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Multi‑objective predictive control 
based on the cutting tobacco outlet 
moisture priority
Zhiping Fan 1,2*, Zhengyun Ren 2 & Angang Chen 3

In this paper, we propose a new priority multi-objective optimization strategy of system output 
variables in cutting tobacco process. The proposed strategy focuses on the cutting tobacco moisture-
controlled output variables optimization in feasible regions with two levels according to the priority. 
This study aims to provide a novel technical support for the chemical industry contained drying 
process. In order to alleviate the lack of degree of freedom of the system, strict set-point control 
is given, meanwhile, other output variables adopt zone control. Firstly, the system control output 
variables are optimized in ascending order of priority. Secondly, the specific lower-level target 
constraints are first relaxed. Finally, the relaxation of other high-priority target constraints is stopped 
when the optimization is feasible. Thus, the system control output variables move along the optimal 
target trajectory. From the perspective of practical application of engineering, under the condition of 
disturbance existing in the cutting tobacco drying process, the simulation shows that the proposed 
approach has good robustness when there is disturbance, and the previous method cannot meet 
the control requirement. The proposed strategy meanwhile has better tracking effect through single 
and multiple output variables simulation, which compared with traditional predictive control in real 
cutting tobacco drying process.

Industrial drying is a preservation method applied with the aim of reducing the moisture content of products by 
using heat energy. Drying is a complex and polytropic process that involves coupled heat, mass, and momentum 
exchange in the drying medium. The drying process can be realized by different types of dryers, such as belt, 
conveyor, drum, fluidized bed, vacuum, rotary and spray, and their size, shape, and drying quantity are different, 
but the drying mechanism is similar.

Due to the different characteristics of substances to be dried (such as moisture content, bulk density, consist-
ency, etc.), for each substance, a specific drying technology for intermittent or continuous drying was used in a 
specific dryer. The advanced process control strategy not only improves the quality of drying products, but also 
increases the product yield. The optimization strategy of the industrial drying process is implemented based on 
a drying mathematical model. In the regulation problem, the predicted value of the model is used to generate 
optimal control. In the estimation problem, the predicted value of the model and the real industrial measure-
ment data are used to produce optimal state estimation. Therefore, the study of the drying mathematical model 
is essential to the optimization strategy.

The modelling methods include first-principle modelling (mechanism modelling) and empirical modelling 
(data modelling). In this paper, a mathematical model of the tobacco drying process is established. Tobacco is 
a very complex biomass substrate, and redrying is a transitional stage between tobacco product processing and 
cigarette production. The drying process of cutting tobacco adopts a combination drying technique of conduc-
tive drying and forced convection to remove unbound free moisture from the surface of cutting tobacco, and 
then remove combined moisture from the inside of cutting tobacco1,2 to meet the technological requirement of 
subsequent cigarette production. At the same time, the nutrients and fragrance in cutting tobacco are retained3.

The advantage of first-principles modelling is that it can build highly complex process models and establish 
accurate nonlinear models. First-principle models are the preferred modelling strategy in industry for control 
objectives with strict production requirements and the needs for model portability and scalability4,5. The cut-
ting tobacco drying process mainly involves two stages, the constant rate evaporation period and the decreasing 
rate evaporation period after the preheating period6. During the constant rate evaporation period, evaporation 
occurs on the outer surface of the cutting tobacco to remove unbound water (free water) from the surface of the 
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cutting tobacco, and the constant rate evaporation period ends at the critical moisture content. Then, the rate 
of the evaporation period begins to decline until the required final moisture content is reached. During descent 
rate evaporation, the drying rate decreases because the moisture inside the cutting tobacco is slowly transported 
to the surface through the gradually increasing temperature of the cutting tobacco before evaporating from 
the surface7–9. The amount of moisture removed during the drop rate is small, but the time spent is quite long. 
Therefore, the implementation of a process control strategy was needed to improve the drying rate of the whole 
drying process to obtain the required tobacco outlet moisture. The cutting tobacco drying process is the most 
critical process in cigarette production. The main function of cutting tobacco drying machines is to control the 
moisture content of the cutting tobacco in a certain range to meet the technological requirements. The cutting 
tobacco drying process is a complex, dynamic, highly nonlinear, strongly interactive, continuously correlated, 
multivariate heat transfer process, which also has transient coupled momentum, heat and mass transfer, and 
time-varying physicochemical and structural changes of dried products10. The mathematical modelling of the 
drying process is the basis of drying process strategy research, which is very important to optimize and improve 
the running state and performance of the drying process.

