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Identification and immune features 
of cuproptosis‑related molecular 
clusters in polycystic ovary 
syndrome
Zhe Su 1,4, Wenjing Su 2,4, Chenglong Li 3, Peihui Ding 1 & Yanlin Wang 1*

Polycystic ovary syndrome (PCOS), a common reproductive endocrine disease, has clinically 
heterogeneous characteristics. Recently, cuproptosis causes several diseases by killing cells. Hence, 
we aimed to explore cuproptosis-related molecular clusters in PCOS and construct a prediction 
model. Based on the GSE5090, GSE43264, GSE98421, and GSE124226 datasets, an analysis of 
cuproptosis regulators and immune features in PCOS was conducted. In 25 cases of PCOS, the 
molecular clusters of cuproptosis-related genes and the immune cell infiltration associated with PCOS 
were investigated. Weighted gene co-expression network analysis was used to identify differentially 
expressed genes within clusters. Next, we compared the performance of the random forest model, 
support vector machine model, generalized linear model, and eXtreme Gradient Boosting for deciding 
the optimum machine model. Validation of the predictive effectiveness was accomplished through 
nomogram, calibration curve, decision curve analysis, and using other two datasets. PCOS and 
non-PCOS controls differed in the dysregulation of cuproptosis-related genes and the activation of 
immunoreaction. Two cuproptosis-related molecular clusters associated with PCOS were identified. 
Significant heterogeneity was noted in immunity between the two clusters based on the analysis 
of immune infiltration. The immune-related pathways related to cluster-specific differentially 
expressed genes in Cluster1 were revealed by functional analysis. With a relatively low residual error 
and root mean square error and a higher area under the curve (1.000), the support vector machine 
model demonstrated optimal discriminative performance. An ultimate 5-gene-based support vector 
machine model was noted to perform satisfactorily in the other two validation datasets (area under 
the curve = 1.000 for both). Moreover, the nomogram, calibration curve, and decision curve analysis 
showed that PCOS subtypes can be accurately predicted. Our study results helped demonstrate 
a comprehensive understanding of the complex relationship between cuproptosis and PCOS and 
establish a promising prediction model for assessing the risk of cuproptosis in patients with PCOS.

Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder with a prevalence of 5–10% 
among women of childbearing age, with its main feature being chronic anovulation1. As a reproductive system 
disease, PCOS causes disorder of sex hormones in the ovaries of women of childbearing age. One of the clinical 
manifestations of PCOS is an irregular menstrual cycle, resulting in ovulation dysfunction. According to a large 
community-based cohort study, 72% of women with PCOS were infertile compared with 16% of those without 
PCOS2. Therefore, PCOS significantly aggravates the occurrence of infertility. Owing to its clinical heterogene-
ity, regrettably, PCOS is a complex disease and patients respond differently3. Meanwhile, since the symptoms 
of patients with PCOS are not unified, the diagnosis of PCOS is quite difficult4. Therefore, it is of great clinical 
importance to further accurately identify PCOS at the molecular levels with its molecular subtypes and create 
a multivariate predictive model.

As eukaryotic organelles, mitochondria participate in various basic functions in organisms, including 
iron–sulfur cluster synthesis, copper homeostasis, lipid and amino acid metabolism, and energy transduction5. 
They are also an important site for copper utilization. Meanwhile, several key mitochondria enzymes require 
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copper as a cofactor6. However, the findings of a related study suggested that increased copper levels in the 
follicular fluid may harm follicle development in patients with PCOS. Therefore, the toxicity of copper may 
have adverse effects on human reproduction7. A new mechanism for cell death, cuproptosis, which is differ-
ent from the known mechanisms, has been recently discovered. Copper triggers a non-apoptotic form of cell 
death that depends on mitochondrial respiration. The direct binding of copper to the lipoylated components of 
the tricarboxylic acid cycle leads to abnormal aggregation of lipoylated proteins and loss of iron–sulfur cluster 
proteins, causing proteotoxic stress and finally cell death8. PCOS, a type of metabolic dysfunction, causes sys-
temic disorder9. The energy balance of a cell is maintained by aerobic glycolysis and mitochondrial oxidative 
phosphorylation10. Moreover, abnormal mitochondrial function contributes to the progression of metabolic 
diseases including PCOS. For instance, based on a gene expression analysis of endometrial tissue and skeletal 
muscle tissue, mitochondrial oxidative metabolism genes expressed lower levels in patients with PCOS than in 
healthy controls11. Furthermore, insulin resistance is a feature of PCOS and is associated with mitochondrial 
function. The impairment of mitochondrial function is seen in patients with PCOS, which is characterized by 
reduced oxygen consumption and increased production of reactive oxygen species. There is a hypothetical corre-
lation between insulin resistance and mitochondrial oxidative metabolism impairment in PCOS12. Moreover, the 
central causative factor of PCOS etiology is mitochondria-generated oxidative stress and chronic inflammation13. 
Therefore, we can reasonably conclude that cuproptosis and PCOS development are closely related. However, 
it remains unknown how cuproptosis is regulated in PCOS. Thus, further research on the molecular features of 
cuproptosis-related genes (CRGs) may provide insight into PCOS heterogeneity.

