mandatory break occurred every 45 trials to allow participants to rest their eyes.

At the start of the study, participants were shown a set of instructions orienting them to the task. Following 
the instructions, participants completed a set of practice trials (12 trials) to ensure familiarity with the task. Par-
ticipants were highly accurate during practice trials (mean accuracy: 91%), indicating comprehension of the task.

Statistical analyses. For all statistical tests, alpha level of p < 0.05 was used to assess significance, tests 
were two-tailed, and we applied Bonferroni correction for multiple-comparisons where appropriate. All analyses 
were conducted in the R statistical programming  environment59. Effect sizes were calculated using the effectsize 
 package60. For each task (naturalistic/classic), we built a linear mixed-effects model to evaluate the predictivity 
of condition (low, medium, or high set size) on reaction time (RT) using the lme4  package61. In each model, we 
included a fixed effect of condition. Additionally, we included a within-subject random effect of condition to 
account for individual variation in a) baseline reaction times (random intercepts) and b) individual efficiency 
(random slopes). Thus, we were able to separately estimate group-level and subject-level effects of the impact of 
condition on RT.

Experiment 2: Classic Visual Search

Fixation until key-
press

Search + response 
(10s max)

Experiment 1: Naturalistic Visual Search

Fixation (3s) 

Word-cue until 
button press

Search (30s max)

A B

Figure 2.  Experimental paradigms. (A) Naturalistic visual search paradigm. After a pre-trial fixation, 
participants were presented with a conjunctive word description of a target object. Subsequently, participants 
actively searched (e.g., head-turns, saccades, etc.) for the described object inside an immersive photosphere. 
(B) Classic visual search paradigm. After a pre-trial fixation, participants searched for a red T within a cluttered 
array shown via a head-fixed display.
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Results
To investigate whether classic findings of visual search extend to naturalistic settings, we developed a novel 
paradigm in which participants searched for real-world objects inside of 360° real-world scenes. For each visual 
search task (naturalistic/classic), we evaluated the extent to which condition (low, medium, or high clutter/set 
size) predicts reaction times (RT) using a linear mixed-effects model. We hypothesized that greater set sizes would 
result in slower RTs in each task, and that individual estimates of this effect of set size on RT (search efficiency) 
would correlate across tasks (naturalistic / classic).

Naturalistic visual search performance. We first examined the relationship between visual clutter 
levels and search performance inside immersive, real-world scenes. As predicted, we found that participants 
were faster and more accurate to locate the target in less-cluttered as compared with more-cluttered scenes. 
Combining data across our participants, we found a significant correlation between clutter-level and reaction 
times to correctly detect a target (rs = 0.595, p < 0.001). This correlation was significant in all three sections of 
the environment: left, front, and right of the participant (left frame: rs = 0.62, p < 0.001; front frame: rs = 0.74, 
p < 0.001; right frame: rs = 0.51, p = 0.032). Importantly, a one-way ANOVA on the fixed effect of clutter revealed 
a significant main effect on reaction times across participants (Fig. 3A; F(2,368.76) = 187.42, p < 0.001, ηp

2 = 0.5). 
An additional one-way ANOVA demonstrated a main effect of condition on individual participant false alarm 
rate (F(2,222) = 63.1, p < 0.001, ηp

2 = 0.36). Overall, these results suggest that visual clutter modulates visual search 
performance inside real-world scenes.

Classic visual search performance. We next evaluated the relationship between set size and search per-
formance in a classic visual search paradigm. For target present and target absent trials, we used separate linear 
mixed-effects models to evaluate the fixed effect of set size on RT while accounting for the random effect of sub-
ject. A one-way ANOVA conducted on the fixed effect of set size revealed a significant main effect of set size on 
RT across participants for both target present (Fig. 3B; F(2,116.08) = 463.04, p < 0.001, ηp

2 = 0.89) and target absent 
trials (Fig. 3C; F(2,105.09) = 309.66, p < 0.001, ηp

2 = 0.85). A separate one-way ANOVA demonstrated a main effect 
of set size on individual participant false alarm rates (F(2,222) = 6.40, p = 0.002, η2 = 0.05). In sum, these results 
dovetail with previous findings of classic visual search paradigms that demonstrate the impact of set size on 
visual search  performance4.