Model Predictive Control (MPC) is a well-known method which has been broadly used in real industrial as an 
effective way of dealing with multi-variables constrained control problem. MPC depends on predictive models, 
which is to get the control signal by solving open-loop finite-horizon optimal control problem at every sample 
time. Due to MPC cannot solve the model uncertainties and disturbance, many modified MPC is proposed to 
satisfy the stability and anti-disturbance performance. Zhang et al.11 combine linear extended state observer 
with fuzzy MPC to solve the disturbance rejection ability problem by estimating and compensating. Wu et al.12 
developed a T-S fuzzy stable model PC tracking controller to realize the aim of offset-free tracking of the prede-
termined power and pressure set-points. Ferramosca et al.13 gave zone MPC, which can achieve zone tracking 
steady-state set-points in the target zone, however, zone MPC method has dynamic zone tracking errors. Zhang 
et al.14 described a zone economic MPC controller to optimize the operating economic in boiler-turbine system. 
Liu et al.15 steady state target optimization layer in RTO and MPC, which choose a set of steady-state operating 
setpoints in the cutting tobacco dying process.

This paper aims to design a priority multi-objective optimization strategy for system output variables based 
on the existing MPC strategy framework. The remainder of the paper is organized as follows. “Introduction” 
section  provides a detailed cutting tobacco production and modelling process. “Cigarette production processes 
and modelling” section, the Multi-Objective MPC(MOMPC) optimal algorithm is proposed. In “Modelling 
of the cutting tobacco drying process” section, MOMPC feasibility testing and soft constraint adjustment are 
presented. “The control algorithm of the cutting tobacco drying process” section gives the simulation of the 
multi-objective control strategy proposed above. “Simulation result of the multi-objective MPC control strategy” 
section presents the conclusion.

Cigarette production processes and modelling
The cigarette production process.  The cigarette production process is a complex industrial process with 
a long working procedure and high control precision. The raw tobacco changed from yellowish green to yellow 
dry coke after embellish leaf roasting. To facilitate storage, the tobacco after roasting is separated into stems and 
leaves, and secondary moisture adjustment is carried out. The separated tobacco leaves are re-roasted to reach 
the required moisture content, and fermented to increase flavor and improve color and smell. The separated 
stems are re-roasted and then cut into pieces with tobacco leaves to form cigarette tobacco. The production pro-
cess of finished tobacco cigarettes can be roughly described as shown in Fig. 1. The detailed industrial process 
flow chart of cigarette production is shown in Fig. 2.

The technological requirements and specifications index of the cigarette production process will be described 
in detail below. The cigarette production processes mainly include the following steps:

The first step is selection and preparation, and the technological requirements are to prepare raw tobacco, 
batches and stack them in order or in module ratios16.

The second step is to vacuum regain moisture and the technological requirements are to increase moisture 
content, raise tobacco leaf temperature, and loosen them16,17. The specifications index and requirement are listed 
in Table 1.

The third step is the hot-air tobacco leaf moisture, and the technological requirements are to increase the 
moisture content and raise the tobacco leaf temperature through hot-air. The process ability resistance of tobacco 
leaves is improved16,17. The specifications index and requirement are listed in Table 2.

Figure 1.   Production process of cigarette.
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The fourth step is to separate leaves and stems, and the technological requirements are to separate and sieve 
tobacco leaves and stems. The structure of tobacco leaves is greater than > (12.7 mm × 12.7 mm) over 80%, and 
the stems are greater than > 20 mm over 85%16.

The fifth step is to re-bake tobacco flakes. The technological requirements are to dry, cool and re-wet the 
tobacco flakes, and the moisture content of the tobacco flakes is regulated for mellowing and storage. The speci-
fications index and requirement are listed in Table 3.

The sixth step is to pack tobacco flakes, and the technological requirements are to package and bundle the 
re-baking tobacco flakes according to the packaging rules16. The specifications index and requirement are listed 
in Table 4.

The seventh step is to re-bake the tobacco stems, and the technological requirements are to dry the tobacco 
flakes for easy storage16,17. The specifications index and requirement are listed in Table 5.

The eighth step is to pack the tobacco stems16. The specifications index and requirement are listed in Table 6.