In this study, we examined and analyzed the differentially expressed CRGs and immune features between 
patients with PCOS and healthy controls. Using 15 differentially expressed CRGs as a platform, we catego-
rized 25 patients with PCOS into two clusters related to cuproptosis and compared their immune cells further. 
Subsequently, weighted gene co-expression network analysis (WGCNA) was used to identify cluster-specific 
differentially expressed genes (DEGs), which were then used to highlight enriched biological functions and 
pathways. In addition, through the comparison of multiple machine-learning algorithms, we created a predic-
tion model that was used to reveal patients who have different molecular clusters. Finally, the predictive model 
was validated for accuracy by nomogram analysis, calibration curve analysis, decision curve analysis (DCA), 
and other two datasets.

Methods
Data selection and pre‑processing.  The Gene Expression Omnibus (GEO) database (http://​www.​ncbi.​
nlm.​nih.​gov/​geo) was searched using the following keywords: (“PCOS” OR “polycystic ovary syndrome” OR 
“Stein-Leventhal syndrome” OR “sclerocystic ovarian degeneration” OR “sclerocystic ovary syndrome” OR “Scle-
rocystic Ovary”). The “expression profiling by array” and “homosapiens” filters were applied to search within 
GEO. In the GEO database, six PCOS-related datasets (GSE5090, GSE43264, GSE98421, GSE124226, GSE80432, 
and GSE106724) were selected from the search and filter. The GSE5090 dataset (GPL96 platform) included the 
omental adipose tissue samples from eight healthy controls and nine patients with PCOS; the GSE43264 dataset 
(GPL15362 platform) included the subcutaneous adipose tissue samples from seven healthy controls and eight 
patients with PCOS; the GSE98421 dataset (GPL570 platform) included the subcutaneous adipose tissue sam-
ples from four healthy controls and four patients with PCOS; and the GSE124226 dataset (GPL570 platform) 
included the subcutaneous adipose tissue samples from four healthy controls and four patients with PCOS. 
These four microarray datasets containing a total of the gene expression profiles of 25 patients with PCOS and 
23 healthy controls were considered as the train datasets for subsequent investigation. The GSE80432 dataset 
(GPL6244 platform) included the ovarian granulosa cell samples from eight healthy controls and eight patients 
with PCOS; the GSE106724 dataset (GPL21096 platform) included the ovarian granulosa cell samples from 
four healthy controls and eight patients with PCOS. These two datasets were selected for validation analysis. 
After obtaining the data, we first merged the four datasets (GSE5090, GSE43264, GSE98421, and GSE124226) to 
increase the sample size and make the experimental results more convincing. Then, a batch correction was con-
ducted on the merged data through the R package "sva" (version 3.44.0) on R Software (version 4.2.1) to remove 
the batch effect and eliminate potential differences in each dataset14.

Acquisition, differential expression, and correlation analysis of CRGs.  Based on previous litera-
ture, 16 genes associated with cuproptosis8,15,16, including NFE2L2, NLRP3, ATP7B, ATP7A, SLC31A1, FDX1, 
LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, CDKN2A, DBT and DLST, were collected. A gene analy-
sis was performed using the R package "limma" (version 3.52.4) to compare patients with PCOS with healthy 
controls17. With the Mann–Whitney U test, it was determined whether CRGs were differentially expressed in 
healthy controls and patients with PCOS, and the differentially expressed CRGs were defined as genes with P 
value < 0.05. Finally, to clarify the interrelationship between the differentially expressed CRGs, a correlation 
analysis of them was performed.

