
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22654  | https://doi.org/10.1038/s41598-022-27178-8

www.nature.com/scientificreports

A pathway analysis‑based 
algorithm for calculating 
the participation degree of ncRNA 
in transcriptome
Xinyi Gu 1,2, Shen Wang 1,2, Bo Jin 1,2, Zhidan Qi 1,2, Jin Deng 1,2, Chen Huang 1,2 & 
Xiaofeng Yin 1,2*

After sequencing, it is common to screen ncRNA according to expression differences. But this may 
lose a lot of valuable information and there is currently no indicator to characterize the regulatory 
function and participation degree of ncRNA on transcriptome. Based on existing pathway enrichment 
methods, we developed a new algorithm to calculating the participation degree of ncRNA in 
transcriptome (PDNT). Here we analyzed multiple data sets, and differentially expressed genes 
(DEGs) were used for pathway enrichment analysis. The PDNT algorithm was used to calculate 
the Contribution value (C value) of each ncRNA based on its target genes and the pathways they 
participates in. The results showed that compared with ncRNAs screened by log2 fold change (FC) and 
p-value, those screened by C value regulated more DEGs in IPA canonical pathways, and their target 
DEGs were more concentrated in the core region of the protein–protein interaction (PPI) network. 
The ranking of disease critical ncRNAs increased integrally after sorting with C value. Collectively, we 
found that the PDNT algorithm provides a measure from another view compared with the log2FC and 
p-value and it may provide more clues to effectively evaluate ncRNA.

Abbreviations
FC	� Fold change
GSEA	� Gene set enrichment analysis
IPA	� Ingenuity pathway analysis
C value	� Contribution value
DEG	� Differentially expressed gene
PPI	� Protein–protein interaction
ncRNA	� Non-coding RNA
miRNA	� MicroRNA
APP	� Amyloid beta precursor protein
GO	� Gene Ontology
KEGG	� Kyoto encyclopedia of genes and genomes
BP	� Biological process
CC	� Cellular component
MF	� Molecular function

One of the most important applications of RNA sequencing is to compare the differences in the expression of 
the non-coding RNAs (ncRNAs). ncRNA refers to a kind of RNA that can be transcribed from the genome but 
not translated into proteins and can perform their biological functions at the RNA level, including rRNA, tRNA, 
snRNA, lncRNA, microRNA (miRNA) and others. They play important roles in normal development, physiology 
and disease1. miRNA and lncRNA are ncRNAs that have been widely studied and have been confirmed to have 
the strong regulatory ability on gene expression2–6. By direct or indirect means, a single miRNA or lncRNA can 
regulate hundreds of mRNAs.
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High throughput sequencing is a common method for ncRNA research. People often select genes with high 
expression differences for follow-up function research9,10. In the traditional way, using log2 FC and p-value as 
thresholds to screen ncRNAs will obviously lose a lot of valuable information. In order to screen ncRNAs more 
scientifically, many analysis methods have been derived. There are many enrichment analysis methods and 
databases, such as GSEA11 IPA12, David13, Catmap14 and GlobalTest15. Their analytical methods have different 
priorities, but the general idea is the same, that is, to perform functional annotation on the RNA profile. But 
through these methods, we can only observe which genes and pathways are associated with ncRNAs. We do not 
have an indicator to measure the the regulatory function and participation degree of ncRNA on transcriptome 
expression. This lack will cause us to miss a lot of valuable information when we screen ncRNAs. Here, we devel-
oped an algorithm PDNT, through which we can get the contribution value (C value) of each ncRNA. C value is 
defined as a quantitative indicator of the participation degree of ncRNA in transcriptome. The algorithm is, (1) 
Enrich the pathways with DEGs in the dataset, and then use the −lg (p-value) of these pathways as the weighted 
phase; (2) Take the intersection of the target gene of ncRNA and DEGs, and calculate the proportion of this 
intersection in each pathway; (3) C value is equal to the weighted sum of these proportions. To verify the utility 
of the C value, we collected the existing sequencing results, including skeletal muscle denervation, Alzheimer’s 
disease, prostate cancer, gastric cancer, and adipocyte differentiation. C57BL/6 mice were used as the model of 
skeletal muscle denervation, APP/PS1 mice as the model of Alzheimer’s disease, prostate cancer, gastric cancer, 
and adipocyte differentiation samples were all from human16–20.