Figure 2.   Industrial process flow chart of cigarette production.

Table 1.   Vacuum regain moisture index and requirement.

Index Requirement

Inside core temperature ≤ 75◦C

Moisture content increase ≥ 2.0

Return permeability ≥ 98.0

Table 2.   Hot-air tobacco leaves moisture index and requirement.

Index Requirement

Temperature (50− 70)◦C

Moisture content (17− 20)%

Allowable error of moisture content ±1%

Looseness rate ≥ 99.0

Table 3.   Tobacco flakes re-baking index and requirement.

Index Requirement

Temperature (40− 60)◦C

Moisture content (11− 13.5)%

Standard deviation of moisture content ≤ 0.33%
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The ninth step is to re-bake the tobacco fragments. The technological requirements are to collect, dry and 
cool the tobacco fragments, and the moisture content is controlled for storage16. The specifications index and 
requirement are listed in Table 7.

The tenth step is to cool tobacco after processing, and the technological requirements are to store the pack-
aged tobacco flakes, tobacco stems, and tobacco fragments for a period of time to decrease the temperature16.

The last step is to cut tobacco into pieces. The technological requirements are to cut the tobacco leaves and 
stems into tobacco shreds through a shredder, and the moisture content and filling value can meet the techno-
logical production requirements. The cigarettes are finished17.

Modelling of the cutting tobacco drying process
The main task of cutting tobacco drying is to control the outlet moisture, meanwhile the nonlinear mathematical 
model of cutting tobacco drying is established by using the first principle18. The opening degree of the air door 
and temperature are constantly adjusted according to the model to effectively control the moisture content of 
tobacco.

The drying process of cutting tobacco is related to the inlet flow of cutting tobacco, the inlet moisture of cut-
ting tobacco, the rotational speed of the drying cylinder, the opening degree of the steam valve, the temperature 
and speed of hot air, the opening degree of the hot air damper, and the pressure and temperature of the steam 
in the drying cylinder19. The drying model of cutting tobacco was established based on the analysis of the 
influencing factors of the drying process. Assume that the drum tobacco machine is adiabatic (heat losses Qc1 
and Qc2 are equal to 0). The drum length L is 7.7 m, the diameter D is 1.25 m, and the inclination angle of the 
drum tobacco machine is 3.5 °C20. The stripping of liquid water during drying should ensure that unnecessary 
biochemical reactions do not occur, that is, the thermal and chemical properties of materials, air and water are 
constant within the temperature range considered, and the drying air is evenly distributed in the dryer. The mass 
flow at the input and output of the drum tobacco machine is equal.

The moisture mass balance equation of cutting tobacco21 is established as follows:

Here ρtobacco is the cutting tobacco density. ωin is the cutting tobacco moisture content of the inlet. ωout is the 
outlet cutting tobacco moisture content. min = mout is the quality of cutting tobacco. Rcdr is the drying rate of 
cutting tobacco. v is drum volume.

The dynamic energy balance equation of drum temperature21 is established as follows:

(1)ρtobaccoV
dωout

dt
= minωin −moutωout − ρtobaccoVRcdr

Table 4.   Tobacco flakes re-baking packing index and requirement.

Index Requirement

Temperature (35− 45)◦C

Moisture content (10.5− 13.0)%

Table 5.   Tobacco stem re-baking index and requirement.

Index Requirement

Moisture content (10.0− 13.0)%

Table 6.   Tobacco stems packing index and requirement.

Index Requirement

Moisture content (10.0− 13.0)%

Net weight allowance (±0.5 kg/ctn)%

Table 7.   Tobacco fragment re-baking index and requirement.

Index Requirement

Moisture content (11.0− 13.0)%

Stem containing rate ≤ 0.2%
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Here Tdryer is the drum temperature. ρair is the air density. chotair is the hot air thermal capacity.Tair is the hot 
air temperature. qhotair is the hot air volume flow.ctobacco is the cutting-tobacco thermal capacity. Tint is the inlet 
cut tobacco temperature. Toutt is the outlet cut tobacco temperature. ρmix is the mixture density of drum. cmix is 
the mixture thermal capacity of the drum. clw is the liquid water thermal capacity.