Evaluation of immune cell infiltration.  The CIBERSORT algorithm and LM22 signature matrix were 
used in gene expression data to calculate the relative abundance of 22 immune cell types between patients with 
PCOS and healthy controls18. Using Monte Carlo sampling, we calculated deconvoluted P value of each sample 
via the CIBERSORT algorithm, which provided a measure of confidence in the results19. Based on the CIBER-
SORT output of samples with P value < 0.05, it could be considered that the fractions of the estimated immune 
cell population were accurate20. The sum of all estimated immune cell type scores in each sample equaled one21.

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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Correlation analysis between CRGs and infiltrated immune cells.  Our analysis of the correlation 
coefficients between the expression of CRGs and the relative percentage of immune cells provided further evi-
dence for the interrelation between immune cells related to PCOS and CRGs. P < 0.05 indicated a significant 
correlation based on the spearman correlation coefficient.

Unsupervised clustering of patients with PCOS and principal component analysis 
(PCA).  Through the k-means algorithm with 50 iterations on the expression of 15 differentially expressed 
CRGs, 25 patients with PCOS were categorized into different clusters according to unsupervised clustering 
analysis based on the R package “ConsensusClusterPlus” (version 1.60.0)22. The optimal number of clusters was 
assessed based on a maximum number k (k = 9) of subtypes using a consensus matrix, cumulative distribution 
function (CDF) curves, and consistent cluster score (> 0.9). Then, the differences between subtypes were further 
analysed through PCA23.

Gene set variation analysis (GSVA).  For comparing the enriched gene sets between clusters of CRGs, 
GSVA enrichment analysis was performed using the R package “GSVA” (version 1.44.5)24. Further GSVA analy-
sis was performed on the “c2.cp.kegg.v2022.1.Hs.symbols” and “c5.go.v2022.1.Hs.symbols” files downloaded 
from the Molecular Signatures Database website database (https://​www.​gsea-​msigdb.​org/​gsea/​msigdb). The dif-
ferentially expressed pathways and biological functions were identified using the R package “limma” (version 
3.52.4) by comparing the GSVA scores between different CRGs clusters17,25. Significant changes were considered 
only if the | t value of the GSVA score | was > 2.

WGCNA.  WGCNA was performed to identify co-expression modules using the R package “WGCNA” (ver-
sion 1.71)26,27. According to the variance of the expression amount of each gene in diverse samples in the training 
dataset, the genes were ranked. To ensure the accuracy of the quality results, the top 25% genes with the highest 
variance for subsequent WGCNA were selected. A weighted adjacency matrix was constructed using the optimal 
soft power and then transformed into a topological overlap matrix (TOM). By setting a minimum module size 
of 100, the TOM dissimilarity measure (1-TOM) was used to obtain modules according to the algorithm of the 
hierarchical clustering tree. Next, the modules were clustered to observe the similarity among them. A differ-
ent color was randomly assigned to a distinct module. Module eigengene displayed gene expression profiles for 
each module. Module significance represented the relationship between modules and disease status. Module 
membership referred to the correlation coefficient between genes and module eigengenes, which described how 
reliable a gene in a module was28. Gene significance represented the association between gene and clinical traits, 
with higher gene significance indicating that the specified gene was more relevant to the studied traits. To iden-
tify significant modules, the association between modules and clinical traits was calculated and the core genes 
of this module were output.