Our proposed algorithm PDNT takes into accounts the p-value for each enriched pathway and the proportion 
of ncRNA target genes in each pathway. We expect to quantify the participation degree of ncRNA in transcrip-
tome, and to optimize the efficiency of screening ncRNA after high throughput sequencing.

Results
The C value of each DE ncRNA is equal to the sum of BP value, CC value, MF value and KEGG 
value.  We calculated the C value of each DE miRNA in skeletal muscle denervation, prostate cancer, Alzhei-
mer’s disease and gastric cancer data sets respectively. In addition, we calculated the C value of each lncRNA in 
skeletal muscle denervation and adipocyte differentiation data sets. The details of these data were aggregated into 
a table (Table 1). The C values of each DE ncRNA based on biological process (BP), cellular component (CC), 
molecular function (MF) and KEGG analysis can be obtained, and we named these C values as BP value, CC 
value, MF value and KEGG value respectively. The total C value of each DE ncRNA was equal to the sum of BP 
value, CC value, MF value and KEGG value. The DE miRNAs were sorted with the total C value to obtain the 10 
DE miRNAs with maximum C value, named as top10 C value miRNAs (Table 2). The top10 DE miRNAs with 
maximum absolute Log2 FC (top10 FC miRNAs), and the top10 DE miRNAs with minimum p-value (top10 
p-value miRNAs), were obtained by sorting the DE miRNAs according to the absolute Log2 fold FC and p-value 
respectively (Supplementary Tables 1, 2). Similarly, DE lncRNAs were processed in the same way to obtain top5 
C value lncRNAs, top5 FC lncRNAs, top5 p-value lncRNAs for adipocyte differentiation and top10 C value 
lncRNAs, top10 FC lncRNAs, top10 p-value lncRNAs for skeletal muscle denervation (Table 3, Supplementary 
Tables 3–6).

C value is superior to log2 FC and p‑value in miRNA operation results.  In each data set, the most 
significant enriched IPA canonical pathways were obtained by core analysis (Supplementary Table 7). We took 
the intersections of DEGs with the predicted target genes of top10 C value miRNAs, top10 FC miRNAs and 
top10 p-value miRNAs respectively, and then calculated the proportion of these intersections in the above path-
ways. It was found that the proportion of top10 C value miRNAs target genes was significantly larger than that 
of top10 FC miRNAs, top10 p-value miRNAs in most pathways (Fig. 1). We built several PPI networks based on 
DEGs, and calculated the degree of each node. The node with a larger degree had a darker color and was closer to 
the center. Then we divided these nodes into the core region (top 20% of degree), sub core region (top 20%-50% 
of degree) and noncore region (bottom 50% of degree) (Fig. 2a,e,i,m). In the PPI network, the predicted target 
genes of top10 C value miRNAs, top10 FC miRNAs and top10 p-value miRNAs were labeled in red (Fig. 2). It 
was found that the number of top10 C value miRNAs’ target genes in each region were larger than those of top10 
FC miRNAs, and top10 p-value miRNAs, and the C value group are more concentrated in core region (Fig. 3) 
(Table 4).

Table 1.   Description of publicly available data sets used in the meta-analysis. Ref: reference.