The dynamic energy balance equation of the cutting tobacco outlet temperature21 is established as follows:

The dynamic energy balance equation of hot air temperature21 is established as follows:

Here Tin is the inlet air temperature. H0,H1,H2 are the coefficients of thermal conductivity, 
H0 = 100(W/m◦C),H1 = 5(W/m◦C),H2 = 700(W/m◦C) . Tf  is the indoor reference temperature. Tc1 is the 
steam temperature of the heater. Tc2 is the heating steam temperature of the drum. ρaw is the mixture density of 
the hot dryer. Caw is the mixture thermal capacity of the hot dryer. Ql1,Ql2 is the heat loss.

According to the modelling process of cutting tobacco drying, the drying process model is a nonlinear 
and non-square model22. The controlled output variables of the system are the outlet cutting tobacco moisture 
content ωout , drum temperature Tdryer , hot air temperature Tdryer and outlet cutting tobacco temperature Toutt . 
The operational input variable is the two-way steam temperature Tc1 and Tc2. For the cutting tobacco drying 
process, the most critical controlled output variable (outlet cutting tobacco moisture) is mainly affected by the 
temperature of the drying cylinder and the hot air temperature. The number of controlled output variables of the 
drying process model is greater than the number of operating input variables, which puts the control system in 
a weak control state (insufficient system control freedom)23. To enable the system to operate strictly under the 
process requirements, this paper carries out priority ascending optimization for the controlled output variables 
of the system, and then softens the priority descending order of additional target constraints when optimizing 
the control of specific output variables. The first step is to relax the target constraint interval with low priority.

The control algorithm of the cutting tobacco drying process
The Multi-Objective Optimization (MOO) strategy algorithm has been widely used in optimal control systems 
for a long time. Molina et al. and Rani et al.24,25 presented using a simplified goal of the MOO problem to real-
ize the adjustment of PI and PID controllers based on MOO design. Reynoso et al.26 developed the design of a 
Two-Degree-of-Freedom (2-DoF) robust PID controller based on the partial model matching method. Gatzke 
et al.27 proposed the MOO control framework of MPC, which can be used to sort and control the controlled 
output targets of the system according to preset priorities based on a dictionary sorting algorithm. Wojsznis 
et al.28 constructed another MOO-MPC control strategy, in which the performance index is expressed as a MOO 
optimization problem, and the optimal operation input variables are solved by the goal attainment method.

Basis of the multi‑objective model predictive control optimization algorithm.  To achieve the 
optimal operation of the system-controlled output variables, the classical control PID and related non-optimized 
control strategies are usually adjusted according to engineering experience, and the related intelligent optimi-
zation strategies (such as neural networks, ant colony algorithms and multi-objective algorithms) can also be 
used to adjust the PID parameters, but the final effect is limited29. The control strength of the non-optimized 
strategy is often only related to the linear model. For complex nonlinear models, MPC is more commonly used 
in engineering. To obtain the optimal control effect, there are many algorithms and strategies to optimize the 
parameters of the MPC control framework. The existing MPC tuning methods are generally divided into two 
categories30,31. The first method is to obtain analytical expressions by simplifying the process description or 
process model to some extent, and to add some parameter adjustments. The relevant performance indicators are 
combined into the overall adjustment objective function based on the technology of multi-objective optimiza-
tion, according to the definition of the goal, and the use of a multi-objective optimization algorithm to solve the 
tuning problem of the technology is different. These methods have different regulation objective definitions, 
time domain characteristics (such as regulation time, rise time, overshoot), time domain performance indicators 
(such as square error integral), frequency domain sensitivity norms, and related combinations of different objec-
tive functions32–34. The MPC adjustment method takes the minimum error between the closed-loop response 
and the output variable reference trajectory as the objective function. The second method is to sort the output 
variables according to the importance of the controlled output variables to the process operation, and solve them 

(2)

dTdryer

dt
=

ρairchotairqhotair(Thotair − Tdryer)

ρmixVcmix

+
minctobacco(Tint − Toutt)

ρmixVcmix

+
ρtobaccoVRcdrclw(Tint − Tf)

ρmixVcmix

+
AH0(Tc2 − Tdryer)

LρmixVcmix
− Ql2

(3)
dToutt

dt
=

H1(Tdryer − Toutt)+H1(Thotair − Toutt)

LρtobaccoVctobacco
−

ρtobaccoVRcdrclw(Toutt − Tint)

ρtobaccoVctobacco

(4)
dThotair

dt
=

ρairchotairqhotair(Tin − T1)