Construction of predictive model based on multiple machine learning methods.  The R package 
"VennDiagram" (version 1.7.3) was used to intersect the key genes between PCOS and its clusters. According to 
the mutual genes of PCOS with its clusters, the R package “caret” (version 6.0-93) was used to construct machine 
learning models that contained a random forest (RF) model, support vector machine model (SVM), generalized 
linear model (GLM), and eXtreme Gradient Boosting (XGB). As a regression tree technique, RF achieves a high 
degree of predictive accuracy by using bootstrap aggregation and randomization of predictors29. SVM is a pow-
erful classification tool that has the function of maximization (support) of separating margin (vector)30. GLM, 
as a generalization of the ordinary linear regression, can examine how categorical or continuous independent 
characteristics associate with normally distributed dependent characteristics flexibly31. XGB is an optimized 
distributed gradient boosting library; therefore, it is possible to compare classification error and model com-
plexity with great accuracy32. These four machine methods were used to identify significant predictive genes of 
cluster-specific DEGs in PCOS. Different clusters were taken as response variables and cluster-specific DEGs 
as explanatory variables. A training set (70%, n = 18) and a validation set (30%, n = 7) were randomly divided 
from the 25 patients with PCOS. All parameters in these models were automatically adjusted using R package 
“caret” (version 6.0-93) via grid search; fivefold cross-validation was performed to assess each model. The R 
package “DALEX” (version 2.4.2) was performed to explain the abovementioned four machine learning models 
and generate the results of residual distribution and feature importance among them33. The area under receiver 
operating characteristic (ROC) curves (AUC) was visualized using the R package “pROC” (version 1.18.0). AUC 
was calculated to judge the accuracy of the predictive model, and a higher AUC represented a model with higher 
accuracy34,35. Consequently, the optimum machine learning model was determined. Based on the root mean 
square error, the top five variables of each model were sorted and considered to be important predictive genes 
related to PCOS. The predictive model was validated for its diagnostic value using ROC curves analysis in the 
GSE80432 and GSE106724 datasets.

Construction and validation of a nomogram model.  A nomogram model was made for risk assess-
ment of PCOS with the R package “rms” (version 6.3-0). Nomogram had corresponding scores for each key 
gene; a total score was obtained by combining the scores of five key genes. Therefore, the risk of PCOS could be 
reflected based on the total score. The predictive ability of nomogram model was assessed using the calibration 
curve and DCA.

https://www.gsea-msigdb.org/gsea/msigdb
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Independent data validation analysis.  The samples from the two ovarian granulosa cell datasets 
GSE80432 and GSE106724 were used as validation sets to verify the power of the prediction model to discrimi-
nate patients with PCOS from healthy controls through the ROC analysis.

Results
Dysregulation of CRGs and activation of the immunoreaction in patients with PCOS.  To 
explore whether CRGs were associated with biological functions in the occurrence of PCOS, the expression 
profiles of 16 CRGs were comprehensively assessed between patients with PCOS and healthy controls using four 
datasets from the training group, which were GSE5090, GSE43264, GSE98421, and GSE124226. Figure 1 showed 
the specific flow chart of the research. A total of 15 CRGs were differentially expressed genes of cuproptosis. We 
found that the expression levels of DLAT, NLRP3, MTF1, DLST, NFE2L2, FDX1, and SLC31A1 were higher in 
patients with PCOS than in healthy controls, whereas the gene expression levels of ATP7A, CDKN2A, DBT, 
PDHA1, ATP7B, DLD, LIPT1, and PDHB were lower in patients with PCOS than in healthy controls (Fig. 2A–
C). Afterward, correlation analysis was conducted among these differentially expressed CRGs to determine 
whether they played an important role in the progression of PCOS. Surprisingly, we found a significant synergis-
tic effect of some CRGs, such as CDKN2A and DLD (coefficient = 0.82). Inversely, ATP7B and DLST presented a 
strong antagonistic action (coefficient = − 0.77). Furthermore, we found that both CDKN2A and ATP7B in these 
CRGs were prominently correlated with other genes through further observation (Fig. 2D). The gene relation-
ship circos plot further certified the close association among these differentially expressed CRGs (Fig. 2E).

To clarify whether patients with PCOS and healthy controls had different immune systems, we conducted 
an immune infiltration analysis and revealed the difference in the proportion of 22 kinds of infiltrating immune 
cells between patients with PCOS and healthy controls using the CIBERSORT algorithm (Fig. 2F). The results 
showed that patients with PCOS had higher proportions of activated mast cells, M0 macrophages, monocytes, 
activated memory CD4+ T cells, follicular helper T cells, plasma cells, memory B cells, regulatory T cells (Tregs), 
M1 macrophages, neutrophils, and resting NK cells (Fig. 2G), indicating that PCOS might have been caused by 
changes in the immune system. Simultaneously, based on correlation analysis, both follicular helper T cells and 
activated memory CD4+ T cells were also associated with differentially expressed CRGs (Fig. 2H). Based on these 
results, CRGs might be critical factors in regulating the immune infiltration of patients with PCOS.