RNA Gene expression platforms Status Tissue Organism Ref

MicroRNA Illumina HiSeq X Nerve resection Muscle Mus Musculus 16

MicroRNA Illumina HiSeq 2500 Alzheimer’s disease Brain Mus Musculus GSE13217717

MicroRNA Agilent-019118 Prostate cancer Tumor tissue Homo sapiens GSE6431821

MicroRNA Illumina HiSeq 2000 miR-
NAseq Gastric cancer Tumor tissue Homo sapiens 19

LncRNA Illumina HiSeq X Nerve resection Muscle Mus Musculus 16

LncRNA Illumina HiSeq 1500 Adipocyte differentiated 
stem cell Adipose-derived stem cell Homo sapiens GSE11325320
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Based on extensive literature, we identified 14 skeletal muscle growth regulatory miRNAs, 6 Alzheimer’s 
disease associated miRNAs, 6 prostate cancer associated miRNAs, and 6 gastric cancer associated miRNAs and 
found that when DE miRNAs were sorted by C value, the sum of the ranks of these miRNAs was significantly 
smaller than that of the other two indexes, which means that these miRNAs sequences increased integrally 
(Fig. 4). When sorting by C value versus sorting by absolute Log2 FC/ p-value, most of the disease critical miR-
NAs ranked up (Fig. 4) (Supplementary Table 8).

C value is superior to log2 FC and p‑value in lncRNA operation results.  In the skeletal muscle 
denervation data set, we calculated the proportion of the predicted target genes of top10 C value lncRNAs, top10 
FC lncRNAs, and top10 p-value lncRNAs in the most enriched IPA canonical pathways respectively, and found 

Table 2.   The top10 miRNAs according to C value. BP, biological process; CC, cellular component; MF, 
molecular function.