ρawVctobacco
+

H2(Tc1 − Thotair)

LρawVcaw
− Ql1
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by a dictionary optimization algorithm35. For general nonlinear systems, the MPC objective function includes 
the weighted sum of the square deviation between the predicted output and the set value in the prediction time 
domain, and the weighted sum of the square input increment in the control time domain. The MPC control 
problem is shown as follows:

The multi-objective optimization strategy has two main trade-off choices to handle competing objectives, 
appropriately weighting the objectives before solving the problem or selecting the optimal solution according to 
the subjective criteria after obtaining a set of optimal solutions. The general multi-objective problem is expressed 
as follows:

Here F(x) is a vector composed of ω objective functions Fi , gj(x) and hl(x) are the system inequality 
and equality constraints, respectively. X = {x ∈ Rn|gj(x) ≤ 0, j = 1, . . . , z, hl(x) = 1, . . . , e} is the feasi-
ble region space. ndec is the vector of optimization decision variables. n is the number of decision variables. 
Z = {z ∈ Rw|z = F(x), x ∈ X } is the feasible criterion space. Fi(x) is defined according to preferences or eco-
nomic goals imposed by decision-makers.

In the MPC control strategies of many process systems, the importance of controlled output variables can be 
sorted. The dictionary target sorting algorithm is used to tune the controller to establish the optimization problem 
of the hierarchical control system36. Assume that the output variable targets and priority rankings are defined by 
the operator in this paper. In each step, optimization problems can be split into many single-objective optimiza-
tion problems to be solved, each of which is solved in the order of importance37. In each optimization step, the 
previously obtained optimal cost function value is included as a constraint in the new optimization problem.

The objective function is sorted by importance based on dictionary optimization technology38. This method 
is suitable for step response in the finite output time domain and state space response in the infinite output time 
domain. First, the operator needs to analyze the relative importance of the process -controlled output variables, 
usually taking economic, security and environmental factors as guidelines of control strategies. Second, an 
input–output pair is defined for each process -controlled output variable according to the importance order of the 
controlled output variables. Third, the values and benefits of the input and output variables of the system model 
are normalized, and the purpose is to optimize the value of the tuning cost function of different objectives on a 
similar order of magnitude. Fourth, the error between the output closed-loop response and the reference trajec-
tory is adjusted to be the smallest. The operator can define the time constant of the objective function according 
to the order of importance of the output variable and the specifications of the process operator39–41. The MOO 
of the output variable target is defined as,

Here θt is the time domain adjustment. yrefi (k) is the reference trajectory for discretization of controlled output 
variable i , yi(k) is the closed loop trajectory of the controlled output variable i and x is a vector of decision vari-
ables or tuning parameters. w is the number of input–output pairs. Qy = diag(q1, . . . , qny) , R = diag(r1, . . . , rnu) 
are diagonal weight matrices. x = (q1, . . . , qny, r1, . . . , rnu).yi(k) is the response of the closed-loop. The optimal 
control input variables are obtained by minimizing Eq. (7). The importance of process-controlled output vari-
ables also represents the dictionary optimization order. The definition of the MOMPC optimization problem 
is shown as follows:

(5)
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�uk
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p
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(6)
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x

F(x) =
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s.t. gj(x) ≤ 0, j = 1, . . . , z
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∑
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(

yrefi (k)− yi(k)
)2

, i = 1, . . . ,w
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Here i is the current tuning step. w′ is the number of current output targets, δ is the vector of the relaxation 
variable, and St ∈ R(w′−1)×(w′−1) is the diagonally weighted matrix. yLL and yUL are the lower and upper bounds 
of the decision variables. When dealing with lower priority output targets, the goal defined in the multi-objective 
optimization attempts to force higher priority output variables to be prioritized to obtain the best performance. 
Relaxation variable δ ensures that multi-objective optimization problems are always feasible.  F∗i  is the optimal 
value of variable yi in the ith dictionary priority target.

The purpose of multi-objective optimization is to find a decision variable or parameter vector that satisfies 
the constraint conditions, and optimize the vector space, whose spatial elements represent the objective func-
tion. This method can improve the feasibility of the MPC control strategy by relaxing the constraints according 
to the online assignable priority.