Identification of cuproptosis clusters in PCOS.  A consensus clustering algorithm was used to group 
25 patients with PCOS based on the expression profiles of 15 differentially expressed CRGs to show the expres-
sion patterns associated with cuproptosis. When k = 2, the cluster numbers were most steady and the results of 
cluster analysis were most reliable; the CDF curve fluctuated within the minimum range of the consensus index 
(0.2–0.6) (Fig. 3A, B). As k = 2–9, the area under the CDF curve differed from k − 1 relative to k (Fig. 3C). Fur-
thermore, only when k = 2, each subtype had a consistency score of > 0.9 (Fig. 3D). After analyzing the consensus 
matrix heatmap, we ultimately divided 25 patients with PCOS into two clusters, Cluster1 (n = 7) and Cluster2 
(n = 18) (Fig. 4A). Meanwhile, there was a significant variation between these two clusters as determined by PCA 
(Fig. 3E).

Differentiation of CRGs and immune infiltration features between cuproptosis clusters.  Ini-
tially, 15 differentially expressed CRGs were systematically compared between Cluster1 and Cluster2 to deter-
mine how they differed in expression and to analyze molecular characteristics between clusters. The expression 
patterns of CRGs were discrepant in the different clusters (Fig. 4A). Cuproptosis Cluster1 showed high expres-
sion levels of LIPT1, DBT, DLD, CDKN2A, ATP7B, and ATP7A, whereas the cuproptosis Cluster2 showed high 
expression levels of NLRP3, MTF1, NFE2L2, DLST, and DLAT (Fig.  4B). Furthermore, immune infiltration 
analysis revealed changes in the immune system between Cluster1 and Cluster2 (Fig.  4C). Cluster1 showed 
greater infiltration levels of CD8+ T cells, resting memory CD4+ T cells, activated NK cells, M2 macrophages, 
resting dendritic cells, and resting mast cells. However, the abundance of memory B cells, plasma cells, activated 
memory CD4+ T cells, follicular helper T cells, monocytes, M0 macrophages, M1 macrophages, activated mast 
cells, and neutrophils were comparatively higher in Cluster2 (Fig. 4D).

Gene modules screening and co‑expression network construction.  We were able to create co-
expression networks and modules for PCOS and healthy controls using the WGCNA algorithm to identify the 
key gene modules concerned with PCOS. A computation of variance was performed on each gene expression 
in the training datasets; then, further analysis was conducted on the top 25% of genes with the highest variance. 
The co-expressed gene modules were identified when the soft threshold was set to 9 and scale-free R2 was equal 
to 0.9 (Fig. 5A). The dynamic cutting algorithm resulted in six distinct co-expression modules with different 
colors; the heatmap of TOM was also provided (Fig. 5B–D). To assess the resemblance and adjacency of module-
clinical traits (PCOS and Control) co-expression, these genes within six modules were analyzed. Finally, PCOS 
was most strongly associated with the blue module including 142 genes (Fig. 5E). Furthermore, the blue module 
was positively associated with module-related genes (Fig. 5F).

Moreover, using the WGCNA algorithm, the key gene modules closely associated with cuproptosis clusters 
were expounded. Following the confirmation of the optimal soft threshold parameters (soft threshold = 17, 
R2 = 0.9), the scale-free network was constructed (Fig. 6A). Six significant modules including 2647 genes were 
finally determined; TOM associated with modules was shown as a result of the heatmap (Fig. 6B–D). According 
to the module-clinical traits (Cluster1 and Cluster2) relationship explanation, the PCOS clusters were highly 
associated with the turquoise module (569 genes) (Fig. 6E). Furthermore, the turquoise module genes were 
strongly associated with the selected module when a correlation analysis was conducted (Fig. 6F).
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Identification of cluster‑specific DEGs and biological characteristics.  By analyzing the intersec-
tions of genes related to modules in cuproptosis clusters and PCOS, 17 cluster-specific DEGs were identified 
(Fig. 7A). GSVA analysis was further used to investigate whether the cluster-specific DEGs in the two clusters 
had pathway differences. The results suggested that the leukocyte transendothelial migration, cytokine–cytokine 
receptor interaction, focal adhesion, complement and coagulation cascades, and graft versus host disease were 
upregulated in Cluster1, whereas the metabolism of alpha-linolenic acid, regulation of autophagy, peroxisome, 
and sphingolipid metabolism were enriched in Cluster2 (Fig. 7B). Furthermore, the results of functional enrich-
ment indicated that Cluster1 was prominently associated with immune-related pathways, such as interleukin-21 
production, and complex binding of complement component C1q, whereas, in Cluster2, there was a reinforce-
ment of the import of RNA into mitochondria, localization of proteins to the Golgi apparatus, lateral part of 

Figure 1.   The flow chart of study.
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the cell, protein localization to microtubule organizing center, and cellular polysaccharide catabolic process 
(Fig. 7C). Therefore, we hypothesized that Cluster1 plays a role in various immune responses.