Reliability of search efficiency. Before examining the relationship between performance on the two 
experimental paradigms, we established the reliability of search efficiency: the impact of set size on a partici-
pant’s RT. For each task, we split each participant’s RTs in half within each level of set size. We next fit a linear 
mixed effects model for each half-split of RT to estimate search efficiency, the random slope of condition for each 
participant. We calculate reliability (ρ*) as the Pearson’s correlation between search efficiency of one half and 
the other, corrected with the Spearman-Brown prediction formula to estimate the full-length task reliability. We 
find low reliability for naturalistic search efficiency (ρ* = 0.293) and high reliability for classic search efficiency 
on both target present (ρ* = 0.947) and target absent trials (ρ* = 0.947).
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Figure 3.  Experimental results. (A) Visual clutter modulates reaction times in real-world environments 
(F(2,368.76) = 187.42, p < 0.001). Set size modulates reaction times on both (B) present trials (F(2,116.08) = 463.04, 
p < 0.001) and (C) absent trials (F(2,105.09) = 309.66, p < 0.001) in a classic visual search task. Lines indicate random 
slope fits for each participant. *p < 0.05, **p < 0.01, ***p < 0.001, n.s. p > 0.05.
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Relating performance on naturalistic and classic visual search tasks. Having established the reli-
ability of search efficiency within each task, we next investigated the relationship of search performance between 
the two tasks. For each task, we used a linear-mixed effects model to derive search efficiency: the random slope of 
condition fit to each participant’s RT. Importantly, we accounted for variability of RT within each task by model-
ling random intercepts for each participant.

We found a significant relationship between search efficiency on the naturalistic search task and on target 
present trials of the classic visual search task (Fig. 4A: rs = 0.36, p = 0.002). However, the relationship between 
naturalistic and classic visual search was attenuated on target absent trials (Fig. 4B: rs = 0.14, p = 0.23). We next 
compared individual efficiency in each quadrant (left, front, right) of the naturalistic visual search task with each 
trial type of the classic visual search task. Interestingly, efficiency in the front quadrant of the naturalistic visual 
search task was significantly related to efficiency on both target present and target absent trials (present: rs = 0.27, 
p = 0.02; absent: rs = 0.29, p = 0.012). While we also observed a significant relationship between efficiency in the 
right quadrant and target present trials (rs = 0.28, p = 0.012), this relationship did not hold when considering target 
absent trials (rs = 0.02, p = 0.85). Furthermore, we found no relationship between efficiency in the left quadrant 
and either classic search trial type (present: rs = 0.15, p = 0.19; absent: rs = 0.09, p = 0.46). Together, these results 
suggest that efficiency on a classic visual search task, indexed by a set size manipulation, predicts efficiency in 
naturalistic visual search, indexed by a clutter manipulation in complex, visual scenes.

Discussion
We find that visual search in immersive, real-world environments bears remarkable similarities to classic search 
in two important senses. First, classic and naturalistic search performance are both limited by set size: just as 
classic search efficiency is limited by the number of distractors in the visual display, naturalistic search efficiency 
is limited by a real-world analogue of set size, visual clutter. Second, individual differences in search efficiency 
are related in both tasks: participants with steeper costs of set size in artificial arrays of letters were more severely 
impacted by visual clutter in real-world environments. Together, these findings suggest that classic search is an 
excellent model of search efficiency within real-world environments.