Feasibility testing and soft constraint adjustment of multi‑objective MPC.  If the operation and 
engineering constraints of the system cannot form an effective feasible region, the MOMPC optimization results 
cannot be obtained. The optimization strategy can be implemented only when the feasible region of the system 
exists. Drying and other industrial processes, are not allowed to interrupt the control strategy, because the infea-
sible regions in the production process will affect the quality of the production process and the safety of the plant 
operation42. For the multi-objective MPC control strategy, a feasible region testing mechanism and optimization 
implementation are necessary to ensure the smooth implementation of the control strategy.

The feasible region testing mechanism mainly aims at whether there is an effective feasible region in the 
constrained region of the system before optimization, so that the optimal solution can be found in the optimi-
zation strategy43. If the system has infeasible regions, some constraints must be adjusted to make the constraint 
space have feasible regions. The system is mainly subject to two types of constraints, hard constraints and 
soft constraints. Generally, the hard constraint is the constraint of the input variable of system operation (the 
physical constraint cannot be violated), and the soft constraint is the constraint bound of the output variable 
controlled by the system (operation constraint and engineering constraint). The operation constraint boundary 
is yLL ≤ y ≤ yUL , and the engineering constraint boundary is yLLL ≤ y ≤ yUUL . The engineering constraint is a 
hard constraint for the controlled output variable. The infeasible region solution is constraint adjustment, i.e., soft 
constraint adjustment. The constraints of the controlled output variables of the system are appropriately relaxed, 
but the soft constraints must not be relaxed beyond the engineering constraints. When the feasible region does 
not require softening constraints, the feasible region of the system is shown as follows:

When the feasible region does not exist, the relaxation variables are introduced for the constraint of the 
controlled output variable, which is shown as follows:

Here ε1 and ε2 are relaxation variables of the controlled output variables constrained, and the constraints 
without relaxation variables are hard constraints.

The MOMPC control strategy optimization implementation stage mainly seeks an effective optimal solution 
in the effective feasible region when there is an effective feasible region. However, the feasible region cannot 
guarantee the optimality of the optimal target solution, which may cause the target to deviate from the expected 
target value. In the feasible region, the system can be adjusted to drive to the expected target in the feasible 
region through an adjustable residual freedom constraint, and the optimal solution can be obtained. The fea-
sibility determination of the optimization problem and the weighting method of soft constraint adjustment of 
input and output variables can uniquely determine the optimization feasible region. If there is an optimization 

(8)
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feasible region, the optimal solution of the optimization target can be found in the feasible region space in the 
optimization implementation stage44–46.

First, the feasibility problem of MOMPC control strategy optimization was determined, that is, the feasibility 
of the optimization problem was determined according to the nonlinear model and constraints of the industrial 
process. Then, the soft constraint is adjusted, that is, the constraint boundary is relaxed to make the optimization 
problem feasible when the optimization result is judged to be infeasible. For simple constraints, the graphical 
method is used to determine whether the optimization problem is feasible. However, for the general multi-objec-
tive MPC control strategy optimization problem, which involves a nonlinear process and constraint conditions, 
the feasibility testing problem is more merged into a soft constraint adjustment problem. If the optimal solution 
of the decision variable is zero, there is a feasible region in the constraint space of the process. If the decision 
variable is a non-zero solution, that is, the constraint space needs the decision variable of a non-zero solution to 
obtain the optimization feasible region. If the optimization has no solution, the constraint feasible region cannot 
be obtained by relaxing the variables. Then, the constraint feasible region needs to be reconstructed by region 
relaxation of the target trajectory.

Multi‑objective priority and objective constraint priority adjustment.  In real industry, the impor-
tance of each controlled output variable of the system is inconsistent, and it is necessary to distinguish the prior-
ity of the output variable to better optimize the control. For the cutting tobacco drying process, the non-square 
model has an insufficient control degree of freedom, which leads to the steady-state error of the conventional 
control strategy. Therefore, the priority control strategy of controlled output variables is adopted47. In the dry-
ing process of cutting tobacco, the outlet moisture content ωcs is the most critical controlled output variable 
of the system, and it should be given priority to achieve the optimal control state in accordance with various 
constraints of the system. The multi-objective priority control strategy is based on the MPC control framework, 
and the objective priority is adopted to optimize the control of output variables in a certain order. The priority 
of the controlled output variable of the system represents the importance of the output variable, and the higher 
the priority, the more critical it is.