Construction and assessment of machine learning models.  According to the expression profiles 
of 17 cluster-specific DEGs in the PCOS training group, we built four validated machine-learning models (RF, 
SVM, GLM, and XGB) to identify cluster-specific genes with high diagnostic values. A relatively lower residual 
was found for the SVM and RF machine learning models (Fig. 8A,B). The feature importance diagram of each 
machine learning model based on root mean square error was provided (Fig. 8C). Furthermore, to measure dis-
criminative performance of each machine learning algorithm in the testing group, we calculated ROC curves via 
fivefold cross-validation. The highest AUC was observed in the SVM machine learning model (AUC​RF = 0.905; 
AUC​SVM = 1.000; AUC​XGB = 0.905; AUC​GLM = 0.786; Fig. 8D). On the whole, the SVM model was proven to be 
the optimum model for identifying patients with PCOS from different clusters combined with these results. A 
further analysis was finally conducted by selecting the top five most important variables [COL5A1, IL18 binding 

Figure 2.   Identification of dysregulated CRGs in PCOS. (A) Chromosome location of 16 CRGs. (B) Heatmaps 
showed the expression patterns of 15 differentially expressed CRGs. (C) The differential expression of 16 
CRGs between PCOS and control group was shown in boxplots. ("***" = P < 0.001, "**" = P < 0.01, "*" = P < 0.05, 
"NS" = no significance) (D) Correlation analysis of 15 differentially expressed CRGs. Colors red and green 
indicate correlations that are positive and negative, severally. The pie chart area corresponds to the correlation 
coefficients. (E) Gene relationship circos plot of 15 differentially expressed CRGs. The darker the color of the 
line, the more significant the correlation. (F) Bar plot displayed the relative percent of 22 infiltrated immune 
cells between PCOS and control group. (G) The differences in immune infiltrating between PCOS and control 
group were shown in boxplots. ("***" = P < 0.001, "**" = P < 0.01, "*" = P < 0.05, "NS" = no significance) (H) 
Correlation analysis between 15 differentially expressed CRGs and infiltrated immune cells.
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protein (IL18BP), SLC12A5, Midkine (MDK), and retinoid X receptor gamma (RXRG)] from the SVM model 
as predictive genes.

Our first step in evaluating the power of prediction in the SVM model was to construct a nomogram that 
could perform a risk assessment of cuproptosis clusters in 25 patients with PCOS (Fig. 9A). The calibration curve 
and DCA were used to assess the predictive accuracy of the nomogram model. The calibration curve results 
showed that the predicted and actual cluster risks of PCOS were very close (Fig. 9B), and as a result of DCA, 
we were able to demonstrate the high efficiency of our nomogram, which might contribute to clinical decision-
making (Fig. 9C). After that, the other two datasets of ovarian granulosa cells including both healthy controls 
and patients with PCOS were used to validate our 5-gene prediction model. In both GSE80432 and GSE106724 
datasets, the ROC curves displayed satisfactory performance with an AUC value of 1.000 (Fig. 9D,E). Hence, 
it was equally well in separating patients with PCOS from normal people when using our diagnostic model.

Discussion
Given the limitations of current treatment methods for the metabolic symptoms of PCOS and its heterogeneity, 
new and more practical strategies are essential for controlling PCOS3,36. To gain a deeper understanding of PCOS 
and to provide new insight into the treatment of PCOS, more appropriate molecular clusters need to be identified. 
Lately, cuproptosis is a unique form of copper-induced cell death, primarily manifested by the accumulation 
of mitochondrial lipoylated proteins, which is intimately involved in the progress of disease8,37. However, it is 
unknown how cuproptosis works and what its effect is on various diseases. In consequence, this study aimed to 
elaborate on the specific role of CRGs in the phenotypic development of PCOS and microenvironment immune 
responses. Moreover, a few cluster-specific DEGs of cuproptosis-related molecular clusters were used to predict 
PCOS subtypes.