miRNAs KEGG value BP value CC value MF value C value

Skeletal muscle denervation

mmu-miR-1943-5p 33.2298 816.2096 57.7971 86.4830 993.7195

mmu-miR-322-5p 30.8406 752.9168 68.5535 79.5975 931.9084

mmu-miR-497a-5p 30.7342 748.7866 69.7075 79.4659 928.6942

mmu-miR-674-5p 27.1606 715.4414 58.0113 72.7104 873.3236

mmu-miR-377-3p 27.4901 693.5040 53.2729 72.8327 847.0997

mmu-miR-378d 23.2596 680.9893 61.2806 72.2897 837.8192

mmu-miR-486a-3p 26.8248 657.0155 50.6866 69.4835 804.0103

mmu-miR-34a-5p 26.6988 659.2445 53.4273 63.0869 802.4575

mmu-miR-34c-5p 26.6988 659.2445 53.4273 63.0869 802.4575

mmu-miR-485-5p 24.7998 631.6504 56.8839 69.4729 782.8069

Alzheimer’s disease

mmu-miR-340-5p 43.5208 1010.0391 99.4072 95.1248 1248.0919

mmu-miR-128-3p 32.3406 702.2785 72.0400 72.0975 878.7565

mmu-miR-1912-3p 31.4818 665.3036 71.0238 65.4024 833.2115

mmu-miR-3065-5p 28.5725 635.0081 59.7389 60.1966 783.5160

mmu-miR-30e-5p 25.0791 603.9772 61.3365 55.3197 745.7125

mmu-miR-30b-5p 24.3197 578.0747 60.5463 54.1156 717.0563

mmu-miR-369-3p 21.9838 578.5994 50.7141 53.2306 704.5279

mmu-miR-30f. 23.9495 503.5940 55.6817 48.9650 632.1902

mmu-miR-16-5p 24.3638 493.9211 47.4183 46.5204 612.2236

mmu-miR-3470a 18.4495 405.6942 42.6480 40.2364 507.0280

Prostate cancer

hsa-miR-374a-5p 4.3985 118.2693 5.2133 10.0440 137.9250

hsa-miR-513a-5p 5.6572 112.0295 6.9103 12.5930 137.1900

hsa-miR-95-5p 3.4669 116.9228 5.4779 9.5689 135.4365

hsa-miR-374b-5p 3.8076 113.5990 5.3002 11.6734 134.3802

hsa-miR-498 4.7281 107.2751 5.8249 10.8348 128.6630

hsa-miR-20a-5p 4.1156 109.1116 5.6328 8.0808 126.9408

hsa-miR-30e-5p 3.6117 102.8695 5.2738 8.0756 119.8306

hsa-miR-96-5p 3.0537 94.3429 5.1002 6.5807 109.0776

hsa-miR-148a-5p 3.3918 90.1048 4.5191 6.8996 104.9153

hsa-miR-429 3.2433 85.7535 5.0370 7.6430 101.6768

Gastric cancer

hsa-miR-153-5p 18.2391 362.6950 64.0236 71.7660 516.7236

hsa-miR-3662 15.3946 317.1733 49.4005 52.8578 434.8263

hsa-miR-548f.-3p 14.2178 286.8668 49.4087 47.7987 398.2921

hsa-miR-5680 13.2793 242.4315 42.3071 49.8912 347.9091

hsa-miR-944 14.7858 239.0951 40.7592 49.7775 344.4176

hsa-miR-7–2-3p 13.3438 249.0496 38.5958 38.1965 339.1857

hsa-miR-4677-5p 8.4194 187.5756 34.2620 30.5864 260.8433

hsa-miR-20a-5p 7.5578 178.5451 36.1427 28.2557 250.5012

hsa-miR-4728-5p 10.0061 161.1989 32.7904 31.1540 235.1493

hsa-miR-6507-5p 10.3778 162.0089 28.4527 26.2513 227.0907
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Table 3.   The top lncRNAs according to C value. BP, biological process; CC, cellular component; MF, 
molecular function.

miRNAs KEGG value BP value CC value MF value C value

Adipocyte differentiation

MIAT 0.7422 33.6464 1.7731 4.2158 40.3777

CYTOR 0.5408 27.4816 1.6461 3.5501 33.2186

LINC02202 0.8555 23.7874 1.6544 2.7816 29.0790

OSER1-DT 0.7450 22.7320 1.7143 2.1406 27.3320

LINC01119 0.3521 21.7651 1.1976 2.0853 25.4002

Skeletal muscle denervation

LNC_000596 19.4847 283.7968 35.8261 40.4197 379.5275

ENSMUST00000138653.7 18.6985 268.8787 31.0684 39.4189 358.0646

ENSMUST00000131642.1 17.0027 256.5569 30.1589 32.2753 335.9940

LNC_000057 15.5034 232.4060 29.6239 28.7508 306.2843

LNC_000040 17.5395 215.5778 28.0434 30.6050 291.7658

ENSMUST00000152365.1 14.3560 227.8362 26.2226 22.5889 291.0038

ENSMUST00000137810.2 13.5911 218.9375 25.9034 24.7821 283.2142

LNC_000279 12.8857 217.3779 26.5701 26.3653 283.1992

LNC_000353 15.4114 207.9657 27.1850 29.2075 279.7697

ENSMUST00000154414.1 12.3479 211.8834 24.6985 27.0541 275.9841

Figure 1.   Proportion of three groups in each IPA canonical pathway (a) Skeletal muscle denervation. (b) 
Prostate cancer. (c) Alzheimer’s disease. (d) Gastric cancer. (FC group: the collection of the top10 FC miRNAs’ 
predictive target mRNAs; p-value group: the collection of the top10 p-value miRNAs’ predictive target mRNAs; 
C value group: the collection of the top10 C value miRNAs’ predictive target mRNAs). Picture drawn by 
Microsoft Excel.
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that the proportion of the genes regulated by top10 C value lncRNAs was larger than that of top10 FC lncRNAs 
and top10 p-value lncRNAs (Fig. 5a). It was found that the number of top10 C value lncRNAs’ target genes in 
each region were larger than those of top10 FC lncRNAs, and top10 p-value lncRNAs and the C value group are 
more concentrated in the core region (Fig. 5b–e) (Table 5).