The controlled output variables of the real industrial process are also subject to additional objective con-
straints, economic objective constraints, safety objective constraints, and ecological environment objective con-
straints. When the feasible region determined by the operation and engineering constraints of the controlled 
output variables is satisfied, the system needs to determine the priority order of the target constraints on each 
controlled output variable after determining the priority order of each controlled output variable, so that the 
controlled output variables run along the optimal target trajectory. Assuming that each output variable has rn 
priorities,

Here ξ and b1 are the system parameters of equality target constraints. � and b2 are the system parameters of 
non-equality target constraints. r is the target constraint priority series of the current controlled output variables. 
The target constraint is as follows when r = 1.

In the multi-objective priority control strategy, when the control strategy exists in the feasible region of the 
system, the controlled output variables of the system are first optimized by priority ascending order, and when 
the specific output variables, the priority of the additional target constraints is softened in descending order, and 
the target constraints with low priority are relaxed first48. The specific control strategy is divided into two stages. 
① The system-controlled output variables are prioritized in ascending order, and the corresponding weight 
coefficients are set. The technological requirements of the system -controlled output variables with the highest 
priority are first met. ② After the priority of the controlled output variable is determined, the target constraint 
descending priority and weight coefficient of the specific controlled output variable are determined. When the 
target constraint has r priorities, if the target constraint interval is not feasible, the target priority with r priority 
will be relaxed first, and then the priority of ( r = 1 ) will be optimized. If the target constraint interval is feasible, 
the target constraint of other priorities will no longer be optimized.

A feasible region of system constraint exists or the feasible region exists through soft constraint adjustment. 
The multi-objective priority control strategy first considers the priority ascending order of the controlled output 
variables of the system to determine the importance of the controlled output variables of the system. For the 
additional objective constraint, descending order is carried out to obtain the optimal trajectory of the controlled 
output variables. The multi-objective optimization control strategy of cutting the tobacco process is shown as 
follows:

(11)
{

ξ rεr = br1
�rεr ≤ br2

, r = 1, . . . , rn
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Here Wr0
Q  is the positive-definite weight coefficient matrix. Because it is a descending-order softening target 

constraint, only softening and relaxing the target constraint corresponding to the minimum priority rn are con-
sidered, and other priority target constraints are treated as hard target constraints. The multi-objective optimal 
control strategy based on MPC can prioritize the controlled output variables online when the system does not 
have sufficient degrees of freedom to satisfy the process requirements of the controlled output variables, so 
that the system can prioritize meeting the process requirements of the controlled output variables to alleviate 
the problem of insufficient degrees of freedom of nonlinear systems. The controlled output variable may also 
be subject to additional artificial optimization target constraints, which can be further assigned to the target 
constraints in descending order after the controlled output variable’s priority has been determined, so that the 
controlled output variable always runs within the optimal target trajectory, which improves the feasibility and 
accuracy of the control system.

Simulation result of the multi‑objective MPC control strategy
Verification of the multi‑objective control strategy for a multi‑variable system.  For the multi-
variable system, each set value optimization of the system-controlled output variable has a mutual coupling 
effect, especially in the non-square model of the tobacco drying process. When the number of input variables is 
insufficient, the priority of the controlled output variables is the key to the system control strategy. The model 
predictive control of priority multi-objective and soft constraint weighting adjustment is used to control and 
adjust the drying process of tobacco, so that it can meet the relevant technological requirements. The tobacco 
drying process model is a fourth-order nonlinear multi-variable model, and the four output variables of the 
tobacco drying process reach different target setting values. The outlet moisture content of cutting tobacco is the 
most critical output target of the drying process with the highest priority. The drum temperature of the cutting 
tobacco drying process has a higher priority. Hot air temperature and cutting tobacco outlet temperature have 
the lowest priority.

The priority multi-objective control strategy is compared with the traditional industrial predictive control 
strategy. The control strategy is divided into two scenarios. In Scenario 1, the performance of the two control 
strategies is compared under the nominal condition of the cutting tobacco drying process. The priority is absent 
from the traditional predictive control strategy. In the case of insufficient operating input variables, the control 
system will only meet the controlled output variables directly related to the operation input variables, but not 
the key system-controlled output variables. The multi-objective control strategy adds priority to make the target 
tracking optimization of the controlled output variable have priority, especially when the operation input variable 
is insufficient, and the operation input variable is forced to satisfy the controlled output variable with the highest 
priority first. For ease of calculation and testing, the following assumes are given,

1	 The roller dryer is assumed to be adiabatic;
2	 Material, air, moisture is constant over the temperature range considered;
3	 Dry air is evenly distributed inside the drying cylinder;
4	 The mass flow at the input and output of the roller wire dryer must be equal;
5	 The speed of tobacco and hot air, the specific heat of tobacco, water and air, the quality of cutting tobacco 

and hot air are always keep same.