A systematic comparison of CRGs expression profiles in adipose tissue between patients with PCOS and 
healthy controls was presented in this research. The expression of CRGs in patients with PCOS was different from 
that in healthy controls, suggesting that CRGs play a critical role in the occurrence or development of PCOS. 
Following that, we calculated the correlation among CRGs to reveal whether they were related to PCOS. We 
found that several CRGs showed prominent synergistic or antagonistic effects, as demonstrated by CRGs interac-
tions in patients with PCOS. Moreover, a difference was also noted in the proportion of immune cells between 
patients with PCOS and healthy controls. Patients with PCOS had higher infiltration degrees in activated mast 
cells, M0 macrophages, monocytes, activated memory CD4+ T cells, memory B cells, and so on, demonstrating 

Figure 3.   Identification of molecular clusters related to cuproptosis in PCOS. (A) Cluster-consensus matrix 
when k = 2. (B) Cumulative distribution function (CDF) curves. (C) CDF delta area curves. (D) The score of 
cluster-consensus. (E) PCA visualized the distribution of two subtypes.
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the potential role of these immune cells in the pathogenesis of PCOS. Furthermore, based on the expression of 
CRGs, unsupervised cluster analysis was used to clarify the different regulation patterns related to cuproptosis 
in patients with PCOS, and two clusters that were associated with cuproptosis were identified. Moreover, PCA 
showed that PCOS classification had a prominent significance. Cluster-specific DEGs demonstrated that Cluster2 
was principally enriched in the import of RNA into mitochondria, localization of proteins, and cellular polysac-
charide catabolic. Conversely, the characteristics of Cluster1 were associated with immune-related pathways, 
such as production or combination of complement components and cytokines. This finding was approximately 
similar to that of previous research on the enrichment analysis of genes in PCOS38, suggesting that Cluster1 has 
a higher degree of immune infiltration because it correlates with immune-related pathways.

According to the expression profiles of cluster-specific DEGs, this study examined how four machine-learning 
models (RF, SVM, GLM, and XGB) performed in terms of prediction. Compared with the other three models, 
SVM had the highest efficacy of prediction in the testing set (AUC = 1.000); thus, machine learning based on 
SVM had a high advantage in predicting PCOS subtypes. Then, five important variables (COL5A1, IL18BP, 
SLC12A5, MDK, and RXRG) were chosen to create a 5-gene-based SVM model. Some studies hypothesized 
that COL5A1 is involved in the differentiation of ovarian granulosa cells; however, its mechanism has not been 
clarified, so the role of COL5A1 in PCOS is still controversial39. Gonadotropin-releasing hormone (GnRH) 
neurons, as the last common pathway for the central regulation of reproduction, have long been implicated in 
gamma-aminobutyric acid regulation. The functional changes of KCC2 (SLC12A5) might regulate the response 
of GnRH neurons to gamma-aminobutyric acid. Further research is required to clarify this point40. The change 
of GnRH led to the abnormal regulation function of the hypothalamus–pituitary–ovary axis, which might be 
one of the mechanisms causing PCOS. As a multifunctional cytokine, interleukin-18 (IL18) plays an important 
role in ovarian physiology function. Moreover, IL18 is associated with follicular development and atresia, as well 
as ovulation and steroidogenesis41. IL18BP is a secreted 40 kDa glycoprotein with high affinity to IL18. In vitro 
IL18 stimulated the proliferation of theca cells and steroidogenesis, and IL18BP could neutralize these effects. A 