Relating individual performance between computer-based and naturalistic settings is central to identifying 
the cognitive factors and task strategies that facilitate visual  search3,62. Differences in visual search performance 
have been demonstrated across development and healthy  aging63,64, clinical  diagnoses65,66, and  expertise67. Fur-
ther, the task of visual search is highly relevant to performance in various professional settings (e.g., radiology, 
airport security)34–37,68. For instance, previous research has shown a relationship between airport security officers’ 
search performance on a computer-based app and their detection of violations at an airport checkpoint, where 
people with faster and more accurate search within the app were better at detecting prohibited items at TSA 
 checkpoints40. While studies within professional settings begin to establish connections between computer-based 
paradigms and naturalistic experience, both the examined populations (e.g., experts) and sampled contexts (e.g., 
TSA checkpoints) limit the generalizability of these results to diverse, real-world environments.

Advances in virtual reality (VR) technology present a promising avenue to investigate visual behavior within 
naturalistic stimuli and contexts while simultaneously maintaining experimental  control42–44. First, VR enables 
researchers to exact similar rigor as in computer-based studies (e.g., trial length) without placing physical limita-
tions (e.g., head-restraint) on the complex repertoire of participants’ naturalistic behavior. Second, researchers 
can leverage VR to efficiently investigate behavior across a wide range of diverse settings (e.g., beaches, parks, 
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libraries), likely increasing the real-world generalizability of findings. Taken together, the use of VR empow-
ers researchers to construct more representative models of naturalistic experience. Accordingly, an increasing 
number of studies employ VR headsets to investigate visual functions, providing essential connections between 
computer-based findings and naturalistic behavior. Yet, few studies have sought to relate models of visual func-
tions, such as visual search, that are derived from behavior measured in traditional, computer-based paradigms 
to analogous behavior measured in real-world settings.

Recent studies investigating visual search using head-mounted displays highlight, in particular, that active 
behavior recruits memory to aid search performance in naturalistic settings. Active exploration of virtual envi-
ronments prior to search has been shown to improve search performance by engaging spatial  memory46,69, a 
benefit not seen for explicit  memorization70. For example, one study demonstrates that spatial memory aids 
search by restricting attention to relevant areas of the  scene47: when the location of a target object was changed 
from a learned location, participants continued to initially fixate on the learned location. Further, interaction 
with objects in virtual environments bolsters memory of target object locations: participants are faster to locate 
objects they arranged within a room compared with objects arranged by  others45. By utilizing VR to investigate 
visual search, these studies reveal the contributions of action in and interaction with virtual environments on 
search performance. Our results extend prior research on active search by generalizing the well-known set size 
effect to a diverse set of real-world scenes, and by demonstrating a predictive relationship between an individual’s 
search efficiency in artificial and naturalistic contexts.

Certainly, our experimental paradigm has shortcomings. First, in contrast to many studies of visual search in 
which eye-tracking measures are employed, we were only able to use a combination of head-tracking data and 
keypress reaction times. This method is undoubtably noisier than measuring eye-tracking reaction times in each 
task. However, given the close coupling of head and eye  movements71 and the presence of set size effects within 
both paradigms, we do not believe a different measurement would drastically alter our results. Second, while 
the classic search paradigm demonstrated high split-half reliability, the naturalistic search paradigm exhibited 
relatively low split-half reliability. Despite this low reliability, our results show a relationship of an individual’s 
search efficiency between the two visual search tasks. We hypothesize that, the magnitude of the task relation-
ship would increase with more naturalistic search trials. Future studies are needed to test this hypothesis, as well 
as to understand behavioral changes across a continuum of stimulus naturalism moving from well-controlled 
psychophysical displays to naturalistic settings.

In sum, we find that set size analogously limits visual search performance in both classic, computer-based 
visual search and immersive, real-world scenes. Further, individual search efficiency on a classic search task pre-
dicts search efficiency in a naturalistic search task. These findings suggest that individual search performance is 
limited by common properties in artificial and naturalistic contexts and have important implications for relating 
models of vision to real-world behavior.

Data availability
Requests for materials should be directed to T.L.B.
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