The simulation parameters are listed in Table 849.
The comparison is illustrated in Figs. 3 and 4.
Figures 3 and 4 show the operation input variables, the outlet moisture error of cutting tobacco and the 

tracking setting value of controlled output variables. When the Industrial Traditional Predictive Control Strategy 
(CMPC) is adopted, the two operation input variables of the system are directly related to the drum and hot air 

(12)

minV3 =
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temperature. If the system freedom is insufficient, the controlled output variables of the two systems can only 
be satisfied, and the outlet moisture of cutting tobacco cannot be directly controlled, thus, there is a steady-state 
error. The priority multi-objective control strategy is adopted to make the outlet moisture of cutting tobacco have 
the highest priority. The system was forced to give priority to the outlet moisture set value of cutting tobacco 
under the system constraint, and the priority of the other three controlled output variables was reduced.

Scenario 2, The performance of the two control strategies is compared under the condition of disturbance 
existing in the tobacco drying process, which is shown in Figs. 5 and 6 which show the operation input variables, 
the outlet moisture error of cutting tobacco and the tracking setting value of the controlled output variables. 
Due to the lack of priority, traditional predictive control cannot meet the control requirements of the system in 
the case of disturbance when the degree of freedom is insufficient, while the multi-objective control strategy has 
good robustness when there is disturbance.

Table 8.   The parameters of MOMPC.

Parameter Value

Mass flow of cutting tobacco ( kg/min) 500

Volume flow of dry air ( m3/min) 2000/60

Specific heat of water liquid ( KJ/kg
◦

C) 4.18

Specific heat of water vapor ( KJ/kg
◦

C) 1.85

Specific heat of dry air ( KJ/kg
◦

C) 1.01

Specific heat of the cutting tobacco ( KJ/kg
◦

C) 1.83

Density of water ( kg/m3) 1000

Density of the air ( kg/m3) 1.293

Density of the cutting tobacco ( kg/m3) 320

Inlet moisture content of the cutting tobacco 0.19

Outlet moisture content of the cutting tobacco 0.13–0.09

Inlet temperature of the cutting tobacco ( ◦C) 30

Outlet temperature of the cutting tobacco ( ◦C) 20–100

Hot air temperature ( ◦C) 100–120

Temperature of drum dryer ( ◦C) 130–170

Figure 3.   Operation variables of drying process and outlet moisture error of cutting-tobacco under nominal 
conditions.
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(a) Multi-control and CMPC Track Drying Process Output Variable Settings

(b)Multi-control and CMPC Track Drying Process Output Variable Settings

Figure 4.   Multi-control and CMPC tracking optimization of tobacco drying process under nominal conditions.
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Conclusion
In the drying process of cutting tobacco based on a nonlinear multi-variable model, mutual couplings exist in the 
system-controlled output variables. Since the control system is a non-square system with insufficient degrees of 
freedom, how to preferentially satisfy the system under the limited operation input variables is the most critical 
problem. Multi-objective optimization is an effective strategy when there is competition among objectives. The 
multi-objective optimization algorithm is introduced into the MPC control strategy, and the system-controlled 
output variables are optimized in ascending order of priority to meet the technological requirements of the con-
trolled output variables with higher priority. When additional target constraints may exist in the controlled output 
variables, the target constraints of the controlled output variables are prioritized after determining the priority 
of the specific controlled output variables. The target constraints with low priority are first relaxed. The relaxing 
of other high-priority target constraints is stopped when the optimization is feasible. Eventually, the system-
controlled output variables move along the optimal target trajectory to achieve the optimal control strategy.

Figure 5.   Operation variables of drying process and outlet moisture error of cutting tobacco under disturbance 
conditions.
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(a)Multi-control and CMPC Track Drying Process Output Variable Settings

(b)Multi-control and CMPC Track Drying Process Output Variable Settings

Figure 6.   Multi-control and CMPC tracking optimization of tobacco drying process under disturbance 
conditions.
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