Since there are relatively few DE lncRNAs and DE mRNAs in the adipocyte differentiation data set, we take 
top5 C value lncRNAs, top5 FC lncRNAs, top5 p-value lncRNAs. The proportion of the genes regulated by top5 
C value lncRNAs was larger than that of top5 FC lncRNAs and top5 p-value lncRNAs in enriched IPA canonical 
pathways (Fig. 6a). It was found that the number of top5 C value lncRNAs’ target genes in each region were larger 
than those of top5 FC lncRNAs, and top5 p-value lncRNAs and the C value group are more concentrated in the 
core region (Fig. 6b–e) (Table 5). And when DE lncRNAs were sorted by C value, the adipocyte differentiation 
associated lncRNAs sequences increased integrally than that of the other two indexes (Fig. 6f–g) (Supplementary 
Table 8).

Figure 2.   Partition of PPI network and distribution of each group in PPI network. (a,e,i,m) PPI network 
of DEGs in the Skeletal muscle denervation dataset, Prostate cancer dataset, Alzheimer’s disease dataset and 
Gastric cancer dataset. The degree of each node was calculated. The larger the degree of the node, the darker the 
color and the closer the position is to the center. The top 20% nodes are defined as core regions, the top 20%-
50% nodes are defined as sub core regions, and the remaining nodes are noncore regions. (b,f,j,n) Distribution 
of FC group in PPI network. (c,g,k,o) Distribution of p-value group in PPI network. (d,h,l,p) Distribution of C 
value group in PPI network. Red is the selected node, blue is the unselected. Number of genes in core region, 
sub core region and noncore region of each group has been tagged. STRING v11.0 was used to generate protein 
interactions, and the resulting network was visualized using Cytoscape v3.7.2. (FC group: the collection of 
the top10 FC miRNAs’ predictive target mRNAs; p-value group: the collection of the top10 p-value miRNAs’ 
predictive target mRNAs; C value group: the collection of the top10 C value miRNAs’ predictive target mRNAs).
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Efficiency comparison of different ncRNAs.  Firstly, the results of IPA canonical pathways were ana-
lyzed, and the proportion of the C value group in the top10 pathways was calculated compared with the other 
two groups. We found that in miRNA data set, the efficiency of the C value group was improved by 61% com-
pared with the FC group, and by 145% compared with the p-value group. In lncRNA data set, the C value group 
increased by 39% compared with the FC group, and by 78% compared with the p-value group (Table 6). Then, by 
analyzing the results of PPI network and calculating the ratio of the C value group in core region compared with 
the other two groups, we found that the C value group in miRNA data set increased by 10% compared with the 
FC group and by 18% compared with the p-value group. In lncRNA data set, the C value group increased by 85% 
compared with the FC group, and by 81% compared with the p-value group. In general, there is little difference 
between the results of miRNA and lncRNA, and a greater difference occurs between different data sets, which 
may be related to the quality of data sets (Table 7).

Discussion
After high-throughput sequencing, it is common to screen ncRNA according to expression differences. But 
this may lose a lot of valuable information and lead to biased results. Considering the strong regulatory func-
tion of ncRNA on gene expression, there is currently no indicator to characterize the regulatory function and 

Figure 3.   Statistics on the distribution of each group in the PPI network. (a) Skeletal muscle denervation. (b) 
Prostate cancer. (c) Alzheimer’s disease. (d) Gastric cancer. The ratio of the number of genes in each group in 
different regions.

Table 4.   The ratio of the number of genes in each group in different regions.

FC group p-value group C value group

Core region Sub core region Noncore region Core region Sub core region Noncore region Core region Sub core region Noncore region

Skeletal muscle 
denervation 0.1752 0.3424 0.4824 0.1805 0.3268 0.4927 0.2020 0.3459 0.4522

Prostate cancer 0.6607 0.2857 0.0536 0.5152 0.3030 0.1818 0.7045 0.2727 0.0227

Alzheimer’s 
disease 0.2274 0.3271 0.4455 0.2225 0.3549 0.4225 0.2460 0.3524 0.4016

Gastric cancer 0.2166 0.3076 0.4759 0.2125 0.3188 0.4687 0.2391 0.3095 0.4514
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participation degree of ncRNA on transcriptome expression to help us evaluate and screen ncRNA. Here we 
designed a new algorithm PDNT to calculate the Contribution value, which is defined as a quantitative indicator 
of the participation degree of ncRNA in transcriptome.