Figure 4.   Identification of CRGs and immune features between two cuproptosis clusters. (A) Heatmaps 
showed the expression patterns of 15 differentially expressed CRGs between two cuproptosis clusters. (B) The 
differential expression of 15 differentially expressed CRGs between two cuproptosis clusters were presented 
in boxplots. ("***" = P < 0.001, "**" = P < 0.01, "*" = P < 0.05, "NS" = no significance) (C) Bar plot displayed the 
relative percent of 22 infiltrated immune cells between two cuproptosis clusters. (D) The differences in immune 
infiltrating between two cuproptosis clusters were presented in boxplots. ("***" = P < 0.001, "**" = P < 0.01, 
"*" = P < 0.05, "NS" = no significance).
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Figure 5.   Co-expression network of DEGs in PCOS. (A) The option of soft threshold (power). (B) Clustering 
dendrogram of genes in co-expression modules. Distinct co-expression modules were shown in different 
colors. (C) Clustering of module eigengenes. (D) The correlations heatmap among 6 modules. (E) Correlation 
analysis between module eigengenes and clinical status. A module is represented by a row, and a clinical 
status is represented by a column. (F) Scatter plot between module membership in blue module and the gene 
significance for PCOS.
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Figure 6.   Co-expression network of DEGs between two cuproptosis clusters. (A) The option of soft threshold 
(power). (B) Clustering dendrogram of genes in co-expression modules. Distinct co-expression modules 
were shown in different colors. (C) Clustering of module eigengenes. (D) The correlations heatmap among 6 
modules. (E) Correlation analysis between module eigengenes and clinical status. A module is represented by a 
row, and a clinical status is represented by a column. (F) Scatter plot between module membership in turquoise 
module and the gene significance for Cluster2.
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novel way of treating PCOS is expected to be found via related research42. MDK, a heparin-binding growth factor 
involved in the development, reproduction, and repair, is associated with the pathogenesis of several diseases43,44. 
Moreover, MDK plays a crucial role in regulating oocyte performance during meiotic resumption45. One of the 
clinical features of PCOS is ovulation dysfunction or loss, suggesting that MDK is involved in the formation 
mechanism of PCOS. Previously, RXRG was associated with the age of menarche46. In consequence, it might be 
related to the ovulation dysfunction of PCOS; however, more research is required to support this.

The other two validation datasets (AUC = 1.000 and 1.000) confirmed the highly accurate prediction of the 
5-gene-based SVM model, providing a new perspective on PCOS diagnosis. Furthermore, COL5A1, IL18BP, 
SLC12A5, MDK, and RXRG were used to create a nomogram model for diagnosing PCOS subtypes. The model 
was found to have a noteworthy prediction effect, indicating that the prediction model has clinical application 
value. In conclusion, the 5-gene-based SVM model provided suitable results in evaluating PCOS subtypes and 
future diagnosis.

There are some limitations to our study. First, data mining and analysis of formerly published datasets were 
used to support our results, which were based on public databases and computational algorithms. Therefore, 
conducting an additional experimental evaluation to further verify the expression of CRGs is important. Second, 
the number of analytical samples was limited and data were retrieved from different tissues or cells, which might 
increase the heterogeneity of the analysis. Furthermore, more patients with PCOS must be analyzed to determine 
whether clusters related to cuproptosis are accurate, and the possible interrelation between immune responses 
and CRGs requires further research. Finally, it would be important to have more detailed clinical features to 
verify the effectiveness of the prediction model.

Conclusion
All in all, our study revealed that CRGs were associated with infiltrated immune cells. The results also clarified 
the prominent heterogeneity of immunization among patients with PCOS with diverse cuproptosis clusters. A 
5-gene SVM model was selected as the optimum machine learning model for precisely evaluating PCOS subtypes 
and predicting PCOS. For the first time, a critical role of cuproptosis in PCOS was uncovered by our research, 
and molecular mechanisms contributing to PCOS heterogeneity were further clarified. The CRGs and immune 
cells of PCOS need to be further studied, and in this way, PCOS could be clinically diagnosed and feasibly treated 
with immunotherapy.

Figure 7.   Identification of cluster-specific DEGs and biological characteristics between two cuproptosis 
clusters. (A) The intersections between genes related to module in cuproptosis clusters and genes related to 
module in GSE5090, GSE43264, GSE98421, and GSE124226 datasets. (B) Differences in hallmark pathway 
activities between Cluster1 and Cluster2 samples were sorted by t-value of GSVA method. (C) Differences in 
biological functions between Cluster1 and Cluster2 samples were sorted by t-value of GSVA method.
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Figure 8.   Construction and assessment of RF, SVM, GLM, and XGB machine learning models. (A) The reverse 
cumulative residual distribution of each machine learning model. (B) The residuals of each machine learning 
model were presented in boxplots. The root mean square of residuals is shown as a red dot. (C) The important 
features in four machine models. (D) ROC analysis of four machine models based on fivefold cross-validation in 
the testing group.
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Data availability
On the GEO website (https://​www.​ncbi.​nlm.​nih.​gov/​geo/), the datasets supporting the conclusion of this arti-
cle may be accessed by the following data accession numbers: GSE5090, GSE43264, GSE98421, GSE124226, 
GSE80432 and GSE106724.
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