To test the superiority of C value, we compared it with absolute Log2 FC and p-value. Log 2 FC reflects the 
expression change of ncRNAs and p-value reflects how significant the change is. The two indexes of each DE 
RNA were obtained after the traditional whole transcriptome sequencing, and many follow-up studies have 
partially referenced Log2 FC and p-values in selecting the target gene9,10,16. We analyzed four microRNA data 
sets and two lncRNA data sets, and compared the C value with Log2 FC and p-value in each data set. First, we 
performed enrichment analysis on DEGs to obtain the most enriched IPA canonical pathways. We found that 
top C value ncRNAs targeted more genes in these pathways than FC and p-value groups, which may suggest 
that top C value ncRNAs have greater regulatory potential for enriched pathways. Further, we constructed a PPI 
network based on DEGs, partitioned the PPI by degree, and then observed the distribution of the three groups 
in different partitions. It was found that the number of target genes of top C value ncRNAs in each region was 
greater than that of the other two groups. At the same time, a larger proportion of target genes in the C value 
group were concentrated in the central region of the PPI. It suggests that the top C value ncRNA has a broader 
and more important influence on the PPI network than the other two groups. Finally, based on literature search, 
we obtained key ncRNAs that regulate various pathological/ physiological processes, and then tested the screen-
ing effect of the three indicators on these key ncRNAs in the datasets. It was found that using the C value to rank 
ncRNAs made the overall ranking of these key ncRNAs higher than the other two indicators. This suggests that 
ncRNAs screened with C values have a greater potential for regulating pathological/physiological processes.

In order to correct the bias caused by only considering expression differences when screening ncRNA, many 
analysis methods and databases have been derived, such as GSEA11 IPA12, David13, Catmap14 and GlobalTest15. 
Their analytical methods have different priorities, but the general idea is the same, that is, to perform functional 
annotation on the RNA profile. But through these methods, we can only observe which genes and pathways are 
associated with ncRNAs. We do not have a measure to evaluate the participation degree of ncRNA in transcrip-
tome. This lack may result in our inability to assess the priority of two ncRNAs when their target genes are close 
in number. Or when the two ncRNA regulate similar pathways, we cannot judge their participation degree in 
the expression regulation of the transcriptome. The algorithm PDNT proposed in this study is based on these 
pathway analysis methods. We hope to make better use of the pathway enrichment results to evaluate ncRNA 
and we integrated more valuable information to optimize the screening efficiency of ncRNA. The limitation of 
this study is that we only calculated based on one pathway enrichment method. In the subsequent study, we 

Figure 4.   After sorting with C value, the ranking of disease critical miRNAs increased integrally. (a) Skeletal 
muscle denervation. (b) Alzheimer’s disease. (c) Prostate cancer. (d) Gastric cancer. Left: the sum of the ranks 
of disease critical miRNAs by the three indexes. Right: The number of mRNAs that rank up or down. (FC 
group: the collection of the top10 FC miRNAs’ predictive target mRNAs; p-value group: the collection of the 
top10 p-value miRNAs’ predictive target mRNAs; C value group: the collection of the top10 C value miRNAs’ 
predictive target mRNAs).
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will compare the differences between the results calculated based on different pathway enrichment methods, to 
provide more inspiration and help for related research.

Figure 5.   LncRNA operation results for skeletal muscle denervation data set (a) The ratio of predicted target 
genes to the total genes in IPA canonical pathways. The distribution of (b) top10 FC, (c) top10 p-value and (d) 
top10 C value lncRNAs’ predictive target mRNAs in the PPI network. Number of genes in core region, sub core 
region and noncore region of each group was tagged. (e) The ratio of the number of genes in each group in 
different regions. (FC group: the collection of the top10 FC lncRNAs’ predictive target mRNAs; p-value group: 
the collection of the top10 p-value lncRNAs’ predictive target mRNAs; C value group: the collection of the top10 
C value lncRNAs’ predictive target mRNAs).
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Table 5.   The ratio of the number of genes in each group in different regions.

FC group p-value group C value group

Core region Sub core region Noncore region Core region Sub core region Noncore region Core region Sub core region Noncore region

Skeletal muscle 
denervation 0.0990 0.3453 0.5555 0.0946 0.3438 0.5615 0.1915 0.3856 0.4229

Adipocyte dif-
ferentiation 0.2727 0.3636 0.3636 0.3000 0.3000 0.4000 0.4800 0.3600 0.1600

Figure 6.   LncRNA operation results for adipocyte differentiation data set (a) The ratio of predicted target genes 
to the total genes in IPA canonical pathways. The distribution of (b) top10 FC, (c) top10 p-value and (d) top10 
C value lncRNAs’ predictive target mRNAs in the PPI network. Number of genes in core region, sub core region 
and noncore region of each group was tagged. (e) The ratio of the number of genes in each group in different 
regions. (f) The sum of the ranks of adipocyte differentiation associated lncRNAs by the three indexes. (g) The 
number of adipocyte differentiation associated lncRNAs that rank up or down. (FC group: the collection of 
the top5 FC lncRNAs’ predictive target mRNAs; p-value group: the collection of the top5 p-value lncRNAs’ 
predictive target mRNAs; C value group: the collection of the top5 C value lncRNAs’ predictive target mRNAs).
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Based on the above evidence, the PDNT is an efficient algorithm for calculating the participation degree of 
ncRNA in transcriptome based on pathway analysis. We found that the PDNT algorithm provides a measure from 
another view compared with the log2FC and p-value and it may provide more clues to effectively evaluate ncRNA.

Methods
Prediction of ncRNAs’ target mRNAs.  MiRNA: MiRNAs target genes prediction software, miRanda-
3.3a (http://​www.​micro​rna.​org/) 22, uses a weighted dynamic programming algorithm to calculate the optimal 
sequence complementarity between a mature microRNA and a given mRNA. The main parameters are: -sc 140, 
-en -10, -scale 4, -strict -out.

LncRNA: The target genes of lncRNAs are predicted by co-expression analysis among samples. The Weighted 
Gene Correlation Network Analysis (http://​www.r-​proje​ct.​org/) 23 was used to calculate Pearson correlation coef-
ficients. The absolute value of the Pearson correlation coefficient ≥ 0.90, p-value < 0.01 and FDR < 0.01 was saved.

GO and KEGG pathway enrichment analysis.  In this study, the screening criteria for DEG were 
p < 0.05 and absolute Log2 FC ≥ 1.

GO is a database established by Gene Ontology consortium (http://​www.​geneo​ntolo​gy.​org), which includes 
three parts: molecular function, biological process and cell composition. KEGG is based on the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database (http://​www.​genome.​ad.​jp/​kegg/), Fisher exact test and × 2 test 
were used. Enrichment analysis of differentially expressed genes was performed using clusterProfiler R software 
package24, and gene length bias was corrected. The corrected p-value less than 0.05 was considered to be signifi-
cantly enriched by differentially expressed genes.

C value mathematical model and its calculation.  The C value of each DE ncRNA is calculated using 
the PDNT algorithm (Fig. 7):

p-value is the p-value of the pathway enriched by DEGs; Proportion refers to the proportion of the intersection 
between ncRNA target genes and DEGs in each pathway; n represents the number of pathways enriched by DEGs.

Cvalue =

n∑

k=1

Proportionk ∗ (−log10(pValue)

Table 6.   Efficiency comparison of C value in IPA canonical pathways.

ncRNA Dataset
Increase rate (C 
value vs. FC)

The average of 
the increase rate 
(C value vs. FC)

Increase rate (C 
value vs. p-value)

The average of the increase rate (C 
value vs. p-value)

microRNA

Skeletal muscle 
denervation 0.29

0.61

0.30

1.45
Prostate cancer 0.40 0.50

Alzheimer’s 
disease 0.53 1.91

Gastric cancer 1.20 3.09

lncRNA

Skeletal muscle 
denervation 0.07

0.39
0.09

0.78
Adipocyte dif-
ferentiation 0.71 0.86

Table 7.   Efficiency comparison of C value in PPI network.

ncRNA Dataset

Increase rate of core 
region ratio (C value 
vs. FC)

The average of the 
increase rate (C value 
vs. FC)

Increase rate of core 
region ratio (C value 
vs. p-value)

The average of the increase rate (C value vs. 
p-value)

microRNA

Skeletal muscle dener-
vation 0.15

0.10

0.12

0.18Prostate cancer 0.07 0.37

Alzheimer’s disease 0.08 0.11

Gastric cancer 0.10 0.13

lncRNA

Skeletal muscle dener-
vation 0.93

0.85
1.02

0.81
Adipocyte differentia-
tion 0.76 0.60

http://www.microrna.org/
http://www.r-project.org/
http://www.geneontology.org
http://www.genome.ad.jp/kegg/
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Ingenuity pathway analysis (IPA) core analysis.  IPA core analysis of DEGs (p < 0.05 and absolute 
Log2 FC ≥ 1) was performed using IPA (version 81,348,237, Qiagen), showing top10 canonical pathways accord-
ing to p-value.

PPI network for DEGs.  For each dataset, the STRING v.11.0 database was used to construct the PPI net-
work based on DEGs. The images were then drawn by cytoscape3.72 (San Diego, CA, USA).

Retrieval and statistics of key miRNAs and lncRNAs.  We searched PubMed (http://​www.​ncbi.​nlm.​
nih.​gov/​pubmed) for miRNAs that play important roles in skeletal muscle denervation, Alzheimer’s disease, 
prostate cancer and gastric cancer, respectively. The key words were "skeletal muscle AND microRNA", "Alzhei-
mer’s disease AND microRNA", "prostate cancer AND microRNA", and "gastric cancer AND microRNA". Next, 
we retrieved the lncRNAs that play an important role in skeletal muscle denervation and adipocyte differentia-
tion. Keywords: "skeletal muscle AND lncRNA" and "adipocyte differentiation AND lncRNA". The results were 
shown in Table 8.

Data Analysis.  The analysis platform is R 3.6.1 and the R package is clusterProfiler. The database is org.
Mm.eg.db developed with the R package.

Figure 7.   The operation and verification process of the PDNT algorithm.

Table 8.   The key miRNAs and lncRNAs.

MicroRNA/LncRNA

Skeletal muscle denervation miR-204-5p25, miR-21426, miR-10b-5p27, miR-15228, miR-27a29, miR-18a30, miR-139-5p31, miR-159/49732, 
miR-29c33, miR-34b34, miR-2235, miR-34c36, miR-378a-3p37, miR-20638

Prostate cancer miR-20a, miR-20b, miR-23b, let-7a18, miR-155-5p39, miR-218-5p40

Alzheimer’s disease miR-30b41, miR-29c42, miR-369-3p, miR-369-5p43, miR-30e, miR-21044

Gastric cancer miR-148a45, miR-20a46, miR-181b47, miR-14348, miR-21849, miR-1750

Adipocyte differentiation MIAT, LINC02202, LINC0111920

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22654  | https://doi.org/10.1038/s41598-022-27178-8

www.nature.com/scientificreports/

Data availability
All data generated or analysed during this study are included in these published articles [and their supplementary 
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